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Recent emergence of new mass spectrometry tech-
niques (e.g. electron transfer dissociation, ETD) and im-
proved availability of additional proteases (e.g. Lys-N)
for protein digestion in high-throughput experiments
raised the challenge of designing new algorithms for
interpreting the resulting new types of tandem mass
(MS/MS) spectra. Traditional MS/MS database search
algorithms such as SEQUEST and Mascot were origi-
nally designed for collision induced dissociation (CID) of
tryptic peptides and are largely based on expert knowl-
edge about fragmentation of tryptic peptides (rather
than machine learning techniques) to design CID-spe-
cific scoring functions. As a result, the performance of
these algorithms is suboptimal for new mass spectrom-
etry technologies or nontryptic peptides. We recently
proposed the generating function approach (MS-GF) for
CID spectra of tryptic peptides. In this study, we extend
MS-GF to automatically derive scoring parameters from
a set of annotated MS/MS spectra of any type (e.g. CID,
ETD, etc.), and present a new database search tool
MS-GFDB based on MS-GF. We show that MS-GFDB
outperforms Mascot for ETD spectra or peptides di-
gested with Lys-N. For example, in the case of ETD
spectra, the number of tryptic and Lys-N peptides iden-
tified by MS-GFDB increased by a factor of 2.7 and 2.6 as
compared with Mascot. Moreover, even following a dec-
ade of Mascot developments for analyzing CID spectra
of tryptic peptides, MS-GFDB (that is not particularly
tailored for CID spectra or tryptic peptides) resulted in
28% increase over Mascot in the number of peptide
identifications. Finally, we propose a statistical frame-
work for analyzing multiple spectra from the same precur-
sor (e.g. CID/ETD spectral pairs) and assigning p values to

peptide-spectrum-spectrum matches. Molecular & Cel-
lular Proteomics 9:2840–2852, 2010.

Since the introduction of electron capture dissociation
(ECD)1 in 1998 (1), electron-based peptide dissociation tech-
nologies have played an important role in analyzing intact
proteins and post-translational modifications (2). However,
until recently, this research-grade technology was available
only to a small number of laboratories because it was com-
mercially unavailable, required experience for operation, and
could be implemented only with expensive FT-ICR instru-
ments. The discovery of electron-transfer dissociation (ETD)
(3) enabled an ECD-like technology to be implemented in
(relatively cheap) ion-trap instruments. Nowadays, many re-
searchers are employing the ETD technology for tandem
mass spectra generation (4–9).

Although the hardware technologies to generate ETD spec-
tra are maturing rapidly, software technologies to analyze ETD
spectra are still in infancy. There are two major approaches to
analyzing tandem mass spectra: de novo sequencing and
database search. Both approaches find the best-scoring pep-
tide either among all possible peptides (de novo sequencing)
or among all peptides in a protein database (database
search). Although de novo sequencing is emerging as an
alternative to database search, database search remains a
more accurate (and thus preferred) method of spectral inter-
pretation, so here we focus on the database search approach.

Numerous database search engines are currently available,
including SEQUEST (10), Mascot (11), OMSSA (12), X!Tandem
(13), and InsPecT (14). However, most of them are inadequate
for the analysis of ETD spectra because they are optimized for
collision induced dissociation (CID) spectra that show differ-
ent fragmentation propensities than those of ETD spectra.
Additionally, the existing tandem mass spectrometry (MS/MS)
tools are biased toward the analysis of tryptic peptides be-
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cause trypsin is usually used for CID, and thus not suitable for
the analysis of nontryptic peptides that are common for ETD.
Therefore, even though some database search engines sup-
port the analysis of ETD spectra (e.g. SEQUEST, Mascot, and
OMSSA), their performance remains suboptimal when it
comes to analyzing ETD spectra. Recently, an ETD-specific
database search tool (Z-Core) was developed; however it
does not significantly improve over OMSSA (15).

We present a new database search tool (MS-GFDB) that
significantly outperforms existing database search engines in
the analysis of ETD spectra, and performs equally well on
nontryptic peptides. MS-GFDB employs the generating func-
tion approach (MS-GF) that computes rigorous p values of
peptide-spectrum matches (PSMs) based on the spectrum-
specific score histogram of all peptides (16).2 MS-GF p values
are dependent only on the PSM (and not on the database),
thus can be used as an alternative scoring function for the
database search.

Computing p values requires a scoring model evaluating
qualities of PSMs. MS-GF adopts a probabilistic scoring
model (MS-Dictionary scoring model) described in Kim et al.,
2009 (17), considering multiple features including product ion
types, peak intensities and mass errors. To define the param-
eters of this scoring model, MS-GF only needs a set of training
PSMs.3 This set of PSMs can be obtained in a variety of ways:
for example, one can generate CID/ETD pairs and use pep-
tides identified by CID to form PSMs for ETD. Alternatively,
one can generate spectra from a purified protein (when PSMs
can be inferred from the accurate parent mass alone) or use a
previously developed (not necessary optimal) tool to generate
training PSMs. From these training PSMs, MS-GF automati-
cally derives scoring parameters without assuming any prior
knowledge about the specifics of a particular peptide frag-
mentation method (e.g. ETD, CID, etc.) and/or proteolytic
origin of the peptides. MS-GF was originally designed for the
analysis of CID spectra, but now it has been extended to other
types of spectra generated by various fragmentation tech-
niques and/or various enzymes. We show that MS-GF can be
successfully applied to novel types of spectra (e.g. ETD of
Lys-N peptides (18, 19)) by simply retraining scoring param-
eters without any modification. Note that although the same
scoring model is used for different types of spectra, the pa-
rameters derived to score different types of spectra are
dissimilar.

