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Reversible protein phosphorylation is one of the most
pervasive post-translational modifications, regulating di-
verse cellular processes in various organisms. High
throughput experimental studies using mass spectrome-
try have identified many phosphorylation sites, primarily
from eukaryotes. However, the vast majority of phospho-
rylation sites remain undiscovered, even in well studied
systems. Because mass spectrometry-based experimen-
tal approaches for identifying phosphorylation events are
costly, time-consuming, and biased toward abundant pro-
teins and proteotypic peptides, in silico prediction of
phosphorylation sites is potentially a useful alternative
strategy for whole proteome annotation. Because of var-
ious limitations, current phosphorylation site prediction
tools were not well designed for comprehensive assess-
ment of proteomes. Here, we present a novel software
tool, Musite, specifically designed for large scale predic-
tions of both general and kinase-specific phosphorylation
sites. We collected phosphoproteomics data in multiple
organisms from several reliable sources and used them to
train prediction models by a comprehensive machine-
learning approach that integrates local sequence similar-
ities to known phosphorylation sites, protein disorder
scores, and amino acid frequencies. Application of Musite
on several proteomes yielded tens of thousands of phos-
phorylation site predictions at a high stringency level.
Cross-validation tests show that Musite achieves some
improvement over existing tools in predicting general
phosphorylation sites, and it is at least comparable with
those for predicting kinase-specific phosphorylation
sites. In Musite V1.0, we have trained general prediction
models for six organisms and kinase-specific prediction
models for 13 kinases or kinase families. Although the
current pretrained models were not correlated with any
particular cellular conditions, Musite provides a unique
functionality for training customized prediction models
(including condition-specific models) from users’ own
data. In addition, with its easily extensible open source
application programming interface, Musite is aimed at
being an open platform for community-based devel-
opment of machine learning-based phosphorylation

site prediction applications. Musite is available at
http://musite.sourceforge.net/. Molecular & Cellular
Proteomics 9:2586–2600, 2010.

With many genomes being sequenced at an increasingly
fast pace, a key and challenging issue is inferring protein
function and downstream regulatory networks. As a pervasive
regulatory mechanism, reversible protein phosphorylation
plays an important role in signaling networks (1). Annotation of
phosphorylation and other modification sites in proteomes is
a critical first step toward decoding such signaling networks.

In recent years, protein phosphorylation data have accu-
mulated rapidly due to large scale mass spectrometry studies
of protein phosphorylation in different organisms (2–9) and
development of associated web resources (10–18). In partic-
ular, there are currently about 100,000 annotated phosphor-
ylation sites in all organisms in UniProt/Swiss-Prot (V57.8).
About 27,000 of these sites are from human. Nevertheless,
our knowledge of protein phosphorylation is still limited. The
majority of proteins are estimated to be phosphorylated at
multiple sites (�100,000 sites in the human proteome alone)
(19). Furthermore, our understanding of phosphorylation
events in signaling networks is even more lacking, largely due
to the lag in elucidating kinase-substrate interactions. For
example, fewer than 5,000 (5%) of reported phosphorylation
sites in UniProt/Swiss-Prot are annotated for their cognate
protein kinases.

Despite improvements in phosphopeptide enrichment and
mass spectrometry analysis, experimental identification of
phosphorylation sites in a global manner is still a difficult,
expensive, and time-consuming task. In addition, high
throughput proteomics techniques have some limitations. Be-
cause only proteotypic peptides are observed, mass spec-
trometry tends to provide fractional sequence coverage for
proteins. Detection of low abundance proteins is also prob-
lematic. Consequently, a significant portion of phosphoryla-
tion sites are missed by current techniques. Moreover, it is
even harder to characterize kinase-substrate interactions ex-
perimentally. Hence, in silico prediction of phosphorylation
events can be highly valuable in many cases. As genome and
proteome data in various organisms have been increasing
dramatically, comprehensive and accurate prediction of pro-
tein phosphorylation sites is becoming more advantageous
for proteome annotation and large scale experimental design.
For example, in hypothesis-driven experiments, the research-
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ers may want to use prediction tools to focus on putative
phosphorylation sites above a high stringency level.

More than a dozen phosphorylation site prediction tools
have been developed; they can be divided into two catego-
ries: tools for general phosphorylation site prediction and
tools for kinase-specific phosphorylation site prediction.
DISPHOS (20), NetPhos (21), and scan-x (22) fall into the first
category. The latter category includes Scansite (23), Net-
PhosK (24), GPS (25), KinasePhos (26), Predikin (27), CRPhos
(28), AutoMotif (29), pkaPS (30), PPSP (31), PhoScan (32),
PredPhospho (33), and NetPhorest (34). More information
about these tools is given in supplemental Table S1. Although
kinase-specific prediction is of interest because of its essen-
tial role in constructing signaling networks, general prediction
is also important because the majority of phosphorylation
sites remain undiscovered, and the kinase-specific predictors
may only be able to unveil a small fraction of them.

Despite the availability of various phosphorylation site pre-
diction tools, they have limitations when applied to whole
proteomes. The most important issue of phosphorylation site
prediction is accuracy. Because different training data and
techniques were used with these programs, prediction per-
formance varies greatly among them as discussed later. An-
other notable issue is that most tools were only released as
web servers and have restrictions for the data uploaded by
users (see supplemental Table S1). This makes large scale
predictions a laborious or impossible task. Besides web serv-
ers, GPS 2.1 (25) and PhoScan (32) were also released as
stand-alone tools, capable of handling large data sets, but
both tools only support kinase-specific predictions. NetPhos
2.0 and NetPhosK 1.0 were also released as both web servers
and stand-alone applications under Unix/Linux, but prediction
performance could be improved as we demonstrate in this
study. In Schwartz et al. (22), proteome scale scans on hu-
man, mouse, fly, and yeast were performed using motif-x (35)
and scan-x, and the prediction results were accessible. How-
ever, the tool scan-x has not been publicly released (as of May
26, 2010), and hence “on-the-fly” predictions for user-up-
loaded sequences are not possible. Another concern re-
garding the current tools is the stringency control of predic-
tions. User control on the prediction stringency is important,
especially for large scale predictions, because typically a
user is interested only in predictions above a certain confi-
dence threshold, and different users may have different
requirements on the threshold. However, current tools ei-
ther preset the threshold and do not support stringency
adjustment or only support several predefined stringency
levels from which a user can choose that may not meet
every user’s requirement.

To address the limitations of existing tools and to take
advantage of the large magnitude of experimentally verified
phosphorylation sites, we developed a bioinformatics tool,
Musite, specifically designed for large scale prediction of both
general and kinase-specific phosphorylation sites. As a

stand-alone application, Musite can be easily used to perform
large scale phosphorylation site prediction in an automated
fashion. We modeled phosphorylation site prediction as an
unbalanced binary classification problem and solve it with a
comprehensive machine-learning approach. Reliable experi-
mental phosphoproteomics data in multiple organisms were
collected from several sources and utilized to train phospho-
rylation site prediction models by a comprehensive machine-
learning procedure termed bootstrap aggregating. Three sets
of features (k nearest neighbor (KNN)1 scores, disorder
scores, and amino acid frequencies) were extracted from the
collected data and combined using support vector machine
(SVM) to make predictions. KNN scores capture local se-
quence similarity around sites phosphorylated by the same
kinase or kinase family whether or not the kinase-substrate
interactions are known. Disorder scores reflect the higher
probability of phosphorylated residues to be in disordered
regions, which are segments of proteins that lack a stable
tertiary structure. Phosphorylation sites have been shown to
be preferentially located within disordered regions (20, 36);
this was confirmed on phosphoproteomics data in six orga-
nisms by this study.

