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Liquid chromatography-tandem mass spectrometry (LC-
MS/MS)-based proteomics provides a wealth of informa-
tion about proteins present in biological samples. In bot-
tom-up LC-MS/MS-based proteomics, proteins are
enzymatically digested into peptides prior to query by
LC-MS/MS. Thus, the information directly available from
the LC-MS/MS data is at the peptide level. If a protein-
level analysis is desired, the peptide-level information
must be rolled up into protein-level information. We pro-
pose a principal component analysis-based statistical
method, ProPCA, for efficiently estimating relative protein
abundance from bottom-up label-free LC-MS/MS data
that incorporates both spectral count information and
LC-MS peptide ion peak attributes, such as peak area,
volume, or height. ProPCA may be used effectively with a
variety of quantification platforms and is easily imple-
mented. We show that ProPCA outperformed existing
quantitative methods for peptide-protein roll-up, includ-
ing spectral counting methods and other methods for
combining LC-MS peptide peak attributes. The perform-
ance of ProPCA was validated using a data set derived
from the LC-MS/MS analysis of a mixture of protein stan-
dards (the UPS2 proteomic dynamic range standard intro-
duced by The Association of Biomolecular Resource Fa-
cilities Proteomics Standards Research Group in 2006).
Finally, we applied ProPCA to a comparative LC-MS/MS
analysis of digested total cell lysates prepared for LC-
MS/MS analysis by alternative lysis methods and show
that ProPCA identified more differentially abundant pro-
teins than competing methods. Molecular & Cellular
Proteomics 9:2704–2718, 2010.

One of the fundamental goals of proteomics methods for
the biological sciences is to identify and quantify all proteins
present in a sample. LC-MS/MS-based proteomics method-
ologies offer a promising approach to this problem (1–3).
These methodologies allow for the acquisition of a vast
amount of information about the proteins present in a sample.
However, extracting reliable protein abundance information

from LC-MS/MS data remains challenging. In this work, we
were primarily concerned with the analysis of data acquired
using bottom-up label-free LC-MS/MS-based proteomics
techniques where “bottom-up” refers to the fact that proteins
are enzymatically digested into peptides prior to query by the
LC-MS/MS instrument platform (4), and “label-free” indicates
that analyses are performed without the aid of stable isotope
labels. One challenge inherent in the bottom-up approach to
proteomics is that information directly available from the LC-
MS/MS data is at the peptide level. When a protein-level
analysis is desired, as is often the case with discovery-driven
LC-MS research, peptide-level information must be rolled up
into protein-level information.

Spectral counting (5–10) is a straightforward and widely
used example of peptide-protein roll-up for LC-MS/MS data.
Information experimentally acquired in single stage (MS) and
tandem (MS/MS) spectra may lead to the assignment of
MS/MS spectra to peptide sequences in a database-driven or
database-free manner using various peptide identification
software platforms (SEQUEST (11) and Mascot (12), for in-
stance); the identified peptide sequences correspond, in turn,
to proteins. In principle, the number of tandem spectra
matched to peptides corresponding to a certain protein, the
spectral count (SC),1 is positively associated with the abun-
dance of a protein (5). In spectral counting techniques, raw or
normalized SCs are used as a surrogate for protein abun-
dance. Spectral counting methods have been moderately
successful in quantifying protein abundance and identifying
significant proteins in various settings. However, SC-based
methods do not make full use of information available from
peaks in the LC-MS domain, and this surely leads to loss of
efficiency.

Peaks in the LC-MS domain corresponding to peptide ion
species are highly sensitive to differences in protein abun-
dance (13, 14). Identifying LC-MS peaks that correspond to
detected peptides and measuring quantitative attributes of
these peaks (such as height, area, or volume) offers a prom-
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ising alternative to spectral counting methods. These meth-
ods have become especially popular in applications using
stable isotope labeling (15). However, challenges remain, es-
pecially in the label-free analysis of complex proteomics sam-
ples where complications in peak detection, alignment, and
integration are a significant obstacle. In practice, alignment,
identification, and quantification of LC-MS peptide peak at-
tributes (PPAs) may be accomplished using recently devel-
oped peak matching platforms (16–18). A highly sensitive
indicator of protein abundance may be obtained by rolling up
PPA measurements into protein-level information (16, 19, 20).
Existing peptide-protein roll-up procedures based on PPAs
typically involve taking the mean of (possibly normalized) PPA
measurements over all peptides corresponding to a protein to
obtain a protein-level estimate of abundance. Despite the
promise of PPA-based procedures for protein quantification,
the performance of PPA-based methods may vary widely
depending on the particular roll-up procedure used; further-
more, PPA-based procedures are limited by difficulties in
accurately identifying and measuring peptide peak attributes.
These two issues are related as the latter issue affects the
robustness of PPA-based roll-up methods. Indeed, existing
peak matching and quantification platforms tend to result in
PPA measurement data sets with substantial missingness (16,
19, 21), especially when working with very complex samples
where substantial dynamic ranges and ion suppression are
difficulties that must be overcome. Missingness may, in turn,
lead to instability in protein-level abundance estimates. A
good peptide-protein roll-up procedure that utilizes PPAs
should account for this missingness and the resulting insta-
bility in a principled way. However, even in the absence of
missingness, there is no consensus in the existing literature
on peptide-protein roll-up for PPA measurements.

In this work, we propose ProPCA, a peptide-protein roll-up
method for efficiently extracting protein abundance informa-
tion from bottom-up label-free LC-MS/MS data. ProPCA is an
easily implemented, unsupervised method that is related to
principle component analysis (PCA) (22). ProPCA optimally
combines SC and PPA data to obtain estimates of relative
protein abundance. ProPCA addresses missingness in PPA
measurement data in a unified way while capitalizing on
strengths of both SCs and PPA-based roll-up methods. In
particular, ProPCA adapts to the quality of the available PPA
measurement data. If the PPA measurement data are poor
and, in the extreme case, no PPA measurements are avail-
able, then ProPCA is equivalent to spectral counting. On the
other hand, if there is no missingness in the PPA measure-
ment data set, then the ProPCA estimate is a weighted mean
of PPA measurements and spectral counts where the weights
are chosen to reflect the ability of spectral counts and each
peptide to predict protein abundance.