We compared the performance of MS-GFDB with Mascot
on a large ETD data set and found that it generated many
more peptide identifications for the same false discovery rates
(FDR). For example, at 1% peptide level FDR, MS-GFDB
identified 9450 unique peptides from 81,864 ETD spectra of

Lys-N peptides whereas Mascot only identified 3672 unique
peptides, �160% increase in the number of peptide identifi-
cations (a similar improvement is observed for ETD spectra of
tryptic peptides).4 MS-GFDB also showed a significant 28%
improvement in the number of identified peptides from CID
spectra of tryptic peptides (16,203 peptides as compared with
12,658 peptides identified by Mascot).

The ETD technology complements rather than replaces CID
because both technologies have some advantages: CID for
smaller peptides with small charges, ETD for larger and mul-
tiply charged peptides (20, 21). An alternative way to utilize
ETD is to use it in conjunction with CID because CID and ETD
generate complementary sequence information (20, 22, 23).
ETD-enabled instruments often support generating both CID
and ETD spectra (CID/ETD pairs) for the same peptide. Al-
though the CID/ETD pairs promise a great improvement in
peptide identification, the full potential of such pairs has not
been fully realized yet. In the case of de novo sequencing, de
novo sequencing tools utilizing CID/ETD pairs indeed result in
more accurate de novo peptide sequencing than traditional
CID-based algorithms (23, 24, 25). However, in the case of
database search, the argument that the use of CID/ETD pairs
improves peptide identifications remains poorly substanti-
ated. A few tools are developed to use CID/ETD (or CID/ECD)
pairs for the database search but they are limited to prepro-
cessing/postprocessing of the spectral data before or follow-
ing running a traditional database search tool (26, 27). Nielsen
et al., 2005 (22) pioneered the combined use of CID and ECD
for the database search. Given a CID/ECD pair, they gener-
ated a combined spectrum comprised only of complementary
pairs of peaks, and searched it with Mascot.5 However, this
approach is hard to generalize to less accurate CID/ETD pairs
generated by ion-trap instruments because there is a higher
chance that the identified complementary pairs of peaks are
spurious. More importantly, using traditional MS/MS tools
(such as Mascot) for the database search of the combined
spectrum is inappropriate, because they are not optimized for
analyzing such combined spectra; a better approach would
be to develop a new database search tool tailored for the
combined spectrum. Recently, Molina et al., 2008 (26) studied
database search of CID/ETD pairs using Spectrum Mill (Agi-
lent Technologies, Santa Clara, CA) and came to a counter-

2 The term “p-value” here and the term “spectral probability” used
in Kim et al., 2008 (16) are synonymous. Throughout the paper, we
use “p-value,” because it is more generally used.

3 A thousand PSMs of unique peptides is usually sufficient.

4 The peptide level FDR is defined as the number of unique pep-
tides in the decoy database over the number of unique peptides in the
target database at a certain threshold. At 1% spectrum level FDR,
MS-GFDB identified 22,003 spectra, whereas Mascot identified 9027
spectra, a 140% increase in the number of identified spectra for ETD
spectra of Lys-N peptides.

5 The combined spectrum is a pseudo-spectrum generated from
the set of pairs of peaks supporting the same backbone cleavage.
The pair may come from the same spectrum (e.g. two peaks with the
sum of masses equals to the parent mass) or different spectra (e.g. a
peak from CID spectrum and a peak from ECD spectrum with the
mass difference 16.02 Da, representing a possible pair of y and z
fragment ions).

The Generating Function of CID, ETD, and CID/ETD Spectra

Molecular & Cellular Proteomics 9.12 2841



intuitive conclusion that using only CID spectra identifies 12%
more unique peptides than using CID/ETD pairs. We believe
that it is an acknowledgment of limitations of the traditional
MS/MS database search tools for the analysis of multiple
spectra generated from a single peptide.

In this paper, we modify the generating function approach
for interpreting CID/ETD pairs and further apply it to improve
the database search with CID/ETD pairs. In contrast to pre-
vious approaches, our scoring is specially designed to inter-
pret CID/ETD pairs and can be generalized to analyzing any
type of multiple spectra generated from a single peptide.
When CID/ETD pairs from trypsin digests are used, MS-GFDB
identified 13% and 27% more peptides compared with the
case when only CID spectra and only ETD spectra are used,
respectively. The difference was even more prominent when
CID/ETD pairs from Lys-N digests were used, with 41% and
33% improvement over CID only and ETD only, respectively.