Applications of Musite on several proteomes yielded tens of
thousands of putative phosphorylation sites with high strin-
gency. Cross-validation tests and comparisons with other
tools show that Musite performs better on general predictions
and at least comparably with existing methods on kinase-
specific predictions. In Musite V1.0, we have trained general
prediction models for six organisms and kinase-specific pre-
diction models for 13 kinases or kinase families. It is noted,
however, that using the current pretrained models users can-
not correlate prediction results with any particular cellular
condition. To do so, users can utilize a unique functionality in
Musite for training customized prediction models from their
own condition-specific phosphorylation data. In addition,
Musite supports continuous stringency adjustment to meet
different confidence requirements for users. Taken together,
Musite provides a valuable tool for biologists to predict phos-
phorylation sites up to the whole proteome level. In addition,
with its open source, well designed, and easily extensible
application programming interface (API), Musite is also ben-
eficial to bioinformaticians as a platform to build their own
machine learning-based applications for phosphorylation site
prediction.

MATERIALS AND METHODS

Data Collection

Phosphorylation data for six model organisms, Homo sapiens, Mus
musculus, Drosophila melanogaster, Caenorhabditis elegans, Sac-

1 The abbreviations used are: KNN, k nearest neighbor; API, appli-
cation programming interface; AUC, area under ROC curve; CDK,
cyclin-dependent kinase; CK, casein kinase; NR, non-redundant;
ROC, receiver operating characteristic; SVM, support vector ma-
chine; XML, extensible markup language.
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charomyces cerevisiae, and Arabidopsis thaliana, from several
sources including UniProt/Swiss-Prot (11) (version 57.8, September
22, 2009), Phospho.ELM (15) (version 8.2, April 2009), PhosphoPep
(as of October 2, 2009), and PhosPhAt (18) (V3.0, October 2009) were
collected. Table I lists the phosphorylation data sources and statistics
for different phosphorylation types of each organism. Because a
serine/threonine-specific kinase can often phosphorylate both serine
and threonine residues (38), phosphoserines and phosphothreonines
in each organism were combined when training prediction models in
Musite.

We used the same type of residues (serine/threonine or tyrosine),
excluding known phosphorylation sites as the negative training data
(non-phosphorylation sites). Although not all these sites are neces-
sarily true negatives, it is reasonable to believe that a large majority of
them are. The data were extracted from organism-wise complete
proteomes annotated in UniProt (as of October 2, 2009) for H. sapi-
ens, D. melanogaster, C. elegans, and S. cerevisiae. Because the
complete proteome for M. musculus was not provided in UniProt,
Swiss-Prot protein entries of M. musculus were used. For A. thaliana,
TAIR9 gene models and annotations were used (39).

Non-redundant Data Set Construction

For each of the six organisms, after combining the positive and
negative data, protein sequences with high similarities were re-
moved to build a non-redundant (NR) protein data set using BLAST-
Clust in BLAST (40) package version 2.2.19 with a sequence iden-
tity threshold of 50%. Proteins with similar sequences were first
clustered into groups by BLASTClust. Within each group, we se-
lected the protein with the largest number of known phosphoryla-
tion sites into the NR data set; if there were no phosphorylation
sites in any of the proteins in a group, we selected the longest
protein. In this way, the maximum number of NR phosphorylation
sites was kept in the NR data set.

Machine Learning

Phosphorylation site prediction can be formulated as a binary
classification problem; namely, each serine/threonine or tyrosine can
be classified as either a phosphorylation site or a non-phosphoryla-
tion site. As with all general binary classification problems, there are
three key issues: (i) having a well collected and curated data set
including positive and negative data, (ii) having a set of effective

features to characterize the commonalities in each category and the
difference between the two categories, and (iii) developing a classifier
trained from the known data and capable of making reliable predic-
tions for new data.

In this study, for different types of phosphorylation (i.e. phospho-
serine/threonine and phosphotyrosine) in each organism, separate
prediction models were trained from the NR data sets as summarized
in Fig. 1. Output from a protein disorder predictor, KNN scores, and
amino acid frequencies around the phosphorylation sites were taken
as features. More features as listed in supplemental Table S2 will be
evaluated and incorporated into our prediction scheme if they im-
prove the prediction accuracy and are computationally feasible. We
used the aggregation of multiple SVMs (41) as the classifier.

Feature Extraction

KNN Features—Local sequence clusters often exist around phos-
phorylation sites because substrate sites of the same kinase or kinase
family usually share similar patterns in local sequences (42). To take
advantage of such cluster information of local sequences for predict-
ing phosphorylation sites, we took the local sequence around a
possible phosphorylation site in a query protein and extracted fea-
tures from its similar sequences in both positive and negative sets by
a KNN algorithm as follows.

I. For a query site (possible phosphorylation site), find its k
nearest neighbors in positive and negative sets, respectively,
according to local sequence similarity. For two local se-
quences, s1 � {s1(�w), s1(�w� 1), …, s1(0), …, s1(w � 1),
s1(w)} and s2 � {s2(�w), s2(�w � 1), …,
s2(0), …, s2(w � 1), s2(w)} define the distance Dist(s1, s2)
between s1 and s2 as

Dist�s1,s2� � 1 �

�
i��w

w

Sim�s1�i�,s2�i��

2w � 1
(Eq. 1)

where w is the number of residues included in the window in each
side, and hence, the window size is 2w � 1 (in Musite, w � 6 by
default; “*,” which represents gaps in the BLOSUM matrix, will be
added to the termini if the upstream or downstream regions of the
sites have less than w residues) and Sim, the amino acid similarity

TABLE I
Phosphorylation data collected in this study

Organism Data source
Number of
proteinsa

Number of
phosphoproteins

Residue
type

Number of
residuesa

Number of
phosphositesa

H. sapiens (human) UniProt/Swiss-Prot 20,642 6,993 Serine 964,479 (747,779) 22,693 (20,060)
Phospho.ELM (15,355) (5,729) Threonine 618,337 (472,154) 5,082 (4,470)

Tyrosine 306,980 (227,240) 3,110 (2,572)
M. musculus (mouse) UniProt/Swiss-Prot 16,429 5,959 Serine 767,185 (642,486) 17,694 (16,085)

Phospho.ELM (13,147) (5,070) Threonine 488,903 (402,799) 3,738 (3,336)
Tyrosine 245,940 (196,880) 2,617 (2,219)

D. melanogaster (fruit fly) UniProt/Swiss-Prot 17,011 3,314 Serine 781,887 (571,333) 8,960 (8,828)
PhophoPepb (12,928) (3,209) Threonine 531,531 (387,518) 2,463 (2,407)

C. elegans (worm) UniProt/Swiss-Prot 23,090 2,099 Serine 813,784 (590,442) 3,910 (2,792)
PhophoPepb (16,758) (1,565) Threonine 591,985 (424,206) 562 (396)

S. cerevisiae (bakers’ yeast) UniProt/Swiss-Prot 13,205 2,556 Serine 550,611 (244,689) 8,817 (8,409)
(6,092) (2,379) Threonine 360,928 (155,870) 2,053 (1,932)

A. thaliana (thale cress) PhosPhAtb 33,410 2,268 Serine 1,223,257 (666,523) 3,748 (3,159)
TAIR (17,732) (1,864) Threonine 683,707 (356,487) 580 (504)

a Numbers in parentheses represent unique proteins or residues after running the non-redundant data set construction procedure.
b For phosphorylation data in PhosphoPep and PhosPhAt, only unambiguously determined sites were included.
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matrix, is derived from the normalized amino acid substitution matrix
(BLOSUM62 by default) (43) as

Sim�a,b� �
M�a,b� � min�M�

max�M� � min�M�
(Eq. 2)

where a and b are two amino acids, M is the substitution matrix, and
max/min{M} represent the largest/smallest number in the matrix,
respectively.