Below, we assess the performance of ProPCA using a data
set obtained from the LC-MS/MS analysis of protein stan-

dards (UPS2 proteomic dynamic range standard set2 manu-
factured by Sigma-Aldrich) and show that ProPCA outper-
formed other existing roll-up methods by multiple metrics.
The applicability of ProPCA is not limited by the quantification
platform used to obtain SCs and PPA measurements. To
demonstrate this, we show that ProPCA continued to perform
well when used with an alternative quantification platform.
Finally, we applied ProPCA to a comparative LC-MS/MS anal-
ysis of digested total human hepatocellular carcinoma
(HepG2) cell lysates prepared for LC-MS/MS analysis by al-
ternative lysis methods. We show that ProPCA identified more
differentially abundant proteins than competing methods.

EXPERIMENTAL PROCEDURES

Protein Identification by One-dimensional Nano-LC-Tandem Mass
Spectrometry—A CTC Autosampler (LEAP Technologies) was
equipped with two 10-port Valco valves and a 20-�l injection loop. A
2D LC system (Eksigent) was used to deliver a flow rate of 3 �l/min
during sample loading and 250 nl/min during nanoflow LC separation.
Self-packed columns included a C18 solid phase extraction “trapping”
column (250-�m inner diameter � 10 mm) and a nano-LC capillary
column (100-�m inner diameter � 15 cm, 8-�m-inner diameter pulled
tip (New Objective)), both packed with Magic C18AQ, 3-�m, 200-Å
(Michrom Bioresources) stationary phase. A protein digest (10 �l)
approximately equivalent to 70 �g of the initial protein extract was
injected onto the trapping column connected on line with the nano-LC
column through the 10-port Valco valve. The sample was cleaned up
and concentrated using the trapping column and eluted onto and
separated on the nano-LC column with a 1-h linear gradient of ace-
tonitrile in 0.1% formic acid. The LC-MS/MS solvents were 2% ace-
tonitrile in aqueous 0.1% formic acid (Solvent A) and 5% isopropanol,
85% acetonitrile in aqueous 0.1% formic acid (Solvent B). The 85-
min-long LC gradient program included the following elution condi-
tions: 2% B for 1 min, 2–35% B in 60 min, 35–90% B in 10 min, 90%
B for 2 min, and 90–2% B in 2 min. The eluent was introduced into an
LTQ Orbitrap (Thermo Electron) mass spectrometer equipped with a
nanoelectrospray source (New Objective) by nanoelectrospray. The
source voltage was set to 2.2 kV, and the temperature of the heated
capillary was set to 180 °C. For each scan cycle, one full MS scan was
acquired in the Orbitrap mass analyzer at 60,000 mass resolution, 6 �
105 automatic gain control target, and 1200-ms maximum ion accu-
mulation time was followed by seven MS/MS scans acquired for the
seven most intense ions for each of the following m/z ranges: 350–
700, 695–1200, and 1195–1700 atomic mass units (amu). The LTQ
mass analyzer was set for 30,000 automatic gain control target,
100-ms maximum accumulation time, 2.2-Da isolation width, and
30-ms activation at 35% normalized collision energy. Dynamic exclu-
sion was enabled for 45 s for each of the 200 ions that already had
been selected for fragmentation to exclude them from repeated frag-
mentation. The UPS2 samples were analyzed as described above
using a shorter 15-min-long LC-MS gradient. Each of the UPS2
samples was analyzed by LC-MS/MS three to seven times. Each
HepG2 digest was analyzed three times.

LC-MS/MS Peptide Identification—For both the UPS2 standards
and the HepG2 cell lysate analyses, the MS data .raw files acquired
by the LTQ Orbitrap mass spectrometer and Xcalibur (version 2.0.6;

2 Introduced in 2006 by P. C. Andrews, D. P. Arnott, M. A. Gawi-
nowicz, J. A. Kowalak, W. S. Lane, K. S. Lilley, L. T. Martin, and S. E.
Stein, The Association of Biomolecular Resource Facilities Proteom-
ics Standards Research Group, unpublished data.
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Thermo Electron) were copied to the Sorcerer IDA2 search engine
(version 3.5 RC2; Sage-N Research, Thermo Electron) and submitted
for database searches using the SEQUEST-Sorcerer algorithm (ver-
sion 4.0.4). For the UPS2 data, the search was performed against a
concatenated FASTA database comprising 354 sequences in total.
This database contained the 48 UPS2 protein constituents and 129
proteins from an in-house database of common contaminants; re-
verse sequences for all proteins were included in the database. For
the HepG2 data, the search was performed against a concatenated
FASTA database containing 114,356 sequences in total and compris-
ing 57,049 proteins from the human (25H.Sapiens) UniProtKB data-
base downloaded from the European Molecular Biology Laboratory-
European Bioinformatics Institute on October 23, 2008, the 129
common contaminants from our in-house database, and reverse
sequences. Methionine, histidine, and tryptophane oxidation
(�15.994915 amu) and cysteine alkylation (�57.021464 amu with
iodoacetamide derivative) were set as differential modifications. No
static modifications or differential posttranslational modifications
were used. A peptide mass tolerance equal to 30 ppm and a fragment
ion mass tolerance equal to 0.8 amu were used in all searches.
Monoisotopic mass type, fully tryptic peptide termini, and up to two
missed cleavages were used in all searches.

Spectral Counts and PPA Measurements—Spectral count informa-
tion was extracted from PeptideProphet files (stored in .pepXML
format). We calculated the SC of a protein in a given sample by
counting the number of MS/MS spectra in the sample matched to
peptides that correspond to the protein under consideration. It may
happen that a peptide corresponds to more than one protein. (In the
UPS2 standard set, where a smaller database was used, 6.7% of
identified peptides were matched to multiple proteins; in the HepG2
data set, 47% of identified peptide were matched to multiple pro-
teins.) This may lead to ambiguity in assigning SCs. In our analysis,
when a peptide was matched to multiple proteins, we randomly
assigned the peptide to a single protein from the list of corresponding
proteins. This may introduce additional noise into the data; however,
because our focus was the comparison of peptide-protein roll-up
procedures, this should not bias our results. A more involved treat-
ment of peptides matched to multiple proteins is possible, but this
was not the focus of this project. The supplemental data contain
protein identification information, including sequence coverage infor-
mation, obtained from ProteinProphet for the UPS2 and HepG2 data;
sequence coverage information for the UPS2 data is also displayed in
supplemental Table S1.

To preserve a low false positive rate, only MS/MS spectra matched
to peptides with PeptideProphet probability greater than 0.95 were
utilized when calculating spectral counts. Additionally, in our final
analysis, we only considered proteins that were identified by at least
two distinct peptides. The false positive rate was calculated as the
number of peptide matches from a “reverse” database divided by the
total number of “forward” protein matches, and then this value was
converted to a percentage (similar to Peng et al. (23) and Qian et al.
(24)). After these filtering steps, the false positive rate was �0.05% for
both the UPS2 and HepG2 data.