Assigning a p value to a PSM greatly helped researchers to
evaluate the quality of peptide identifications. We now turn to
the problem of assigning a p value to a peptide-spectrum-
spectrum match (PS2M) when two spectra in PS2M are gen-
erated by different fragmentation technologies (e.g. ETD and
CID). We argue that assigning statistical significance to a
PS2M (or even PSnM) is a prerequisite for rigorous CID/ETD
analyses. To our knowledge, MS-GFDB is the first tool to
generate statistically rigorous p values of PSnMs.

The MS-GFDB executable and source code is available at
the website of Center for Computational Mass Spectrometry
at UCSD (http://proteomics.ucsd.edu). It takes a set of spec-

tra (CID, ETD, or CID/ETD pairs) and a protein database as an
input and outputs peptide matches. If the input is a set of
CID/ETD pairs, it outputs the best scoring peptide matches
and their p values (1) using only CID spectra, (2) using only
ETD spectra, and (3) using combined spectra of CID/ETD
pairs.

EXPERIMENTAL PROCEDURES

Digestion of Cell Lysate—HEK293 cells were grown to confluence,
harvested and resuspended in lysis buffer (50 ammonium bicarbon-
ate, 8 M urea, Complete EDTA-free protease inhibitor mix (Roche
Applied Science), 5 mM potassium phosphate, 1 mM potassium fluo-
ride, and 1 mM sodium orthovanadate) and incubated for 20 min at
4 °C. An insoluble fraction was spun down at 1000 � g for 10 min at
4 °C and the protein content of the supernatant was determined using
the 2DQuant Kit (GE Healthcare). Per 1 mg of lysate 45 mM dithio-
threitol were used for reduction (30 min at 50 °C) and 100 mM iodoac-
etamide for subsequent alkylation (30 min at RT). Trypsin digests
were generated by digestion of 1 mg cell lysate with 1.25 �g Lys-C for
4 h at RT followed by dilution to 2 M urea and digestion with 15 �g
trypsin for 16 h at 37 °C. Lys-N digests were made by digestion of 1
mg cell lysate with 5 �g Lys-N for 4 h at RT, dilution to 2 M urea, and
another digestion with 5 �g Lys-N for 16 h at 37 °C.

Peptide Prefractionation by Strong Cation Exchange (SCX)—Frac-
tionation of peptides was performed as described earlier (28, 29). In
detail, digests were acidified with formic acid and loaded onto two
C18 cartridges using an Agilent 1100 high pressure liquid chroma-
tography (HPLC) system operated at 100 �l/min with 0.05% formic
acid in water. Peptides were then eluted from the C18 cartridges
using 80% acetonitrile and 0.05% formic acid in water onto a Poly-
SULFOETHYL A column (200 mm � 2.1 mm column, PolyLC). Sep-
aration of different peptide populations was performed at 200 �l/min
using a nonlinear gradient as follows: 0 to 10 min 100% solvent A (5

FIG. 1. Computing p values with MS-GF for a single spectrum. Given a tandem mass spectrum, MS-GF converts the spectrum into a PRM
spectrum (scored version of the tandem mass spectrum). The score of a PRM spectrum at mass m represents the log likelihood ratio that the
peptide from which the spectrum was derived contains a prefix of mass m. Negative peaks in the PRM spectrum represent masses more likely
to represent incorrect rather than correct prefix masses. Such negative peaks in the PRM spectrum usually correspond to low-intensity or
missing peaks in the experimental spectrum. The PRM spectrum is used to compute the MS-GF score of any peptide against the spectrum.
Then, MS-GF computes the histogram of the MS-GF scores of all peptides against the spectrum using the generating function approach.
Finally, MS-GF computes the p value of a peptide as the area under the histogram with MS-GF scores equal or larger than the MS-GF score
of the peptide.

FIG. 2. Computing p values with MS-GF for CID/ETD pairs. Given a CID/ETD pair, MS-GFDB converts each spectrum into a PRM
spectrum and merges two PRM spectra by summing scores of peaks sharing the same mass. This “summed” PRM spectrum is used to
generate the score histogram of all peptides and p values are computed using the histogram.
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FIG. 3. Number of identified peptides with Mascot and MS-GFDB from (a) charge 2 spectra in CID-Tryp and ETD-Tryp, (b) charge 2
spectra in CID-LysN and ETD-LysN, (c) charge 3 spectra in CID-Tryp and ETD-Tryp, (d) charge 3 spectra in CID-LysN and ETD-LysN,
(e) spectra with charges 4 and larger in CID-Tryp and ETD-Tryp, and (f) spectra with charges 4 and larger in CID-LysN and ETD-LysN.
The number of peptide identifications is plotted against the corresponding peptide level FDR. Solid curves represent MS-GFDB and dashed
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mM KH2PO4, 30% acetonitrile, 0.05% formic acid), 10 to 15 min from
0% to 26% solvent B (350 mM KCl, 5 mM KH2PO4, 30% acetonitrile,
0.05% formic acid), 15 to 40 min from 26% to 35% solvent B and
from 40 to 45 min from 35% to 60% solvent B, and from 45 to 49 min
from 60% to 100% solvent B. Fractions were collected in 1 min
intervals for 40 min, dried down in a vacuum centrifuge, and resus-
pended in 10% formic acid.