II. The corresponding KNN feature is then extracted as follows.
A. Form a set of neighbors by combining the positive and

negative sets.
B. Calculate the average distances from the query sequence

s to all neighbors.
C. Sort the neighbors by the distances and pick the k nearest

neighbors.
D. Calculate the KNN score, the percentage of positive

neighbors (phosphorylation sites) in its k nearest
neighbors.

III. To take advantage of different properties of neighbors with
various similarities, steps I and II were repeated for different
k values to obtain multiple features for the phosphorylation
predictor. In Musite, by default, k was chosen to be 0.25,
0.5, 1, 2, and 4% of the size of the bootstrapped training
data set, and thus, five KNN scores were extracted as
features for phosphorylation prediction.

It is worthwhile mentioning that the nearest neighbors represent only
local sequence similarity as global sequence similarities are removed
in NR data sets.

Disorder Features—Phosphorylation sites have been observed to
have a strong tendency to be located in disordered regions (20, 36).
In Iakoucheva et al. (20), predicted disorder scores for phosphoryla-
tion sites were used as features in the phosphorylation predictor
DISPHOS. In this study, we extracted the disorder information for

surrounding residues of each possible phosphorylation site in the
query protein and combined them to form a set of disorder features in
the following procedure.

I. Predict the disordered scores for the query protein sequence
by means of a widely used disorder prediction tool, VSL2B
(44).

II. Extract the disorder prediction scores for the residues around
each possible phosphorylation site.

III. Take the average scores surrounding each site with different
window sizes as features for the phosphorylation predictor. In
Musite, by default, the window sizes are chosen to be 1, 5,
and 13 (i.e. with 0, 2, and 6 surrounding residues from each
side). Therefore, three disorder scores were extracted as
features for phosphorylation site prediction. If there are not
enough residues in either side, we use a truncated window
starting from or ending at the terminus. For example, if the
phosphorylation site is at the fourth position in the protein, we
averaged the disorder scores over positions 1–10 for the
window size of 13.

Amino Acid Frequency Features—Iakoucheva et al. (20) analyzed
the amino acid composition of the surrounding sequences of phos-
phorylation sites and found that rigid, buried, neutral amino acids
(Trp, Cys, Phe, Ile, Tyr, Val, and Leu) were significantly depleted,
whereas flexible, surface-exposed amino acids (Ser, Pro, Glu, and
Lys) were significantly enriched. This conclusion was confirmed in
the current study as illustrated under “Results.” Hence, the amino
acid frequencies can be useful features for phosphorylation site
prediction. The procedure to extract amino acid frequency features
is as follows. We calculated the amino acid frequencies in the
sequence surrounding the query site (the site itself is not counted).
There are 20 types of amino acids, and thus 20 frequencies are
calculated, the sum of which is 1. In Musite, by default, the window
size is 13; i.e. 6 residues at each side were included to calculate the
frequencies. If there are not enough residues in either side, a
truncated window starting from or ending at the terminus is used in
the same manner as described above in the disorder feature ex-
traction procedure.

Model Training

We used the extracted features to train phosphorylation prediction
models. As illustrated in Fig. 1, the training procedure consisted of
two subprocedures: bootstrap aggregation and specificity estimation.
Note that the training data and control data were randomly separated
with no overlaps.

Bootstrap Aggregating—The sizes of positive and negative data
sets in this study were highly unbalanced. The size of negative data
sets was 2 orders of magnitude larger than the positive data sets as
shown in Table I. To handle this problem, we used an ensemble
meta-algorithm in machine learning called bootstrap aggregating or
bagging (45). Given the features extracted from positive and neg-
ative data sets, the bootstrap aggregation procedure is as follows.

I. Bootstrap: generate a training set by sampling with replace-
ment from positive and negative data sets randomly. This
training set is called one bootstrap sample. By default, in one
bootstrap sample, 2,000 data points were sampled from the
positive data set, and another 2,000 were sampled from the
negative data set. Therefore, the training set was balanced
after bootstrapping.

II. Classifier training: take the bootstrap sample as a training
data set to train an SVM classifier. We used the package
SVMlight V6.02 (46) in this study.

FIG. 1. Overall work flow of Musite.
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III. Aggregating: when training, we repeated steps I and II for m
times to get m training classifiers (m � 5 by default). When
predicting a query site, we submitted extracted features to all
trained classifiers and combined the outputs from the clas-
sifiers by averaging. This averaged output was taken as the
prediction score for the query site.

Performance Evaluation and Specificity Estimation—To evaluate
the prediction performance of Musite, cross-validation tests were
performed. Receiver operating characteristic (ROC) curves were cal-
culated and plotted based on specificities (Equation 3) and sensitiv-
ities (Equation 4) by taking different thresholds.

Specificity �
True negative

True negative � False positive
(Eq. 3)

Sensitivity �
True positive

True positive � False negative
(Eq. 4)

Areas under ROC curves (AUCs) were also calculated based on the
trapezoidal approximation. As part of the training procedure, a portion
of non-phosphorylation sites (10,000 by default) was randomly se-
lected for specificity estimation as shown in Fig. 1. When making
predictions, a user can choose stringency levels based on estimated
specificities.

RESULTS AND DISCUSSION

KNN Scores as Features—A KNN score measures whether
the local sequence surrounding a query site is more similar to
the sequences containing phosphorylation sites in the positive
set or those with non-phosphorylation sites in the negative set.
A score greater than 0.5 means the query site is more similar to

the positive set; a score smaller than 0.5 means it is more similar
to the negative set. The larger the KNN score, the more similar
the site is to some known phosphorylation sites, and thus, the
more likely it is a phosphorylation site. Fig. 2 compares the
KNN scores of phosphorylation sites with those of non-phos-
phorylation sites. Overall, phosphorylation sites have larger
KNN scores than non-phosphorylation sites. For phospho-
serines/threonines, the average KNN scores with different
sizes of nearest neighbors are within 0.6–0.8 for all six orga-
nisms; for phosphotyrosines, the average KNN scores are
around 0.6. Therefore, the local sequences surrounding
known phosphorylation sites are more similar to their nearest
neighbors in the positive set (excluding self-matches) on av-
erage as expected. Note that such similarities are not due to
protein homology as the global sequence similarity between
any two proteins in our NR data sets is either insignificant or
low. This finding confirms that phosphorylation-related clus-
ters exist in local sequences around phosphorylation sites.
For non-phosphorylation sites, the average KNN scores are
around 0.5, which means overall that the sequences in the
negative set are not predominantly more similar to nearest
neighbors in either the positive or negative set. This is not
surprising because phosphorylation-related sequence clus-
ters are unlikely to exist in the negative set, and thus, the
sequences in the negative set have a similar chance to find
close neighbors in either the positive or negative set. In short,
the KNN scores capture the cluster information in the local