We used two software platforms, msInspect/AMT (build 221) (17,
18, 25) and Progenesis LC-MS software (version 2.5; Nonlinear Dy-
namics), to obtain PPA measurements from the .raw files. Both soft-
ware platforms utilize peak alignment algorithms and are capable of
ascertaining PPA measurements for a given peptide in runs where the
peptide was not identified at the MS/MS level by leveraging informa-
tion from other runs. The msInspect/AMT peak alignment algorithm
has been described (17, 18, 25); the Progenesis LC-MS software
utilizes a proprietary alignment algorithm.

To obtain PPA measurements using msInspect/AMT, we first con-
verted the .raw LC-MS/MS data files into .mzXML files (26) using the

ReAdW software (latest version available at http://tools.proteome-
center.org/wiki/index.php?title�Software:ReAdW). Using msInspect/
AMT, we created an AMT database. In the first step, we found and
filtered features (peptides) in the LS-MS domain. For the UPS2 data,
we set “maxkl” to 3 and “minpeaks” to 2 when filtering features with
default values for all other settings; the same settings were used for
the HepG2 data, except we also set “minIntensity” to 28,000. Building
the AMT database requires LC-MS peak information, obtained from
filtered features, and the .pepXML files created after SEQUEST da-
tabase searching. To create the AMT database for the UPS2 data, we
set “mintime” to 900, “maxtime” to 5640, “deltatime” to 200, “delta-
massppm” to 20, and “minpprophet” to 0.95; default values were
used for all other settings. We used the same settings for the HepG2
cell lysate data, except we set mintime to 1680 and maxtime to 6480.
Finally, to obtain PPA measurements, features in the LC-MS domain
were matched to peptides identified via MS/MS spectra with the aid
of the AMT database. For both the UPS2 and HepG2 data, the
non-default settings used for the matching procedure were
“deltatimems1ms2” of 200 and minpprophet of 0.95. To ensure that
only high quality matches were used, matches with corresponding
AMT match probabilities (25) less than 0.95 were ultimately dis-
carded. The resulting AMT match data file contained the PPA infor-
mation necessary for ProPCA and the other roll-up procedures we
considered. The supplemental data include information from .pep-
XML files and msInspect/AMT match files, which contain PPA mea-
surements, for all UPS2 and HepG2 samples.

A similar procedure was followed to obtain PPA information using
the Progenesis LC-MS software. We first uploaded our .raw files and
grouped and aligned the LC-MS profiles using an option for setting
alignment vectors automatically. After manual validation of the align-
ment results, additional vectors were manually inserted where
needed, and the results of PeptideProphet analysis were loaded using
the corresponding .pepXML files. The Progenesis LC-MS software
allows filtering of MS/MS matches using XCorr versus peptide charge
state SEQUEST scores. For charge states 1�, 2�, and �3�, we
filtered out MS/MS matches with XCorr below 2, 2.5, and 3, respec-
tively. The resulting false positive rate for peptide identification was
�0.05%, and the resulting matches formed the basis for our analysis
of the Progenesis data. The supplemental data contain the relevant
Progenesis output, including PPA measurements for the UPS2 sam-
ples (the HepG2 samples were not analyzed with the Progenesis
LC-MS software).

ProPCA—Let log(SC) denote the natural logarithm of SCs (before
taking logarithms, we add 1 to each SC to avoid taking the logarithm
of 0), and let log(PPA) denote the natural logarithm of PPA measure-
ments. To motivate and derive the ProPCA estimator of relative
protein abundance, consider the following model. Let yijk represent
log(PPA) for the kth peptide (or log(SC) if k � 1), corresponding to the
jth protein in the ith sample. We suppose that there are N samples
in total, that a total of M proteins were identified, and that Pj

peptides correspond to the jth protein. Thus, for our observations
yijk, the indices i, j, and k run through i � 1, . . . , N; j � 1, . . . , M;
and k � 1, . . . , Pj. We let �ij denote the abundance of the jth
protein in the ith sample. Given an approximately linear relationship
between log(SC), log(PPA), and log protein abundance (discussed
further under “Results”), a reasonable statistical model relating the
observed log(PPA) or log(SC) values, yijk, and log protein abun-
dance, �ij, is given by

Eyijk � �0jk � �1jk�ij, (Eq. 1)

where Eyijk is the expected value of yijk, averaging over random noise,
and �0jk and �1jk are peptide- (or, when k � 1, SC)-specific effects.
Note that �ij in the model (Equation 1) is only identifiable up to an
affine transformation. This non-identifiability is related to the fact that
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ProPCA gives an estimate of relative (as opposed to absolute) protein
abundance and is discussed further under “Results.”

In our formulation, the goal of a peptide-protein roll-up procedure
is to estimate �ij for each i � 1, . . . , N and j � 1, . . . , M. The ProPCA
estimates, �̂ij, and the auxiliary quantities, �̂0jk and �̂1jk, are defined as
minimizers of the following.

�
i,k

�yijk � �0jk � �1jk�ij�
2 (Eq. 2)

In other words, the ProPCA estimates, �̂ij, are the estimates that best
describe linear trends in log(SC) and log(PPA) with respect to squared
error loss.

Missing data are a salient feature of the log(PPA) data. When PPA
measurements are available for all indices i and k (that is, there are no
missing data), the ProPCA estimates correspond to the first principle
component obtained by performing PCA on the data matrix, (yijk)i, k,
for protein j. In the presence of missing data, ProPCA estimates are
obtained by minimizing (Equation 2) where the sum is taken over pairs
(i, k) such that yijk is observed; this optimization problem may be
solved by using a majorization-minimization algorithm (27, 28). This
technique and indeed the ProPCA procedure are closely related to
singular value decomposition-based imputation (29).