Mass Spectrometry—SCX fractions were analyzed on a reversed-
phase nano-LC-coupled LTQ Orbitrap XL ETD (Thermo Fisher Scien-
tific). An Agilent 1200 series HPLC system was equipped with a 20
mm Aqua C18 (Phenomenex) trapping column (packed in-house, 100
�m inner diameter, 5 �m particle size) and a 400 mm ReproSil-Pur
C18-AQ (Dr. Maisch GmbH) analytical column (packed in-house, 50
�m inner diameter, 3 �m particle size). Trapping was performed at 5
�l/min solvent C (0.1 M acetic acid in water) for 10 min, and elution
was achieved with a gradient from 10% to 30% (v/v) solvent D (0.1 M

acetic acid in 1:4 acetonitrile : water) in solvent C in 110 min, followed
by a gradient of 30% to 50% (v/v) solvent D in solvent C in 30 min,
followed by a gradient of 50% to 100% (v/v) solvent D in solvent C in
5 min and finally 100% solvent D for 2 min. The flow rate was
passively split from 0.45 ml/min to 100 nL/min. Nano-electrospray
was achieved using a distally coated fused silica emitter (360 �m
outer diameter, 20 �m inner diameter, 10 �m tip inner diameter, New
Objective) biased to 1.7 kV. The instrument was operated in data
dependent mode to automatically switch between MS and MS/MS.
Survey full scan MS spectra were acquired from m/z 350 to m/z 1500
in the Orbitrap with a resolution of 60,000 at m/z 400 following
accumulation to a target value of 500,000 in the linear ion trap. The
two most intense ions at a threshold of above 500 were fragmented
in the linear ion trap using CID at an AGC target value of 30,000 and
ETD with supplemental activation at an AGC target value of 50,000.
The ETD reagent AGC target value was set to 100,000 and the
reaction time to 50 ms.

Data Processing—From every raw data file recorded by the mass
spectrometer, representing a single SCX fraction, two different peak
lists containing either CID or ETD fragmentation data were generated
using Proteome Discoverer (version 1.0, Thermo Fisher Scientific)
with a signal-to-noise threshold of three and the following settings for
the ETD-nonfragment filter: precursor peak removal with 4 Da, char-
ge-reduced precursor removal with 8 Da, and removal of known
neutral losses from charge-reduced precursors with 8 Da within a
window of 120 Da. Single-fraction peak lists of the major peptide-
containing SCX fractions for trypsin-derived and Lys-N-derived pep-
tides were then merged into four larger peak lists, denoted CID-Tryp,
ETD-Tryp, CID-LysN, and ETD-LysN. The whole data set is com-
posed of 168,960 CID/ETD pairs. Of this, 87,096 pairs (51,233 with
charge 2�, 24,854 with charge 3�, and 11,009 with charges 4� and
larger) are from the trypsin digests and 81,864 (24,284 with charge
2�, 28,168 with charge 3� and 29,412 with charges 4� and larger)
are from the Lys-N digests. Spectra with precursor charges from 2�
to 7� were considered in the further analyses. All the spectra (Raw
files and mzXML files) and database search results associated with
this manuscript may be downloaded from the Tranche repository
(http://proteomecommons.org/tranche/) using the following hash:

mQTEDmtWauUPq41hJMPY/tnB3�zXhc5GSMKuRm�ljChF-
jtJrrrnJ4WwNpkgWM0/zGE0Zy/STG0NWJwTbbqMnInXrKi8A-
AAAAAAB5sA��

Mascot Analysis—Mascot (version 2.3.0, Matrix Science) was used
to search the peaklists against an in-house built database (74,190

entries; 31,263,418 amino acids) assembled from the IPI human da-
tabase (version 3.52, http://www.ebi.ac.uk/ipi) plus common contam-
inants (target database). A decoy database was constructed by re-
versing all sequences and slightly scrambling entries using MaxQuant
(version 1.0.13.8; http://www.maxquant.org) (30). The target and de-
coy databases were searched separately to estimate FDRs. The
following parameters were used for database searching: 50 ppm
precursor mass tolerance, 0.5 Da fragment ion tolerance, up to two
missed cleavages allowed, carbamidomethyl cysteine as fixed mod-
ification, no variable modifications. The enzyme was specified as
either trypsin or Lys-N and the instrument type either ESI-TRAP or
ETD-TRAP.

Training MS-GF Scoring Parameters—MS-GF takes a set of PSMs
as an input training set and outputs a scoring parameter file contain-
ing the parameters used for scoring (see Supplement 1 for details on
training scoring parameters). We first generated initial scoring param-
eter files for the four data sets (CID-Tryp, ETD-Tryp, CID-LysN, and
ETD-LysN) using PSMs with Mascot scores corresponding to peptide
level FDRs less than 1% as a training set. Using these initial param-
eter files, we ran MS-GFDB and selected PSMs with MS-GF p values
corresponding to peptide level FDRs less than 1%. These PSMs were
used as a new training set to build the final scoring parameter files.