FIG. 2. Comparison of KNN scores between phosphorylation sites and non-phosphorylation sites. KNN scores of 1,000 phosphory-
lation sites and 1,000 non-phosphorylation sites randomly selected from each non-redundant data sets for six organisms were plotted. A, box
plots of KNN scores (H. sapiens serine/threonine data only) for phosphorylation sites (red) and non-phosphorylation sites (blue). The horizontal
axis represents the size of nearest neighbors (in percentage of the bootstrapped data set size). The vertical axis represents the KNN score. The
bottom and top of the box are the 25th and 75th percentiles, respectively; the central band is the median; the whiskers extend to the most
extreme data points that are not considered outliers; and the outliers are plotted individually as plus marks (�). B, comparison of mean KNN
scores between phosphorylation sites (pentagrams) and non-phosphorylation sites (circles) in six organisms.
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sequence around phosphorylation sites and hence distinguish
them from the background. Therefore, KNN scores are suit-
able to be used as features for phosphorylation site
prediction.

KNN scores are very effective features when used for pre-
dicting both general and kinase-specific phosphorylation
sites. For general phosphorylation site predictions, KNN
scores can automatically capture the local sequence similarity
between substrates of a common kinase or kinase family
without relying on knowledge of kinase-substrate interactions
or kinase-binding sequence motifs. This means that although
most known phosphorylation sites have no annotation about
their corresponding kinases KNN scores can still utilize the
inherent cluster information in them. KNN scores are also
useful for predicting kinase-specific sites. Oftentimes, one
kinase corresponds to multiple local sequence motifs, and
using a single sequence profile may not be as effective as
KNN, which better handles diverse sequence clusters.

Protein Phosphorylation and Protein Disorder—In this sec-
tion, we will demonstrate the effectiveness of disorder scores
as features for phosphorylation site prediction by studying the
preference of phosphorylation sites in protein disordered re-

gions. Fig. 3, A and C and B and D, plot the histograms of the
disorder scores for the surrounding residues of phospho-
serines/threonines and non-phosphoserines/threonines, re-
spectively. For both H. sapiens (Fig. 3A) and A. thaliana (Fig.
3C), the number of phosphoserines/threonines increases ex-
ponentially when the disorder score increases from 0 to 1; the
phosphoserines/threonines with disorder scores larger than
0.9 are dominant in the data set. In contrast, Fig. 3, B and D,
show a different pattern for non-phosphoserines/threonines.
The number of non-phosphorylation sites with disorder
scores larger than 0.9 is still higher than those in the other
subranges. This may be due to the fact that many of the
non-phosphorylation sites are actually unassigned phosphor-
ylation sites. Alternatively, this could also reflect a general
preference of serine/threonine to be located in disordered
regions. A third possibility is that these serines/threonines are
actually not phosphorylated because they lack a surrounding
kinase-specific motif in which case their non-phosphorylation
status should be indicated by the KNN feature. In any case, it
is clear that phosphoserines/threonines in H. sapiens and A.
thaliana are much more overrepresented in disordered re-
gions than non-phosphoserines/threonines. In fact, the ma-

FIG. 3. Preference of phosphorylation sites in disordered regions. Disorder scores for the H. sapiens NR data set and the A. thaliana NR
data set are shown as examples. All phosphorylation sites and non-phosphorylation sites that have 6 or more residues at both sides were used.
A, histogram of disorder scores of residues around phosphoserines/threonines (23,907 in total) in the H. sapiens NR data set. The horizontal
axis represents the disorder score predicted by VSL2B, divided evenly into 10 subranges from 0 to 1; the vertical axis represents the occurrence
(the number of sites) in the corresponding disorder subrange. Different colors from blue to red in each bar stand for 13 different residue
positions in the window from the upstream �6 to downstream �6 residues as indicated in the color bar on the right. B, histogram of disorder
scores of residues around non-phosphoserines/threonines (1,171,139 in total) in the H. sapiens NR data set. C, histogram of disorder scores
of residues around phosphoserine/threonine sites (3,512 in total) in the A. thaliana NR data set. D, histogram of disorder scores of residues
around non-phosphoserine/threonine sites (986,481 in total) in the A. thaliana NR data set. E, histogram of disorder scores of residues around
phosphotyrosine sites (2,504 in total) in the H. sapiens NR data set. F, histogram of disorder scores of residues around non-phosphotyrosine
sites (221,322 in total) in the H. sapiens NR data set.
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jority (91.0% in Fig. 3A and 87.6% in Fig. 3C) of the phos-
phorylation sites in the example have disorder scores larger
than 0.5 (note that VSL2B predicts a residue to be in the
disordered region when its predicted value is larger than 0.5),
whereas the corresponding percentages are only 54.9 and
50.5% for non-phosphoserines/threonines in Fig. 3, B and D,
respectively. Fig. 3, E and F, plot the histograms of the dis-
order scores for the surrounding residues of phosphoty-
rosines and non-phosphotyrosines in H. sapiens, respectively.
Although the phosphotyrosines are not predominantly distrib-
uted in disordered regions, there is a clear shift toward dis-
ordered regions in comparison with non-phosphotyrosines.
This pattern is consistent in all six organisms studied
(supplemental Fig. S1). In summary, there is a clear prefer-
ence of known phosphorylation sites to be within disordered
regions, which justifies the use of disorder scores as features
for phosphorylation site prediction.

Amino Acid Composition surrounding Phosphorylation
Sites—In this section, we will study the difference between
the amino acid composition surrounding phosphorylation
sites and that surrounding non-phosphorylation sites. In Fig.
4, from left to right, the amino acids vary from being enriched
to being depleted in the surrounding sequences of phosphor-
ylation sites. With slight variations among different organisms,
the overall trends are similar. For phosphoserine/threonine
sites (Fig. 4A), amino acids Pro, Arg, Asp, Glu, Ser, Lys, and
Gly are enriched in the surrounding sequences, whereas Cys,
Trp, Tyr, Phe, Ile, Met, Leu, His, Thr, and Val are depleted. For
phosphotyrosine sites (Fig. 4B), Asp, Glu, Pro, Ser, and Gly

are enriched, whereas Trp, Cys, Phe, Leu, His, Met, and Ile are
depleted. The different compositions of amino acids sur-
rounding phosphorylation sites and non-phosphorylation
sites justify the use of amino acid frequencies as features for
phosphorylation site prediction.