Below, we provide a detailed description of our procedure for
obtaining ProPCA estimates. For a fixed protein j, let Uj � {(i, k); yijk is
observed} be the collection of indices corresponding to the observed
(non-missing) PPA measurements, and let

Q��, y� � �
�i, k�	Uj

�yijk � �0jk � �1jk�ij�
2 (Eq. 3)

where � � (�0jk, �1jk, �ij)j, k. Then minimizing (Equation 2) is equivalent
to minimizing Q(�, y) over �. As a tool to assist in minimizing Q(�, y),
define the surrogate data ỹ � (ỹijk)(i, k)�Uj

, where each entry, ỹijk,
corresponds to a missing value in the log(PPA) data. Now define the
surrogate minimization function as

Q0��, ỹ, y� � �
�i, k�	Uj

�yijk � �0jk � �1jk�ij�
2 � �

�i, k��Uj

� ỹijk � �0jk � �1jk�ij�
2

(Eq. 4)

and note that for fixed ỹ, minimizing Q(�, ỹ, y) is equivalent to mini-
mizing an instance of Equation 2 with no missing data. In particular,
for fixed ỹ, Q0(�, ỹ, y) can be minimized in a computationally efficient
manner and is equivalent to finding the first principle component
corresponding to the data comprising both the observed data, y, and
the surrogate data, ỹ. The majorization-minimization algorithm for
optimizing (Equation 2) and obtaining ProPCA estimates is an iterative
procedure, which proceeds as follows. The surrogate data for the first
step of the algorithm is y(0) � (0)(i, k)�Uj

. Given surrogate data for the rth
step, y(r � 1) � yijk

(r � 1)
(i, k)�Uj

(with r � 1) let

�̂�r� � argmin
�

Q0��, y�r�1�, y� (Eq. 5)

be the minimizer of Q0(�, y(r � 1), y). Define the surrogate data for the
(r � 1)th step, y(r) � (yijk

(r))(i, k)�Uj
, by yijk

(r) � �̂0jk
(r) � �̂1jk

(r) �̂ij
(r). Iterate until

�y(r) � y(r � 1)� is small, and return �̂j
(r) � (�̂ij

(r))i � 1
N after the last iteration;

�̂j
(r) is the ProPCA estimate for the jth protein. This algorithm is easily

implemented, and in our experience, computation time is minimal.
HepG2 Sample Preparation—Human hepatocellular carcinoma

cells were grown in minimum Eagle’s medium with 10% FBS in two
separate 10-cm dishes to 90% confluence. The cells in each plate
were washed with chilled PBS and harvested separately in 1.0 ml of
lysis buffer containing 8 M urea, 50 mM NaCl, 50 mM ammonium
bicarbonate, pH �8.0, 5 mM tris(2-carboxyethyl)phosphine hydro-

chloride (TCEP) as well as protease and phosphatase inhibitors
(Complete Mini tablets (Roche Applied Science), 1 mM NaF, 1 mM

�-glycerophosphate, 1 mM sodium orthovanadate, 10 mM sodium
pyrophosphate, 1 mM PMSF, 2 mM CaCl2). The lysis buffer used for
plate 2 also contained 30% 1,1,1,3,3,3-hexafluoro-2-propanol (hep-
tafluoroisopropanol (HFIP)). The cells were scraped and collected in
15-ml conical tubes. The cells were lysed in an ultrasound bath at
0 °C for 15 min and then vortexed for 1 min. Each lysate was centri-
fuged at 4,000 rpm for 5 min at 4 °C to spin down cell debris. The
volume was brought to 2.5 ml with 50 mM ammonium bicarbonate,
and TCEP was added to 5 mM. The lysates were vortexed and
incubated for 15 min at 56 °C to reduce remaining disulfide bonds
and then cooled to room temperature. Iodoacetamide was added to
10 mM, and the lysates were vortexed and incubated for 30 min at
room temperature in the dark. To quench excessive iodoacetamide,
TCEP was added to a concentration of 5 mM and incubated for 15 min
in the dark at 37 °C. The lysates were diluted 5-fold with 25 mM

ammonium bicarbonate, pH 8.6. Six 20-�l aliquots of the resulting
lysates were transferred to polypropylene Eppendorf tubes and sub-
jected to overnight tryptic digestion. 0.3 �g of trypsin (Promega) was
added to each tube to achieve an enzyme/substrate ratio of �1:70–
1:100. Formic acid was added to 1% (v/v) to quench enzymatic
action. Samples were vacuum-concentrated to 5 �l and then resus-
pended to a total volume of 44 �l in 2% formic acid, 2% acetonitrile.
The samples were centrifuged for 15 min at 10,000 rpm and trans-
ferred to autosampler vials. The resulting digests were analyzed by
one-dimensional nano-LC-ESI-tandem mass spectrometry as de-
scribed above.

Software Availability—The R code for implementing ProPCA, given
log(SC) and log(PPA) data, is included in the supplemental data and
is available at http://www.hsph.harvard.edu/proteomics/software.

RESULTS

Protein Standards—The data set used to validate the per-
formance of ProPCA was derived from the LC-MS/MS anal-
ysis of fractions of the UPS2 proteomic dynamic range
standard set2 (manufactured by Sigma-Aldrich). The UPS2
standard set contains 48 proteins with a dynamic range of 5
orders of magnitude, spanning 0.5–50,000 fmol, according to
the manufacturer. The various fractions used in our analysis
each contained one of 11 specified amounts of the UPS2
standard, determined by a number 
, and spanned over 2
orders of magnitude (supplemental Table S2). Overall, data
from 38 LC-MS/MS runs were available for the UPS2 stan-
dards, and the analyzed fractions of the UPS2 standard
spanned a protein dynamic range of more than 7 orders of
magnitude.

Data Processing Step—ProPCA relies on SCs and PPA
measurements that must be extracted from the raw LC-
MS/MS data. Several software platforms that perform this
are available. We used SEQUEST and PeptideProphet (30)
to identify peptides and proteins by MS and MS/MS spectra
and to obtain SCs. In our analysis of the UPS2 data, 305
distinct peptides corresponding to 22 of the 48 known pro-
teins in the UPS2 standard set were identified (no up-front
fractionation techniques or long LC gradients were used to
enhance sensitivity across a wider dynamic range because
this was not the primary goal of this study). The 22 identified
proteins were higher abundance proteins in the UPS2 stan-
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dard set with abundances ranging from 500 to 50,000 fmol
(supplemental Table S1). To obtain PPA measurements for
our primary analysis, we used msInspect/AMT (17, 18), which,
in turn, identifies LC-MS peaks, calculates peptide peak areas
(by integrating LC-MS peaks over the scan domain), aligns
peaks from several analyses, and matches these to identified
peptides. We refer to the generic procedure where one begins
with raw LC-MS/MS data and ultimately obtains SCs and PPA
measurements as the data processing step.