MS-GFDB Search (for CID or ETD spectra)—Because MS-GFDB
automatically preprocesses spectra (see Supplement 1 for details),
we converted each raw data file into an mzXML file using ReAdW
4.3.1 (31) and used the mzXML file in the MS-GFDB search (as
opposed to using Proteome Discoverer for noise and (charge-re-
duced) precursor filtering). MS-GFDB searches were carried out
against the same database with the same parameters as were used
for Mascot searches.

MS-GFDB uses two scores: the MS-GF score and the p value (both
are computed by MS-GF). The MS-GF score is used to evaluate the
quality of a PSM and the p value is used to assess the statistical
significance of a PSM. To compute the MS-GF score, MS-GF first
converts every spectrum into a Prefix-Residue Mass (PRM) spectrum
(14, 32) using scoring parameters specific to a particular fragmenta-
tion technique and enzyme. The PRM spectrum is a scored version of
a spectrum having a score at every mass up to the parent mass of the
spectrum.6 As described in Dančík et al., 1999 (32), the score of a
PRM spectrum at mass m represents the log likelihood ratio that the
peptide from which the spectrum was derived contains a prefix of
mass m.7 The MS-GF score of a peptide against a spectrum is
defined as the sum of scores in the PRM spectrum corresponding to
prefix masses of the peptide. To compute the p value, MS-GF gen-
erates the score histogram of all peptides using the generating func-
tion approach (see (16) for details on the generating function ap-
proach). The p value of a peptide with match score s is defined as the
area under the histogram where the score value (x axis) is equal or
larger than s (see Supplement 2 for details on the MS-GF scoring

6 One can define the granularity of a mass depending on the
resolution of the mass spectrum. Throughout this paper, the granu-
larity is set as 1 Da (equivalent to the fragment ion tolerance 0.5 Da).
Although this paper focuses on MS/MS spectra with inaccurate frag-
ment masses, MS-GFDB can be adapted to analyze spectra with
accurate fragment masses by changing the granularity.

7 Every peptide of length n defines n-1 prefix masses representing
masses of the first i amino acids (for 1�i�n).

curves represent Mascot. Green curves represent CID and blue curves represent ETD. Mascot ion scores and MS-GFDB p values were used
for computing FDRs. FDRs were separately computed for spectra of precursor charge 2, precursor charge 3, and precursor charge 4 and
larger. For all the cases considered, MS-GFDB outperformed Mascot.
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functions). Figure 1 illustrates the procedure to compute p values with
MS-GF.

Given a spectrum and a protein database, MS-GFDB computes
MS-GF scores for all the peptides in the database (similarly to
SEQUEST or Mascot), finds the peptide with the best score and
reports its p value.8

MS-GFDB Search (for CID/ETD Pairs)—MS-GFDB combines a pair
of tandem mass spectra generated from a single precursor ion (using
different fragmentation techniques) and matches the combined spec-

trum against a database. Given a pair of spectra, it first converts each
spectrum into a PRM spectrum (using fragmentation-specific param-
eters for each type of spectrum) and generates a summed PRM
spectrum. The Summed PRM spectrum of two PRM spectra (with the
same parent mass) is calculated by adding two PRM scores (log
likelihood ratios) corresponding to the same mass. For example, if at
mass 500, two PRM spectra have scores 7 and 3, correspondingly,
the summed PRM spectrum has score 7 � 3 � 10 at mass 500. Note
that summing PRM scores at mass m is equivalent to multiplying the
probabilities that mass m is a prefix mass of the peptide from which
each the spectrum was derived. This summed PRM model assumes
that ion types are independent within the same spectrum (34) and
when coming from different spectra (35), the assumption that proved
to be useful in other applications. The score histogram of a CID/ETD
pair is computed using the summed PRM spectrum and is used to
compute p values. Figure 2 illustrates the flow of the p value compu-
tation for CID/ETD pairs. This method improves on the previous
method proposed by Nielsen et al. (22) in that it merges evidence for
a certain backbone cleavage (represented as a PRM score) using a
probabilistic model, whereas the approach in (22) only retains a peak

8 MS-GFDB search takes only �0.1 second per spectrum against a
database containing 31 million amino acids for a computer with Core
i7 2.7Ghz CPU with 12GB memory. We have recently published a
study to further speed up MS-GFDB using gapped peptides (MS-
GappedDictionary, Jeong et al., 2010 (33)), an approach that is similar
to using peptide sequence tags in Inspect (14). MS-GappedDictionary
uses MS-GF scores to generate gapped peptides that are used for
fast database scan such as peptide sequence tags. Combining MS-
GappedDictionary and MS-GFDB enables orders of magnitudes
speed-up.