General and Kinase-specific Prediction for Multiple Organ-
isms—One of the unique features of Musite is that it can be
used to perform both general and kinase-specific phosphor-
ylation site predictions. Both types of predictions use the
same process except that kinase-specific phosphorylation
site predictions use phosphorylation sites corresponding to a
specific kinase or a kinase family as the positive training data.
For general predictions, we have trained six phosphoserine/
threonine prediction models for six organisms (H. sapiens, M.
musculus, D. melanogaster, C. elegans, S. cerevisiae, and A.
thaliana), one combined phosphoserine/threonine prediction
model for general eukaryotes, and two phosphotyrosine pre-
diction models for H. sapiens and M. musculus, respectively.
We did not train phosphotyrosine prediction models for the
other four organisms because there were not enough data for
training in those organisms. Kinase-specific prediction mod-
els were trained from phosphorylation data in H. sapiens for
13 kinases or kinase families, including ataxia telangiectasia
mutated (ATM) kinase, cyclin-dependent kinase (CDK) family,
CDK1, CDK2, casein kinase 1 (CK1), CK2, mitogen-activated
protein kinase (MAPK) family, MAPK1, MAPK3, protein kinase
A (PKA) family, protein kinase B (PKB) family, protein kinase C
(PKC) family, and proto-oncogenic tyrosine kinases (Src).
Supplemental Table S3 lists the detailed information about the

FIG. 4. Comparisons of amino acid compositions in positive and negative data sets. A, comparisons between phosphoserines/
threonines and non-phosphoserines/threonines in six organisms. The vertical axis represents the log2 ratio between amino acid frequencies
surrounding phosphoserines/threonines and those surrounding non-phosphoserines/threonines. A value larger than 0 means the correspond-
ing amino acid is enriched surrounding phosphoserines/threonines. The horizontal axis represents the 20 amino acids sorted in descending
order by the mean log2 ratio. B, similarly, comparisons between phosphotyrosines and non-phosphotyrosines in H. sapiens and M. musculus
(phosphotyrosine data in the other four organisms are too sparse to derive meaningful statistics).
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prediction models we trained so far. All the prediction models
are downloadable at http://musite.sourceforge.net/.

Evaluation of General Phosphorylation Site Prediction Per-
formance of Musite—To evaluate the performance of Musite
for general phosphorylation site prediction, we carried out a
10-fold cross-validation test on each type of phosphorylation
in each organism as follows. Taking phosphoserine/threonine
in H. sapiens for example, the phosphoserines/threonines in
the H. sapiens NR data set were randomly divided into 10
groups. Each group was then combined with the same num-
ber of non-phosphoserines/threonines randomly selected
from the H. sapiens NR data set to form 10 sub-data sets. A
single sub-data set was retained as validation data, and all the
remaining positive and negative data in the NR data set was
used as training data to train a prediction model. The valida-
tion data were then submitted to this trained model for pre-
diction. The cross-validation process was repeated 10 times
with each sub-data set used exactly once as the validation
data. Sensitivities at different specificity levels in each cross-
validation run were calculated according to Equations 3 and
4. Average sensitivities and specificities over 10 cross-valida-
tions were calculated. By taking different thresholds, we then
calculated the ROC curves as plotted in Fig. 5 and the AUCs
as shown in supplemental Table S4.

The most confident predictions are those with high speci-
ficities. From the ROC curves, for phosphoserines/threonines,
at 95% specificity, the prediction sensitivities vary from 36 to
62%; at 99% specificity, most predictions have sensitivity
around 10%, whereas predictions for A. thaliana and C. el-
egans achieve 20 and 32% sensitivity, respectively. Interest-
ingly, from the ROC curves, the predictions for C. elegans
perform significantly better than those for the other five orga-
nisms. This can be explained by the fact that both KNN and

amino acid frequency features in C. elegans show stronger
patterns in distinguishing between positive and negative data
as shown in Figs. 2 and 4. For phosphotyrosines, we tested
our results only on H. sapiens and M. musculus. The perfor-
mances for both organisms achieve around 10 and 25% in
sensitivity at the 99 and 95% specificity levels, respectively.

The prediction performance using each of the three sets of
features (KNN, amino acid frequency, and disorder) was also
evaluated as shown in supplemental Fig. S2. The result shows
that the combined features yield more accurate predictions as
expected. When testing the features separately, KNN features
performed the best in ROC.

Proteome-wide Phosphorylation Site Prediction—The gen-
eral phosphorylation site prediction model for each organism
was used to scan the corresponding proteome. Nearly
100,000 phosphorylation sites were predicted at the 99%
specificity level for all six organisms combined as shown in
Table II. Prediction results are available for download at http://
musite.sourceforge.net/. These predictions provide useful hy-
potheses for experimental validations.

Cross-species Prediction of General Phosphorylation
Sites—The performance of cross-species predictions using
Musite was evaluated against six organisms. A test data set
was built by randomly selecting 100 proteins that contain
phosphoserines/threonines and 100 non-phosphoproteins
from the NR data set of each organism. The remaining pro-
teins in each NR data set formed the training data set to build
a prediction model for every organism. We also built a com-
bined prediction model using the data by combining the six
training data sets and running the non-redundant data set
building procedure with an identity threshold of 30%. Note
that there was no overlap between training and test data sets.
Pairwise tests were then performed by submitting all serines/

FIG. 5. ROC curves of Musite predic-
tions on NR data sets of H. sapiens,
M. musculus, D. melanogaster, C. el-
egans, S. cerevisiae, and A. thaliana.
Each curve represents the average sen-
sitivities and specificities for difference
thresholds over 10 cross-validation runs.
The bottom right figure is the zoomed-in
region with high prediction specificities
(0.9–1).
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threonines in each of the six test data sets to each of the
seven prediction models. The specificities, sensitivities, and
AUCs were then calculated as shown in Table III. For all test
data sets, prediction results from the model trained using data
in the same organism performed the best (considering only
AUC). For each of the six test data sets, the performances did
not have large variations using different models trained on
data from different organisms. As a possible explanation,
although kinases and their substrates vary in different spe-
cies, the biophysical mechanism of enzyme-substrate binding
remained the same, and the generic features utilized by Mus-
ite (i.e. disorder scores and amino acid frequencies) could
have captured such a mechanism. Supplemental Fig. S3 and
supplemental Table S5 provide the scatter plots and correla-
tion coefficients of prediction scores among the seven models
for all 15,980 serines/threonines in the H. sapiens test data
set, which show high positive associations among predictions
from different models. The results suggest that Musite and the
associated prediction models can be used for cross-species
predictions of general phosphoserines/threonines, which is
especially useful when phosphorylation data in species of
interest is not enough for training a prediction model. Inter-
estingly, for cross-species predictions, there is no apparent
evidence that using model trained on data from an evolution-
arily closer species would perform better. As an example, for
the H. sapiens test data set, the predictions from the A.
thaliana model performed better than others except the com-
bined model and the H. sapiens model itself. Given the small
test data size, this may not be statistically significant. The

performance variations in various models may be partially due
to different quantities and qualities of phosphorylation data in
different organisms.

Comparison with Other General Prediction Tools—To fur-
ther evaluate the performance of general phosphorylation site
prediction by Musite, we compared it with three existing tools,
NetPhos, DISPHOS, and scan-x. We applied the same H.
sapiens test data set as that used in cross-species prediction
evaluation containing 9,943 serines (with 390 known phos-
phoserines) and 6,037 threonines (with 77 known phospho-
threonines). Sequences of these 100 phosphoproteins and
100 non-phosphoproteins were submitted to NetPhos,
scan-x, and DISPHOS for prediction. To compare the result,
we trained a model for Musite using the remaining proteins in
the H. sapiens NR data set and predicted the phosphorylation
sites in the test data set. The ROC curves comparing the
predictions of different tools are shown in Fig. 6 and
supplemental Table S6.