For each protein, the data relevant for ProPCA may be
represented as a matrix. Such a matrix is found in Table I,
which contains spectral count and PPA information about the
protein cytochrome b5 for several randomly selected LC-
MS/MS runs from the UPS2 standard data set. In fact, a data
matrix with 38 rows, one for each LC-MS/MS run in the UPS2
data set, is available for cytochrome b5, and this larger matrix
was used in our statistical analysis; Table I is offered only as
a conceptual aide (data matrices for all proteins from all runs
for both the UPS2 and HepG2 experiments are available in the
supplemental data in the form of .tsv files and R list objects,
which may be easily manipulated with the R statistical soft-
ware (http://www.r-project.org)). Missing entries in Table I
indicate that the PPA measurement procedure was unable to
find a PPA corresponding to the appropriate peptide in the
given sample. This may be because the peptide is not present
in the sample or because of deficiencies in the PPA measure-
ment method. On the other hand, in a number of samples (e.g.
samples 1, 4, and 10), PPA measurements are available for
certain peptides, yet the SC is 0. This occurs when there are
no MS/MS identifications in the sample, yet peak matching
software is able to match and quantify peaks based on infor-
mation from other samples. Given the data in Table I, the goal
of any peptide-protein roll-up procedure is to combine SCs
and PPA measurements into a single number for each sample
that reflects protein abundance.

Normalization—Various normalization techniques may be
utilized to transform the LC-MS/MS data described above to
the appropriate scale and address potential artifacts in the

data. Previous work has noted that the logarithm of SCs is
highly correlated with the logarithm of protein abundance (7,
8), and this is consistent with our observations. Indeed, let
log(SC) denote the natural logarithm of SCs (before taking
logarithms, we added 1 to each SC to avoid taking the loga-
rithm of 0); the mean of sample correlation coefficients be-
tween log(SC) and log protein abundance, taken over all pro-
teins identified in the UPS2 standards, was 0.81 	 0.13
(mean 	 S.D.). We point out that other earlier work has
indicated that untransformed SCs are correlated with the
logarithm of protein abundance (6) (linear-log relationship) or
untransformed protein abundance (5) (linear-linear relation-
ship). In our analysis, we found good correlation on the linear-
log scale (mean 	 S.D., 0.82 	 0.15). However, correlation on
the linear-linear scale was substantially lower (mean 	 S.D.,
0.60 	 0.20); this may be due to the wide dynamic range in
the UPS2 standard set.

Upon examination of PPA measurements, we found that the
natural logarithms of PPA measurements, denoted log(PPA),
are highly correlated with the logarithm of protein abundance
(mean sample correlation coefficient across peptides identi-
fied in UPS2 standards 	S.D., 0.92 	 0.20) and that the
logarithms of PPA measurements are nearly normally distrib-
uted when compared with the raw PPA measurements
(supplemental Fig. S1). Fig. 1 depicts scatter plots of log
protein abundance versus log(SC) and log(PPA) for a few
representative proteins and peptides; the supplemental data
contain similar plots for all identified peptides and proteins in
the UPS2 standards. Given these observations about corre-
lation in SCs and PPA measurements, we recommend apply-
ing a logarithm to both SCs and the PPA data. Below, we work
exclusively with log(SC) and log(PPA).

In addition to applying log transformations to the data, it
may be desired to normalize SCs and peptide peak areas
within samples and across samples. Normalizing within sam-
ples (9, 31–33) is advisable if the quantity of interest is the
abundance of a given protein relative to sample total protein
abundance or to the abundance of certain housekeeping pro-

TABLE I
Spectral counts and PPA information for cytochrome b5 (UniProt accession number P00167) from several representative LC-MS/MS runs

LC-MS/MS run no. 
a SCb TFIIGELHPDDRPKc VYDLTK YYTLEEIQK FLEEHPG ISAVAVALMYR STWLILLHK

1 0.0002 0 4.54e � 04 —d — — — 2.63e � 04
4 0.0002 0 4.93e � 04 — 1.69e � 04 — — 5.78e � 03
9 0.0004 1 — 3.31e � 05 5.02e � 04 3.01e � 05 — —
10 0.0004 0 1.58e � 05 3.65e � 05 5.24e � 04 3.08e � 05 — —
23 0.002 3 1.60e � 06 2.14e � 06 3.69e � 05 1.69e � 06 1.73e � 04 —
29 0.01 8 1.12e � 07 1.14e � 07 1.92e � 06 1.01e � 07 2.34e � 05 4.49e � 06
36 0.03 5 1.27e � 07 2.62e � 07 4.04e � 06 2.36e � 07 9.07e � 05 1.28e � 07
38 0.03 7 3.54e � 07 2.83e � 07 5.71e � 06 2.78e � 07 — 1.50e � 07

a Relative protein abundance; see supplemental Table S1.
b Spectral count.
c The fourth through ninth columns correspond to peptides matched to cytochrome b5 in the UPS2 LC-MS/MS data set; the name of each

of these columns indicates the amino acid sequence of the peptide.
d Missing PPA measurements are signified by “—.”
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teins in a biological sample. In our UPS2 standard set, we did
not normalize within samples because, as part of the experi-
mental procedure, different samples contained different
amounts of the protein mixture. We did not normalize within
samples in the cell lysate data because, at the experimental
stage, samples were standardized to contain cell lysate from
an equal number of HepG2 cells. Furthermore, in the HepG2
cell lysate data, per-sample overall protein abundance is a
quantity of scientific interest.

Normalizing across samples may be performed to match
the distributions of SCs and peptide peak attribute measure-
ments. This is a reasonable goal given our task of combining

disparate indicators of protein abundance. However, in our
experience with ProPCA and the other methods for peptide-
protein roll-up discussed below, we have found that normal-
izing across samples tends to attenuate observable differ-
ences in protein abundance. For example, one reasonable
approach is, for each protein, to normalize log(SC) and the
log(PPA) measurements of each peptide so that they have
equal means and equal standard deviations. After normalizing
in this manner, we found that the association between
ProPCA and log protein abundance decreased in the UPS2
standard set when compared with the non-normalized data;
we also observed a decrease in association with log protein

FIG. 1. Correlation with log protein abundance. Rows a–c, scatter plots of log protein abundance, denoted log(
) (supplemental Table S1),
versus ProPCA, log(SC), and ProALT for three representative proteins from the UPS2 standard set (UniProt accession numbers P41159,
P62937, and P06732). The sample correlation coefficient is noted under each plot. Row d, scatter plots of log(
) versus log(PPA) for three
representative peptides from the UPS2 standard set (based on msInspect/AMT PPA measurements; amino acid sequences HDTSLKPIS-
VSYNPATAK, LKPLSVSYDQATSLR, and DMQLGR).
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abundance when alternative peptide-protein roll-up proce-
dures were used (supplemental Table S3). We conjecture that
the observed decrease in association when utilizing normal-
ized data may be due to the substantial missingness in PPA
measurement data and difficulties in approximating popula-
tion-level means and standard deviations. Ultimately, we did
not normalize across samples in our analysis described be-
low. However, further research into normalization techniques
for ProPCA and other peptide-protein roll-up procedures may
be fruitful.