FIG. 4. Probabilities of various ion types for the four types of (a) charge 2 spectra and (b) charge 3 spectra (see (32) for similar
analysis). Spectra in CID-Tryp-Confident, ETD-Tryp-Confident, CID-LysN-Confident, and ETD-LysN-Confident were used. All the spectra were
filtered to remove noisy peaks as follows: given a peak at mass M, we retained the peak if it is among the top six peaks within a window of
size 100 Da around M. Precursor ions (or charge-reduced precursor ions) and their derivatives were also filtered out. A colored bar represents
the probability (y axis) of a certain type of ion (x axis) being present in a filtered spectrum. Each data set is color coded. For example, a charge
2 spectrum in CID-Tryp-Confident generated from a length 10 peptide is expected to have 10–1 (number of potential cleavage sites) � 0.76
(probability of y ion) � 6.8 y ions, whereas a charge 2 spectrum in ETD-Tryp-Confident is expected to have only 9 � 0.26 � 2.3 y ions. In
MS-GFDB, all ion types with probabilities exceeding 0.15 are used for scoring (see Supplement 1 for details).
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if it has a complementary peak or discards a peak if not. Therefore,
the approach in (22) results in much stricter peak filtering, making it
difficult to distinguish between correct and incorrect peptide identifi-
cations. For example, given a CID/ETD pair with a poor-quality CID
spectrum and a high-quality ETD spectrum, the method in (22) is
unlikely to interpret the pair, because the CID spectrum does not help
to identify “complementary pairs of peaks” and the resulting spec-
trum contains only a few peaks identified from the ETD spectrum
itself. In contrast, the summed PRM scores retain most of the se-
quence information in the ETD spectrum contributing to successful
peptide identifications.

Note that this method can be generalized to the case of analyzing
more than two tandem mass spectra generated from a single precur-
sor ion (e.g. by adding a high energy collisional dissociation beam-
type CID spectrum).

RESULTS

Analysis of Individual Spectra—For each of the CID-Tryp,
ETD-Tryp, CID-LysN, and ETD-LysN data sets, we com-
pared the performance of MS-GFDB with Mascot by count-
ing the number of identified peptides for each FDR (peptide-

FIG. 5. Rank distributions of different ion types for different data sets: a, CID-Tryp-Confident; b, CID-LysN-Confident; c, ETD-Tryp-
Confident; and d, ETD-LysN-Confident. Only charge two spectra were considered and all spectra were filtered to remove precursor ions (or
charge-reduced precursor ions) and their derivatives. For each data set, 10 different ion types with highest probabilities were selected and the
probability of a peak of a given rank (x axis) being a certain ion type (color-coded) is plotted for peaks with rank 1 to 100. The black curve
(labeled as unexplained) represents the peaks that are not explained by any of the 10 selected ion types. For example, for CID-Tryp-Confident
charge 2, the highest ranked peak represents a singly charged y ion with probability 0.7, a doubly charged y ion (y2) with probability 0.1, a singly
charged b ion with probability 0.04, etc. It remains unexplained with probability 0.1.
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level FDR) using the separate target-decoy search approach
(36). For all the four data sets, MS-GFDB outperformed
Mascot (Fig. 3). For example, at 1% FDR, MS-GFDB iden-
tified 14,409 peptides in ETD-Tryp whereas Mascot identi-
fied 5310 peptides. The difference is more notable for ETD
spectra than CID spectra and for Lys-N digests than trypsin
digests. This indicates that Mascot is poorly optimized for
the analysis of new data types whereas MS-GFDB automat-
ically adapts to novel types of data. Even in the case of the
CID-Tryp data set where Mascot has been subjected to a
decade-long development, MS-GFDB identified �30%
more peptides across entire FDR range. Similar results were
obtained using the spectrum-level FDR (see Supple-
ment 3).

FIG. 6. Analog of Fig. 5 for charge 3 spectra.

FIG. 7. Venn diagrams of (a) spectral pairs identified against the
IPI-Human database within peptide level FDR 1% and (b) spectral
pairs identified against the decoy database with p values corre-
sponding to peptide level FDR 1% or less. The number of peptides
(the number of spectral pairs in parentheses) are shown. The grey
numbers correspond to the number (percentage in parentheses) of
spectral pairs where CID and ETD identifications disagree.
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FIG. 8. Number of identified peptides with MS-GFDB CID/ETD from (a) charge 2 spectral pairs in CID-Tryp and ETD-Tryp, (b) charge
2 spectral pairs in CID-LysN and ETD-LysN, (c) charge 3 spectral pairs in CID-Tryp and ETD-Tryp, (d) charge 3 spectral pairs in
CID-LysN and ETD-LysN, (e) spectral pairs of charges 4 and larger in CID-Tryp and ETD-Tryp, and (f) spectral pairs of charges 4
and larger in CID-LysN and ETD-LysN. Number of identified peptides with MS-GFDB are also shown for reference. The number of peptide
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MS-GFDB also outperformed SEQUEST and OMSSA
(see Supplement 4). To boost the performance of existing
MS/MS database search tools, PeptideProphet (37), iProphet,
and Percolator (38, 39) rescore their PSMs, resulting in a
significant increase in the number of peptide identifications.9

However, MS-GFDB outperformed even PeptideProphet,
iProphet, and Percolator, which take advantage of extra in-
formation unavailable to MS-GF such as the score distribution
of all PSMs and the retention time information (Supple-
ments 4 and 5).

In this experiment, we used the same data for both training
and testing of the performance, thus raising a valid concern
about over-fitting. This was done because we observed that
MS-GF parameters characterize a particular protocol (e.g.
ETD for a particular enzyme) and are rather stable with respect
to specific data sets, i.e. variable data sets with the same
protocol result in similar MS-GF parameters. To address this
concern, we demonstrated that if we derive MS-GF scoring
parameters from a training data set A and apply it to a test
data set B, the results hardly change as compared with de-
riving MS-GF scoring parameters from the data set B and
apply it to the same data set B (see Supplement 6).