NetPhos is an artificial neural network-based general phos-
phorylation site predictor for eukaryotic proteins (21). We
submitted the H. sapiens test data set to the web server of
NetPhos 2.0 (http://www.cbs.dtu.dk/services/NetPhos/). The
default predictions of NetPhos achieved sensitivity and
specificity of 77.7 and 61.9%, respectively. In addition to
the default predictions, the program also provided the pre-
diction scores for all serines/threonines in query sequences.
By taking different thresholds on the scores, NetPhos
achieved sensitivities of 27.4 and 6.4% at 95.2 and 99.4%
specificity levels, respectively. To compare, when predict-
ing phosphoserines/threonines on the same data set using
the models trained from the H. sapiens NR data set exclud-
ing the test data set, Musite achieved sensitivities of 88.7,
42.8, and 11.3% at specificities of 61.9, 95.2, and 99.4%,
respectively.

DISPHOS was the first phosphorylation site predictor that
made use of protein disorder information (20). The web server
DISPHOS 1.3 (http://core.ist.temple.edu/pred/) successfully
predicted 190 of 200 protein sequences in the H. sapiens test
data set, whereas the remaining 10 sequences failed after
multiple trials. We did not include these 10 sequences when
evaluating the performance of DISPHOS. The default predic-

TABLE II
Proteome-wide phosphorylation site predictions at 99 and 95%

specificity levels

Organism Residue type
Number of predicted
phosphorylation sites

99% specificity 95% specificity

H. sapiens Serine/threonine 20,084 82,748
Tyrosine 2,621 14,339

M. musculus Serine/threonine 13,658 61,378
Tyrosine 3,273 12,134

D. melanogaster Serine/threonine 13,931 68,420
C. elegans Serine/threonine 14,287 74,520
S. cerevisiae Serine/threonine 12,895 52,306
A. thaliana Serine/threonine 17,877 92,118

TABLE III
Cross-species prediction performance of Musite

Training
Test

H. sapiens M. musculus D. melanogaster C. elegans S. cerevisiae A. thaliana

H. sapiens 0.858/43.7/15.4a 0.817/35.1/9.9 0.782/28.7/8.2 0.873/43/6/13.4 0.813/33.5/9.3 0.834/38.9/16.8
M. musculus 0.856/44.8/13.7 0.825/36.9/11.6 0.784/28.4/8.4 0.877/41.1/11.9 0.815/33.5/9.6 0.837/40.0/14.6
D. melanogaster 0.850/41.3/12.2 0.810/30.7/9.2 0.815/32.6/11.3 0.892/47.5/18.8 0.815/35.3/12.3 0.849/45.4/15.1
C. elegans 0.845/40.5/7.5 0.800/33.9/9.4 0.795/32.1/12.1 0.908/53.0/20.8 0.809/33.5/10.8 0.839/40.5/20.0
S. cerevisiae 0.828/28.9/5.6 0.800/32.2/5.9 0.767/23.2/6.1 0.849/32.2/7.9 0.825/34.0/8.6 0.822/29.7/5.9
A. thaliana 0.857/41.8/12.4 0.817/34.4/12.6 0.781/28.7/9.2 0.872/41.6/13.9 0.809/35.5/11.3 0.861/47.0/16.8
Combined 0.858/44.1/14.3 0.819/35.9/9.4 0.799/31.3/10.5 0.886/48.5/14.9 0.822/36.0/11.1 0.839/41.1/16.8

a The three numbers in each cell represent the AUC, sensitivity (%) at 95% specificity, and sensitivity (%) at 99% specificity. The training
model with the highest AUC for each test data set is highlighted in bold.
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tions of DISPHOS reached a sensitivity of 56.1% at a speci-
ficity of 84.0%. DISPHOS also provided prediction scores. By
taking different thresholds on the scores, DISPHOS achieved
sensitivities of 27.0 and 10.4% at 95.0 and 99.0% specificity
levels, respectively. In contrast, Musite achieved sensitivities
of 72.2, 43.7, and 15.4% at specificities of 84.0, 95.0, and
99.0%, respectively.

scan-x is a tool to predict phosphorylation sites in different
organisms using phosphorylation motifs determined by mo-
tif-x (22, 35). Proteome scale results on H. sapiens, M. mus-
culus, D. melanogaster, and S. cerevisiae using scan-x are
available for searching on the scan-x web site (http://scan-
x.med.harvard.edu/). By searching the protein sequences in
the H. sapiens test data set, the predictions of scan-x
achieved a sensitivity of 34.5% at a specificity of 95.2% and
a sensitivity of 15.8% at a specificity of 98.7%. To compare,
Musite achieved sensitivities of 42.8 and 18.2% at specifici-
ties of 95.2 and 98.7%, respectively.

Note that, when performing the comparisons, we used a
prediction model that trained from a data set excluding the
protein sequences in the test data set. However, for Net-
Phos, DISPHOS, and scan-x, some of the test proteins
might have been included in their training processes, and
thus, the sensitivity performances are biased favorably to-
ward these tools in the comparisons. This means that the
performance improvement of Musite over these tools could
be underestimated.

The consistency among different tools is shown in Fig. 7.
At a specificity of 95%, each tool predicted about 900
phosphorylation sites. 109 total predicted sites are common
among all four tools. About one-third to one-half of the
predictions from each tool have no overlap with any other
tools. 37 (34%) of the 109 commonly predicted sites are
known phosphorylation sites, whereas the percentage for
each separate tool is lower (Musite, 21%; DISPHOS, 9%;
NetPhos, 9%; and scan-x, 18%). This suggests that a meta-
predictor combining the multiple tools to perform a consen-
sus prediction might boost the prediction accuracy, although
the data presented here are too sparse to be conclusive. An
alternative explanation could be that the training data used by
different tools were complementary.

Comparison with Other Kinase-specific Prediction Tools—
We also evaluated the performance of kinase-specific predic-
tions using Musite by comparison with four widely used tools,
Scansite 2.0 (23), NetPhosK 1.0 (24), GPS 2.1 (25), and pkaPS
(30). The well known PKA family, CK2, and MAPK family were
used for comparison. The substrate proteins of each kinase or
kinase family were extracted from the H. sapiens NR data
set. Another 200 non-phosphoproteins were randomly se-
lected from the H. sapiens NR data set. Combining these
200 non-phosphoproteins and the substrate proteins forms
a test data set for each kinase or kinase family. The test data
set for PKA was submitted to Scansite, NetPhosK, GPS,
and pkaPS. The test data set of CK2 was submitted to
Scansite, NetPhosK, and GPS. The test data set for MAPK
was submitted to GPS.

To evaluate the performance of Musite, for each of the four
kinases, a modified leave-one-out cross-validation test was
performed. Each time, one phosphorylation site and the non-
phosphorylation sites in the corresponding test data set
formed the validation set, and the remaining phosphorylation

FIG. 6. Comparison of phosphoserine/threonine prediction per-
formances of NetPhos, DISPHOS, scan-x, and Musite. For NetPhos,
DISPHOS, and Musite, the phosphoserine/threonine prediction scores
were extracted, and the corresponding ROC curves were calculated
and plotted. For scan-x, only specificities/sensitivities at the two sup-
ported stringency levels were plotted. The bottom right graph is the
zoomed-in region with high prediction specificities (0.9–1).