ProPCA—Spectral counting and PPA-based methods for
protein quantification are driven by the observation that these
measurements are correlated with protein abundance on an
appropriate scale. As discussed above, in the UPS2 stan-
dards, log(SC) and log(PPA) were both highly correlated with
log protein abundance. ProPCA estimates are derived by
formalizing the assumption that log(SC) and log(PPA) vary
linearly with the logarithm of protein abundance. ProPCA is an
unsupervised method for the estimation of relative protein
abundance. In the complete data case, the ProPCA estimates
for a given protein are equal to the first principal component
(22) of the protein data matrix. When PPA measurements are
missing, ProPCA estimates are obtained using a majorization-
minimization algorithm (27). Ultimately, ProPCA provides an
estimate of the relative protein abundance of each identified
protein in each sample. As with many PCA-based procedures,
training data containing known protein abundances are not
required to implement ProPCA. Additionally, ProPCA esti-
mates are only defined up to an affine transformation. In the
absence of additional information, this may be problematic in
attempts to estimate absolute protein abundance. However,
because of the invariance of many common statistical tests to
affine transformations (e.g. t tests), this ambiguity is largely
irrelevant for detecting whether a given protein is differentially
abundant across samples.

In addition to estimates of relative log protein abundance,
the ProPCA procedure allows one to determine the spectral
count and peptide coefficients, �̂1jk (the minimizers of Equa-
tion 2). In the complete data setting where ProPCA is equiv-
alent to principal component analysis, these coefficients indi-
cate the relative contribution of spectral counts and the
various peptides to the ProPCA estimator: larger coefficients
indicate that spectral counts or the corresponding peptide
play a larger role in determining the ProPCA estimator. With
missing data, the interpretation of �̂1jk is less straightforward;
however, the coefficients may still offer some insight into the
role spectral counts and each peptide plays in determining the
ProPCA estimator. The coefficients �̂1jk for the UPS2 standard
data are plotted in supplemental Fig. S2 and Table S4.

Below, we compare the performance of ProPCA with that of
SCs and an existing peptide-protein roll-up method that uti-
lizes only PPA measurements. This PPA-based roll-up proce-
dure was described by Jaffe et al. (16). Referred to as ProALT
(for alternative protein roll-up) estimates, these protein-level

estimates are obtained by first dividing each log(PPA) meas-
urement by the maximum observed log(PPA) measurement
for the peptide under consideration to obtain adjusted peptide
measurements. Samples where a peptide was not observed
are then taken to have adjusted peptide measurement equal
to 0. Protein level estimates for each sample are found by
taking the mean value of all corresponding adjusted peptide
measurements.

Association—The sample correlation coefficient between
log protein abundance and ProPCA, log(SC), and ProALT
estimates was computed for each identified protein in the
UPS2 standards. The mean sample correlation coefficient
between ProPCA estimates and log protein abundance 	S.D.
was 0.97 	 0.05. For log(SC) and ProALT, the mean sample
correlation coefficient with log protein abundance 	S.D. was
0.81 	 0.13 and 0.86 	 0.11, respectively. It appears that
ProPCA estimates have substantially higher correlation with
log protein abundance than log(SC) and ProALT estimates.
Plots of the various estimates versus log protein abundance
for several representative proteins are found in Fig. 1; the
supplemental data contain plots for all identified proteins in
the UPS2 standards.

Power—High correlation with the logarithm of protein abun-
dance indicates the predictive ability of ProPCA estimates.
Predicting absolute protein abundances or even relative
abundances that are comparable across proteins as well as
samples remains challenging and requires additional, non-
trivial normalization procedures that we do not discuss in here
(8). Rather, we focus on the application of ProPCA estimates
to detecting the differential abundance of a given protein
between two groups.

We evaluated the power of each estimation procedure,
ProPCA, log(SC), and ProALT, to distinguish between sam-
ples with different protein abundances when used in conjunc-
tion with t tests. Using ProPCA, log(SC), and ProALT estima-
tors, we conducted t tests comparing UPS2 samples with
different protein abundances. These tests were performed for
each protein identified in the UPS2 standard data set and
each pair of differing abundances. Because protein abun-
dances were known to differ between compared samples,
each t test would ideally return a significant p value. Further-
more, the frequency of significant t tests is an indicator of the
power of an estimation method to distinguish between sam-
ples with different protein abundance. In fact, a more nuanced
picture of the performance of an estimation method may be
obtained by studying the distribution of p values obtained in
this manner (Fig. 2) as opposed to simply the number of those
that are below 0.05 or some other significance threshold: in
this setting, a better estimation procedure should have
smaller p values. The procedure is described in more detail in
the following paragraph.

For a given pair of the 11 distinct abundances among the
analyzed fractions of the UPS2 standards, say (
1, 
2) where

1 
 
2 (see supplemental Table S1), and each of the 22
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identified proteins, we computed ProPCA, log(SC), and
ProALT estimates of log protein abundance based on all
samples with protein amount 
1 or 
2. Then, we performed t
tests for each estimation method and each identified protein,
comparing samples with protein level 
1 with those with level

2. We declared a t test with associated p value less than 0.05
to be significant. Because 
1 
 
2, an ideal protein abun-
dance estimator would always return a significant t test. This
procedure was repeated for all pairs of distinct protein levels
in the UPS2 standards. In total, 1210 (�22 � 11 � 10/2) t
tests were conducted for each of the three procedures. We
computed the percentage of significant t tests for each esti-
mation methods and found that t tests based on ProPCA
estimates were significant in 82% of tests; 50 and 53% of t
tests were significant for log(SC) and ProALT, respectively.

Fig. 2a indicates that ProPCA when used with t tests is
rather successful at identifying differentially abundant pro-
teins in the UPS2 standards, especially when compared
with log(SC) and ProALT. In general, the appropriateness of
t tests may be suspect if the data do not follow a normal
distribution (34). As discussed above and depicted in
supplemental Fig. S1, by working with log(PPA), measure-
ments were more closely normally distributed. However, the
ProPCA, log(SC), and ProALT data were still decidedly non-
normal as indicated by the Shapiro-Wilk test for normality (35)
(p values for ProPCA, log(SC), and ProALT are all below
10�10). On the other hand, in our analysis of the performance

of ProPCA, we were not inherently interested in the testing
procedure; rather, we were primarily interested in the reliabil-
ity of p values obtained from the testing procedure and the
relative performance of ProPCA as compared with log(SC)
and ProALT. Although the data may not be exactly normally
distributed, this does not necessarily render the p values
obtained from t tests useless. Indeed, if the p values obtained
from t tests comparing hypothetical groups with the same
average protein abundance are uniformly distributed on the
interval [0, 1], that is, if the p value distribution is uniform on [0,
1] under the null hypothesis, then the p values are valid
regardless of distributional assumptions about the data. To
validate the p values in Fig. 2a, we used a permutation
method to approximate the null distribution of p values, and
we showed that this distribution is approximately uniform on
[0, 1] (Fig. 2, b–e). More specifically, for each identified protein
in the UPS2 standards, we randomly assigned each of the 38
samples and the corresponding protein abundance estimates
(ProPCA, log(SC), and ProALT estimates) to one of two
groups. We then conducted t tests for each identified protein
and each estimation method, comparing the two randomly
constructed groups. We repeated this procedure 1000 times,
each time randomly creating two groups for comparison.
Thus, in total, 22,000 t tests were conducted for each esti-
mation method. Because samples are randomly assigned to
groups, we expect that on average there is no difference
between the two groups. Fig. 2, b–e, indicate that the p value