For further analyses below, PSMs with FDRs below 1%
were selected from the four data sets using MS-GFDB; if
multiple spectra of the same charge are matched to the same
peptide, only that with the best score was chosen. From
CID-Tryp/ETD-Tryp/CID-LysN/ETD-LysN data set, 16,203/
14,409/8893/9450 PSMs were selected and denoted by CID-
Tryp-Confident/ETD-Tryp-Confident/CID-LysN-Confident/
ETD-LysN-Confident.

Comparison of Ion Fragmentation Statistics Across Differ-
ent Spectral Data Sets—The spectra of the same peptide are
different depending on the fragmentation methods and pre-
cursor ion charges. Moreover, spectra of peptides produced
by one enzyme (e.g. tryptic peptides ending with Lys or Arg)
do have different fragmentation propensities than spectra of
peptides produced by other enzyme (e.g. Lys-N peptides
starting from Lys) (28, 40). The common knowledge that ETD
spectra are mainly comprised of c and z� ions (and their
neutral losses) whereas CID spectra are of b and y ions (and
their neutral losses) is insufficient for designing a good scoring
function because one has to know the propensities (likeli-
hood) of these ions and many other neutral losses (41). To
analyze such propensities for different types of spectra, we
measured the probability of a certain ion type being observed
(Fig. 4) and plotted the distribution of a peak of a given rank
being a certain ion type (Figs. 5 and 6) as presented in (17,

32).10 Note the high abundance of c ions with high intensities
in Figure 5d, confirming the previously published result (18).
Features shown in Figures 4, 5, and 6 were automatically
derived by MS-GF scoring functions and contributed to the
improved performance of MS-GFDB over other tools.

Pitfalls of “Intersection” and “Union“ Approaches to Identi-
fying CID/ETD Pairs—It is believed that utilizing CID/ETD pairs
is helpful to improve confidence of peptide identifications
because the identification from one method cross-validates
the other. However, there is no consensus on how to utilize
CID/ETD pairs for the database search. The common practice
is to run database search for CID spectra and ETD spectra
separately as if the pairing is not even known, identify confi-
dent PSMs using a predefined threshold (e.g. peptide level
FDR 1% or a predefined score threshold) and take the inter-
section of CID PSMs and ETD PSMs (intersection approach).
For example, in CID-Tryp and ETD-Tryp there are 50,765
spectral pairs where either CID or ETD spectra (or both) are
confidently identified with MS-GFDB within the peptide level
FDR 1%. In 32,431 spectral pairs (representing 12,093 dis-
tinct peptides), the CID identification and ETD identification
were the same, indicating that these identifications are reli-
able (Fig. 7a). To measure the FDR of these “intersection”
spectral pairs, we repeated the same procedure with the
identifications to the decoy database and obtained eight pairs
(representing five peptides) where CID and ETD identifications
agree (Fig. 7b); hence, the peptide level FDR corresponds to
5/12,093 � 4.1�10�4. Although taking the intersection im-
proved the confidence of the resulting peptide identifications
(12,093 peptides at FDR close to 0), at the same confidence
level, MS-GFDB identified 7% more peptides using only CID
spectra (not shown in Fig. 7)!11 This indicates that this ap-
proach is inefficient considering that half of the instrument
time was wasted generating ETD spectra that did not help to
improve the number of peptide identifications.

The poor performance of the intersection approach can be
explained by the dependences in scores of CID and ETD
spectra from the same pair. Examination of hits in the decoy
database revealed that a high scoring PSM for CID spectra
often corresponds to a high scoring PSM for ETD spectra
from the same pair. As a result, contrary to the common belief,
the intersection approach has limited ability to remove incor-

9 Shteynberg, D., et al., Postprocessing and validation of tandem
mass spectrometry data sets improved by iProphet. (In preparation.)

10 Rank of a peak is defined as the number of peaks (in the same
spectrum) with intensities higher than or equal to intensity of the peak
(17).

11 For Lys-N digests, we identified 5788 peptides using the inter-
section approach with a corresponding to 3.5�10�4 FDR; at the same
FDR, MS-GFDB identified a similar number of peptides using only CID
spectra.

identifications is plotted against the corresponding peptide level FDR. FDRs were separately computed for spectra of precursor charge 2,
precursor charge 3, and precursor charge 4 and larger. Red curves represent MS-GFDB CID/ETD, green curves represent MS-GFDB CID and
blue curves represent MS-GFDB ETD. For all the cases considered, MS-GFDB outperformed both MS-GFDB CID and MS-GFDB ETD.
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rect PSMs. On the other hand, many hits in the target data-
base have high scores for CID spectra and low scores for ETD
spectra (or vice versa), thus reducing the number of correct
PSMs returned by the intersection approach.