FIG. 7. Prediction consistency among different tools at speci-
ficity around 95% on same test results as in Fig. 6. Different colors
indicate different tools. Blocks with edges of different colors represent
overlapping predictions from corresponding tools. The numbers in
each block represent the number of true positives and the number of
predicted phosphorylation sites separated by a slash. The numbers in
the parentheses following each tool name have a similar meaning for
all the predicted sites by the tool.
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and non-phosphorylation sites in the H. sapiens NR data set
formed the training set. A prediction model was trained from
the training set using Musite (1,000 data points from the
positive data set and 1,000 data points from the negative data
set were sampled when bootstrapping; k was chosen to be
2.5, 5, 10, and 20% of the bootstrapped sample size, i.e.
2,000, for KNN features; other parameters were by default).
The model was used to predict phosphorylation sites in the
validation set. The specificity level for the validation phosphor-
ylation site was then calculated by counting the percentage of
correctly classified non-phosphorylation sites in the validation
set by setting the threshold as the prediction score of the
validation phosphorylation site. This was repeated such that
each phosphorylation site was used once in the validation set,
and hence, each had a specificity level. Combining all valida-
tions, sensitivities were calculated by counting the percentage
of phosphorylation sites that had specificities above certain
levels. The leave-one-out cross-validation results of Musite
were then compared with the prediction results of other tools.
Like the comparisons of general phosphorylation site predic-
tions, some of the test proteins might have been trained in
other tools, and thus the performance is biased favorably to
them when comparing the results. Therefore, we also per-
formed self-consistency tests; i.e. we trained prediction mod-
els using all available sites for each kinase and predicted the
sequences in the corresponding test data set. Both results of
leave-one-out cross-validation tests and self-consistency
tests by Musite were compared with the results of other tools.

All of the four other tools that we compared have predefined
several stringency levels, and all except Scansite also pro-
vided prediction scores for all potential sites. Therefore, for
Scansite, we calculated the specificity and sensitivity at its
predefined three stringency levels, but for the other three tools
and Musite, we adjusted the prediction thresholds to set the
specificity levels as close as possible to 99.99, 99.9, 99.8,
99.5, 98.0, 97.0, 95.0, and 90.0% and compared the corre-
sponding sensitivities. Table IV shows that Musite self-con-
sistency tests performed superiorly to Scansite, NetPhosK,
and pkaPS. Musite leave-one-out tests performed better than
Scansite and NetPhosK in most cases except the results of
NetPhosK at sensitivities of 99.99 and 99.90%. Musite leave-
one-out tests performed comparably with pkaPS. GPS per-
formed slightly better than the Musite leave-one-out tests;
however, in most cases, Musite self-consistency tests outper-
formed the results of GPS, especially at high stringency levels.
Note that because GPS is a new and well maintained tool it is
likely that most, if not all, of our training phosphorylation sites
have been included in their training process. In any case, the
prediction performance of Musite is at least comparable with
other kinase-specific prediction tools.

Software Implementation—We developed a stand-alone
software system, Musite, to implement the described phos-
phorylation site prediction method. Currently, Musite V1.0 has
been released for Windows, Mac OS X, and Linux/Unix plat-

forms. Written in Java and released under a GNU general
public license open source license, the Musite project pro-
vides an open platform for development of machine learning-
based applications in predicting protein phosphorylation
sites. With well designed API, Musite can be easily extended
by programming. For example, other sequence features, such
as protein secondary structure and solvent accessibility, can
be easily incorporated in phosphorylation prediction by ex-
tending Musite API. Furthermore, Musite can be extended to
train models and make predictions for other types of post-
translational modifications. Musite, together with its source
code, is available at http://musite.sourceforge.net/.

To make Musite user-friendly, we have implemented an
easy-to-use graphical user interface. The most important util-
ity of Musite is phosphorylation prediction, and therefore, in
the main dialog, a user can submit protein sequences, a
FASTA file, or a Musite XML file (Musite XML is a customized
XML file format used by Musite for storing phosphorylation
data in a compact yet comprehensive way). Fig. 8 shows an
example of the result panel after submitting the human p53
protein sequence for phosphoserine/threonine prediction.
Musite supports continuous adjustment of specificity cutoff
from 0 to 1, rather than predefined confidence levels, to meet
all stringency requirements of different studies. The predicted
phosphorylation sites above the cutoff are rendered in differ-
ent colors according to their stringency levels. The tab “Pre-
dicted Sites” contains a table with detailed information about
each predicted site, such as its position, prediction score, and
specificity level. The predicted result can be saved for future
analysis or exported as a tab-delimited text file.

Musite makes it possible for a user to perform proteome
scale prediction of phosphorylation sites in an automated
fashion. We have performed the proteome scans in Table III
on a standard work station (2.13-GHz dual core processor
and 2-GB memory). Processing time was 	18 h to predict
general phosphorylation sites in all 20,319 proteins in the H.
sapiens complete proteome from UniProt using a model
trained with the default parameters (2,000 boots and five SVM
classifiers). The running time will decrease by using a model
with fewer boots and fewer SVM classifiers. If a user is only
interested in predicting selected residues in the proteome, to
save computing time, one can label each of those residues by
appending a mark, “?,” e.g. replacing the serines (“S”) of
interest by “S?”, and then Musite will make predictions only
for the labeled residues.

Musite also provides other related functionalities, such as
customized prediction model training, file format conversion,
file statistics, and NR data set building tool integration (37).
Customized prediction model training is a unique utility pro-
vided by Musite that enables users to train their own models
from any phosphorylation data sets. As phosphorylation sites
in various species are accumulating rapidly, it is difficult for a
phosphorylation prediction tool to keep track of all available
phosphorylation data. We have built phosphorylation predic-
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tion models in six model eukaryotic species, and we are in the
progress of building more models in other species. Custom-
ized model training makes it possible for users, especially for
the non-computational biologists, to train models using phos-
phorylation data specific to their own work. To train a cus-
tomized prediction model based on the default parameters, a
user only needs to specify the training sequence file (in the
format of Musite XML or FASTA), the output model name, and
amino acid types of sites. The user must annotate the phos-
phorylation sites in the input file, which is a simple and
straightforward task. For example, if the input file is in the
FASTA format, a user can specify a serine residue “S” as a
phosphorylation site, appending a mark “#.” Although keep-

ing simplicity, we also managed to maintain the flexibility of
the program. The “Advanced Option” in the training dialog
allows users to customize all the parameters for training mod-
els using their own data. Details on how to set the training
parameters are explained in the tutorials at http://musite-
.sourceforge.net. It is worth mentioning that we have provided
tools to convert the UniProt XML format to the Musite XML
format and extract the phosphorylation data in user-defined
organisms so that the users can easily make use of the latest
phosphorylation annotations in UniProt/Swiss-Prot when
training their own models.

Limitations and Future Work—Although Musite provides a
useful alternative strategy for annotating phosphorylation

TABLE IV
Performance comparison of Musite with existing kinase-specific prediction tools

Sensitivities (Sn) at different specificities (Sp) were compared. Different specificity levels were taken as similar as possible (in each column)
among different tools. The best performed result in each specificity level (column) for each kinase or kinase family is highlighted in bold. LOO
and Self stand for “leave-one-out cross-validation test” and “self-consistency test,” respectively.