FIG. 2. Estimated power versus putative type 1 error rate (�) with validation (msInspect/AMT PPA measurements). a, the estimated
power of a given method, controlling for a putative type 1 error rate (size) of �, is the proportion of p values less than �. At � � 0.05, the
estimated power of ProPCA, log(SC), and ProALT is 0.82, 0.50, and 0.53, respectively. ProPCA has greater power than log(SC) across the entire
range of � and greater power than ProALT across nearly the entire range of � (ProALT has slightly greater power than ProPCA for values of
� very close to 1; however, power results for values of � close to 1 tend to be uninteresting because they correspond to tests with very high
false positive rates). To validate the results in a, the data were permuted, and we performed t tests on random, indistinguishable groups of
samples. A properly calibrated procedure should return p values that are nearly uniformly distributed. b, cumulative distribution of p values;
for uniformly distributed p values, we expect to see a line of slope 1 through the origin. In particular, we expect 5% of all p values to be less
than 0.05. We found 4.7, 5.1, and 4.7% of p values below 0.05 for ProPCA, log(SC), and ProALT, respectively; all of these values are near 5%.
c–e, histograms of p values for ProPCA, log(SC), and ProALT. These results indicate that the permutation-based p values are nearly uniformly
distributed.
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distribution for each estimation method is very close to uni-
form on the interval [0, 1]. This suggests that our power
analysis in Fig. 2a is sound.

We do not broadly advocate the use of t tests with LC-
MS/MS data. Non-normality of the data and a lack of repli-
cates, which is common in LC-MS/MS data, complicates the
matter, and in any given situation, an alternative to t tests may
be more appropriate (36). In fact, ProPCA estimates may be
used in conjunction with any procedure for the statistical
analysis of relative protein abundance that utilizes a continu-
ous outcome. However, given that t tests appear to provide
credible results with the UPS2 standard data, we believe that
the t test is a reasonable method for illustrating the perform-
ance of ProPCA estimates because of its simplicity. Because
ProPCA estimates are more highly associated with log protein
abundance than their competitors, as described in the previ-
ous section, we believe that our results using t tests offer a
reliable indication of the comparative performance of ProPCA,
log(SC), and ProALT when used with more specialized
methods.

It should be noted that ProPCA should not be used in
conjunction with the G test (31) or other procedures that rely
on discrete outcomes (9); however, for most discrete outcome
procedures, a continuous outcome analog is available at least
in principle (for instance, a general likelihood ratio test for
continuous outcomes (37) may be used in place of the G test
and hierarchical models (38) to provide a continuous outcome
analog of the methods proposed by Choi et al. (9)).

Above, we have essentially implemented a bootstrap
method (39) to estimate the power of ProPCA. An alternative
approach to estimating power is via simulation. We prefer the
bootstrap approach because of the difficulties associated
with accurately simulating LC-MS/MS proteomics data; fur-
thermore, our bootstrap approach more fully utilizes the avail-
able data.

Low Match Rates—In the UPS2 data, the msInspect/AMT
procedure was successful in the sense that peptides identi-
fied by MS/MS spectra were matched to corresponding
peaks in the LC-MS domain at a relatively high frequency. In
our data set of the UPS2 standards, the msInspect/AMT
match rate was 43%, whereas in the HepG2 cell lysate data
(discussed below), the match rate was 17% (the match rate
was calculated by dividing the total number of msInspect/
AMT matches to peptide ion LC-MS peaks by the product of
the total number of samples and the total number of peptides
identified by MS/MS spectra; this number was then multiplied
by 100 to obtain a percentage). The lower match rate in the
HepG2 data was expected and likely due to the greater com-
plexity of unfractionated cell lysates.

To study the performance of ProPCA under lower match
rates in a simulated setting, we randomly deleted PPA mea-
surements from the UPS2 standard data set to approximate
prespecified match rates below 43% (the full match rate). We
obtained 100 data sets with equally spaced match rates rang-

ing between 4 and 43%. For each of these 100 data sets and
each estimation method, we performed t tests on pairs of
protein abundance levels, as discussed in the previous sec-
tion, to estimate the power of ProPCA at various match rates.
We also performed the permutation testing method discussed
above with each low match rate data set to validate the power
results. Our results suggest that ProPCA outperforms log(SC)
and ProALT over nearly the entire range of match rates, giving
a significant improvement in power while maintaining a type 1
error rate very close to the putative value (at very low match
rates, match rates below that of the HepG2 cell lysate data,
log(SC) may outperform ProPCA). Results are summarized in
Fig. 3.

Our procedure for generating data with low match rates
may not accurately mimic the missingness mechanism gov-
erning the msInspect/AMT matching procedure (40); however,
we believe that our results may offer insight into the perform-
ance of ProPCA. Further study and additional modeling of
missingness, although challenging, could prove fruitful in the
analysis of the performance of ProPCA. On the other hand,
with additional modeling comes the risk of high sensitivity to
violations of the modeling assumptions. Given the complexity
of LC-MS/MS data, one should be mindful of this.

Alternative PPA Measurements—To determine the robust-
ness of ProPCA to the data processing step, we used Pro-
genesis LC-MS software (Nonlinear Dynamics) to obtain al-
ternative PPA measurements from the raw UPS2 standard
data set. Using the resulting PPA measurement data and the
SC data obtained in our primary analysis, we computed
log(SC), ProALT, and ProPCA estimates. The mean sample
correlation coefficient of ProPCA, log(SC), and ProALT esti-
mates with log protein abundance 	S.D. was 0.88 	 0.14,
0.81 	 0.13, and 0.80 	 0.19, respectively. We performed
power calculations and permutation tests similar to those
discussed above; the results are displayed in Fig. 4. Overall,
the results using Progenesis LC-MS PPA measurements were
similar to the results of our primary analysis using msInspect/
AMT PPA measurements: ProPCA outperformed log(SC) and
ProALT. However, the performance gap was not as large.