Similarly, it is possible to take the “union“ of identified
peptides (all significant CID identifications plus all significant
ETD identifications) to get more peptide identifications. For
instance, from the above 50,765 spectral pairs, one may take
the 4073 � 12,093 � 2280 � 18,446 peptides, corresponding
to FDR (154 � 5 � 137)/18,446 � 1.6%.12 At the same FDR
level, MS-GFDB identified 16,636 peptides only from CID
spectra, thus this union approach resulted in 11% increase in
the number of peptides. Although this improvement in the
number of peptides (with a larger FDR) is meaningful, our
proposed approach results in a comparable number of iden-
tified peptides at a stricter level of confidence (1% FDR in-
stead of 1.6%).

Identifications from Combined CID/ETD Spectra—Given a
CID/ETD pair, one can generate a “combined spectrum” and
search a database with the combined spectrum. We used the
summed PRM spectra as described above (denoted by MS-
GFDB CID/ETD) and compared its performance with MS-
GFDB using only CID spectra (MS-GFDB CID) or ETD spectra
(MS-GFDB ETD). MS-GFDB CID/ETD identified more pep-
tides across entire FDR range compared with MS-GFDB CID
or MS-GFDB ETD for both trypsin digests and Lys-N digests
(Fig. 8). For example, at 1% FDR, MS-GFDB CID/ETD identi-
fied 18,342 peptides from CID/ETD pairs of trypsin digests
and 12,561 peptides from LysN digests, corresponding to
13%, 27%, 41%, and 33% improvement over when CID-Tryp,
ETD-Tryp, CID-LysN and ETD-LysN data sets are separately
used, respectively. If we consider spectra of charge 3 and
larger (where ETD has advantages over CID), the improve-
ment becomes even more significant: 23%, 30%, 68%, and
21%.

The improved performance of MS-GFDB CID/ETD is be-
cause of the probabilistic model for constructing combined
spectra. We remark that a brute-force approach to construct-
ing combined spectra actually reduces the number of peptide
identifications (Supplement 7).

DISCUSSION

We demonstrated that the generating function approach is
easily adaptable to the analysis of novel types of spectra. For
all types of spectral data sets we have tested, MS-GFDB
outperformed state-of-the-art MS/MS database search tools.
We further demonstrated how to utilize the combined CID/
ETD spectra generated from CID/ETD pairs using MS-GFDB.

We emphasize that MS-GFDB analyzes all different data
sets in exactly the same way using different scoring parame-
ters that are automatically derived by the same training pro-

cedure. Although it may seem counterintuitive that the MS-GF
scoring function (defined as a simple dot-product of vectors)
improves on more complex scoring functions used in tradi-
tional MS/MS tools, it was made possible by deriving rigorous
MS-GF p values using the generating function approach. We
are not claiming that MS-GF scores are “better“ than Mascot
scores, but we do show that p values derived from MS-GF
scores greatly improve on Mascot scores. This observation
emphasizes the importance of rigorous p values that remain
unavailable for popular tools such as Mascot and SEQUEST.

The problem of analyzing spectral pairs from the same
precursor is related to the problem of combining database
search scores of MS2 and MS3 spectra from the same peptide
addressed by Olsen and Mann, 2004 (42), Bandeira et al.,
2008 (35), and Ulintz et al., 2008 (43). Olsen and Mann, 2004
and Bandeira et al., 2008 developed a probabilistic scoring
model for MS2 spectra and used it to adjust the MS3 score by
summing the MS2 and MS3 scores. Although this approach is
similar to our approach in that both use the sum of (log-
likelihood) scores as the score of a pair, it did not provide a
rigorous framework to compute the p value of the pair. On the
other hand, Ulintz et al., 2008 developed an approach search-
ing the database separately for MS2 and MS3 spectra and
adjusting the probabilities of both spectra if the top scoring
sequences match (similar to the intersection approach de-
scribed above). In contrast, our approach considers all pos-
sible cases (e.g. including peptides having poor scores
against CID spectrum and good scores against ETD spec-
trum) and uses them to compute p values, something that was
missing in previous studies.

ETD has certain advantages over CID in the analysis of
peptides with post-translational modifications (PTMs) (18,
44–46). MS-GFDB can be used to identify modified peptides.
When PTMs are selected in advance (restrictive search for
PTMs), MS-GFDB only needs to add the masses of amino
acids with PTMs to the standard 20 amino acid set. In the
analysis of a sample of phosphorylated peptides, MS-GFDB
identified about 30%-40% more peptides from CID spectra
and about 60%-90% more peptides from ETD spectra than
Mascot (Supplement 8). The gain from MS-GFDB over Mas-
cot in this data set was smaller than in the other data sets
described above. This is because we used the parameters
trained from unmodified spectra to score spectra of phosphor-
ylated peptides. It is well known that some post-translational
modifications (PTMs) such as phosphorylation change the
fragmentation propensity of the spectrum, especially in the
case of CID spectra (47). Therefore, to efficiently analyze such
PTMs, one needs to develop a scoring function that is specific
to the target PTM (48). Designing a PTM-specific scoring
function and the generating function for modified peptides is
beyond the scope of this paper.

* This work was supported by National Institutes of Health Grant
1-P41-RR024851 from the National Center for Research Resources.

12 Spectral pairs where CID and ETD identifications disagree (red
numbers in Fig. 7) were discarded.
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