PKA
ScanSite 1.0

Sp (%) —a — 99.83 — 99.08 — 97.03 — —
Sn (%) — — 16.67 — 41.88 — 61.54 — —

GPS 2.1
Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 0.85 8.12 19.66 32.91 49.57 58.97 67.52 72.65 83.76

NetPhosK 1.0
Sp (%) 99.99 99.90 99.79 99.46 99.02 97.98 97.06 95.16 89.86
Sn (%) 1.59 8.47 13.76 23.81 28.04 38.62 48.68 56.08 72.49

pkaPS
Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.05 90.06
Sn (%) 1.71 8.12 15.38 31.62 42.73 58.12 66.67 73.93 85.04

Musite 1.0LOO

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.02 97.10 95.08 90.03
Sn (%) 0.43 6.84 16.67 31.62 44.87 57.26 63.68 72.79 81.62

Musite 1.0Self

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 1.71 8.97 18.80 34.62 47.01 58.55 69.23 74.36 85.47

CK2
ScanSite 1.0

Sp (%) — 99.87 — — 99.14 — 96.8 — —
Sn (%) — 14.22 — — 36.44 — 59.6 — —

GPS 2.1
Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 4.87 13.72 20.35 36.73 49.56 61.95 68.58 74.34 82.74

NetPhosK 1.0
Sp (%) 99.99 99.89 99.71 99.47 98.91 97.80 97.06 95.02 89.83
Sn (%) 3.66 13.61 20.42 29.32 37.70 51.31 55.50 62.30 74.35

Musite 1.0LOO

Sp (%) 99.99 99.90 99.80 99.49 99.00 98.04 97.02 95.04 89.99
Sn (%) 5.58 14.60 22.57 34.51 49.12 60.62 66.81 72.12 81.42

Musite 1.0Self

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 6.19 15.04 23.45 37.61 48.67 60.62 68.58 75.66 83.63

MAPK
GPS 2.1

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 0.00 2.26 11.76 18.10 24.89 40.27 52.04 71.04 81.00

Musite 1.0LOO

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 96.99 95.02 90.93
Sn (%) 0.90 2.26 5.43 18.10 27.15 37.10 44.80 62.90 81.90

Musite 1.0Self

Sp (%) 99.99 99.90 99.80 99.50 99.00 98.00 97.00 95.00 90.00
Sn (%) 0.91 4.52 4.98 15.38 27.15 38.46 47.06 63.35 81.90

a —, the prediction result at this specificity level was not available for this tool.
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events in proteomes, it has some limitations, most of which
are common for all current phosphorylation site prediction
tools. First of all, although computational predictions indicate
the possibilities that query sites can/cannot be phosphoryla-
ted, our predicted results have not been correlated to different
cell states or tissue conditions. This is one of the reasons that
we provided a utility of customized model training in Musite.
However, users still have to provide high quality training data
related to specific cellular conditions, which are sparse in the
current phosphorylation studies. Second, the phosphorylation
sites used in the training data were mostly identified by mass
spectrometry methods, which may have inherent bias in terms
of representing the global phosphorylation events and hence
affect the prediction performance. As techniques like electron
transfer dissociation and alternative proteases are helping to
resolve technology limitations, more complete phosphoryla-
tion data sets will be released. We will adapt our program and
prediction models as the new data become available. Another
limitation of the data is that we have only labeled positive
data, but we do not have labeled negative data (i.e. we do not
know whether the non-phosphorylation sites are truly nega-
tives), and therefore, if some of them are predicted as phos-
phorylation sites, we do not know whether they are false
positives. This fact makes it hardly feasible to estimate the
precision (TP/(TP � FP)) where TP is true positive and FP is
false positive) of any phosphorylation site prediction tool.
Moreover, ignorance of the inherent prior ratio between the
positive and negative data, which is hard to estimate, also
created some bias in predictions. For future work, we will
explore other methods, such as semisupervised learning, to

address these limitations. We will include more kinases/ki-
nase families and more organisms, extend Musite to other
types of post-translational modifications, and integrate Musite
in work flows of experimental phosphorylation studies.

CONCLUSION

Annotation of protein phosphorylation sites in proteomes is
a crucial step to decode the signaling networks in living cells.
In recent years, tens of thousands of phosphorylation sites in
various species have been identified by large scale mass
spectrometry-based studies. However, the vast majority of
phosphorylation sites, especially in non-mammal species, still
remain undiscovered. Considering limitations of mass spec-
trometry-based experimental studies, a more practical and
efficient approach will be in silico large scale phosphorylation
site prediction. In this work, we presented a new bioinformat-
ics tool, Musite, specifically designed for large scale predic-
tion of phosphorylation sites. Musite modeled phosphoryla-
tion site prediction as a binary classification problem with
highly unbalanced data sets and solved it with a comprehen-
sive machine-learning approach. After studying the properties
of phosphorylation sites and their surrounding sequences, we
adopted three sets of features to distinguish phosphorylation
sites from non-phosphorylation sites: KNN scores, protein
disorder scores, and amino acid frequencies. KNN scores
were utilized to take advantage of the sequence cluster infor-
mation around phosphorylation sites. Disorder scores and
amino acid frequencies were used to characterize the generic
patterns of phosphorylation sites. By combining both se-
quence and generic features, Musite is capable of identifying

FIG. 8. Screenshot of Musite V1. 0 graphical user interface. As an example, the phosphoserine/threonine prediction result of human p53
is displayed.
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both phosphorylation sites with local sequence patterns sim-
ilar to known phosphorylation sites and those beyond local
sequence similarities. Combining all three sets of features, we
have trained models based on a bootstrap aggregating pro-
cedure for predicting both general and kinase-specific phos-
phorylation sites in multiple organisms. It should be noted that
the pretrained models in Musite V1.0 were not correlated to
any particular cellular conditions. To perform condition-spe-
cific predictions, users can train customized models from
phosphorylation data of a certain cellular condition. Pro-
teome-wide predictions of phosphorylation sites were per-
formed for six organisms. Cross-validation tests and compar-
isons with other tools show that Musite performs better on
general predictions and at least comparably with existing
methods on kinase-specific predictions.

Musite provides a unique application system, specifically
designed for large scale prediction of both general and ki-
nase-specific phosphorylation sites and for better utilizing the
large magnitude of experimentally verified phosphorylation
sites. Musite is the first tool that provides utility for training a
phosphorylation site prediction model from users’ own data
and supports continuous adjustment of stringency levels.
With its user-friendly graphic interface, Musite can be easily
used by biologists to make predictions on their sequences
and train prediction models from phosphorylation data of their
own interest. Unlike experimental approaches, computational
predictions are capable of proteome-wide predictions without
inherent technical biases. Furthermore, Musite could provide
an even more powerful and cost-effective approach by com-
bining experimental and computational methods iteratively,
which could be especially useful for some hypothesis-driven
experiments. Alternatively, for bioinformaticians, Musite can
serve as an open platform for building machine-learning ap-
plications for phosphorylation site prediction. In conclusion,
Musite provides a unique tool for large scale phosphorylation
site identification, and it is our hope that Musite will accelerate
accumulation of our knowledge on protein phosphorylation
and hence help explore the corresponding regulatory net-
works in living cells.
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