The relatively small gains of ProPCA over log(SC) and
ProALT when using the Progenesis LC-MS software com-
pared with those observed when using msInspect/AMT were
likely due to the fact that log(PPA) measurements from the
Progenesis LC-MS software were not as highly correlated
with log protein abundance as those from msInspect/AMT.
Indeed, for the Progenesis LC-MS data, the mean sample
correlation coefficient between ProPCA estimates and log
protein abundance 	S.D. was 0.88 	 0.14). For log(SC) and
ProALT, the mean sample correlation coefficient with the log-
arithm of protein abundance 	S.D. was 0.81 	 0.13 and
0.80 	 0.19, respectively. Note that the results for log(SC) are
the same as in the primary analysis where msInspect/AMT
was used to find PPA measurements. This is because we
used the same procedure to obtain SCs in both analyses. On
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the other hand, the mean sample correlation coefficients for
ProPCA and ProALT estimates were both lower than in the
primary analysis using the msInspect/AMT data. This is pos-
sibly explained by the fact that overall the correlation between
log(PPA) measurements and log protein abundance is lower
for the Progenesis data. Recall that in the msInspect/AMT
data the mean sample correlation coefficient between log-
(PPA) and log protein abundance 	S.D. was 0.92 	 0.20. In
the Progenesis data, the mean sample correlation coefficient
between log(PPA) and log protein abundance 	S.D. was
0.83 	 0.26 where the mean is taken over all peptide-specific
sample correlation coefficients. We also computed sample
correlation coefficients between the untransformed PPA
measurements and protein abundance to determine whether
the original (non-logarithmic) scale was more appropriate for
the Progenesis data. The mean sample correlation coefficient
between the untransformed PPA measurements and protein
abundance 	S.D. was 0.87 	 0.31, which is not substantially
different from the mean sample correlation coefficient be-
tween log(PPA) and log protein abundance.

Application of ProPCA to Analysis of Human Hepatocellular
Carcinoma HepG2 Cell Lysate Data—Having assessed the
performance of ProPCA in comparison with two other meth-
ods, we now discuss application of ProPCA to the results of
LC-MS/MS analysis of total HepG2 cell lysates. Equal num-
bers of human hepatocellular carcinoma HepG2 cells were
lysed using two different procedures and prepared for LC-

MS/MS analysis. In one procedure, the urea-based lysis
buffer contained 30% HFIP; in the other procedure, no HFIP
was used. Other than this distinction, the two procedures
were identical. Heptafluoroisopropanol, a highly polar, strong
organic solvent miscible with water, was applied to facilitate
the dissolution of cells, micelles, and membrane fragments
and to increase the efficiency of hydrophobic protein recovery
(41). After analysis by LC-MS/MS, SCs were computed, and
msInspect/AMT was used to obtain PPA measurements. In
total, data from six LC-MS/MS runs were available (three
replicate runs from each preparation method).

In the HepG2 cell lysate data, 1283 peptides and 407 pro-
teins in total were identified by tandem MS spectra across all
six runs; additionally, 10,202 spectral counts were tabulated.
Table II contains a run-by-run summary of spectral counts
and peptide and protein information for the HepG2 cell lysate
data. Before applying ProPCA or other protein abundance
estimation procedures, we note that insight into overall pro-
tein recovery may be gained by considering total spectral
counts, peptide identification, and protein identification infor-
mation for the two preparation methods. In the data corre-
sponding to runs where HFIP-assisted lysis was utilized, the
average number of spectral counts tabulated, peptides iden-
tified, and proteins identified 	S.D. was 1822.33 	 103.12,
682.67 	 46.37, and 306.67 	 14.74, respectively. In the data
corresponding to runs where conventional lysis without HFIP
was utilized, the average number of spectral counts tabulated,
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FIG. 3. ProPCA and low match rate data. a, ProPCA, log(SC), and ProALT estimators were computed for each of 100 low match rate data
sets, and t tests were performed, as in Fig. 2, to estimate the power of each procedure. Estimated power of each estimation procedure,
controlling for a type 1 error rate of 0.05, is plotted versus match rate (non-bold points). These results indicate that ProPCA outperforms log(SC)
at all but the lowest match rates and that ProPCA outperforms ProALT over the entire range of match rates. The estimated power of log(SC)
remains constant across all match rates because, in this analysis, SCs do not change with match rate. Bold points denote the fraction of
significant t tests at the 0.05 level and match rate in the HepG2 cell lysate data. For the HepG2 data, 52, 49, and 24% of t tests corresponding
to ProPCA, log(SC), and ProALT, respectively, were significant at the 0.05 level, and the match rate was 17%. b, to validate the results in a,
t tests were performed on permuted data (similar to Fig. 2). The proportion of significant t tests (at the 0.05 level) are plotted versus various
match rates. A properly calibrated test should have a significance rate of 0.05. These results suggest that the t tests in a were properly
calibrated over a wide range of match rates. However, when the match rate is very low, the significance rates for ProALT are especially low.
This may occur because ProALT relies entirely on PPA measurement data, which deteriorate as the match rate decreases.
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peptides identified, and proteins identified 	S.D. was
1713.00 	 33.45, 616.33 	 27.57, and 265.33 	 8.39, re-
spectively. These results indicate that, overall, higher protein
content is recovered by LC-MS/MS analysis of samples pre-
pared with the assistance of HFIP. Especially among the runs
where conventional lysis was utilized, standard deviations
across replicates corresponding to spectral counts, peptides
identified, and proteins identified were relatively small and
indicated good run-to-run analytical reproducibility. A size-
able fraction of proteins identified in at least one technical
replicate were in fact identified in all three technical replicates
for each preparation method: 74.00% of all proteins identified
in the HFIP-assisted runs were identified in all three replicates,
and 65.30% of all proteins identified in the conventional lysis
runs were identified in all three replicates. The corresponding
numbers for peptide identification were not as high: 53.70%

of all peptides identified in the HFIP-assisted lysis runs were
identified in all three replicates, and 53.74% of all peptides
identified in the conventional lysis runs were identified in all
three replicates. We suspect that these percentages would be
higher had prefractionation techniques been utilized in these
experiments.

We computed ProPCA, log(SC), and ProALT protein abun-
dance estimates for each identified protein and used t tests to
identify proteins that were differentially recovered from the
cells. Although using more refined alternatives to t tests for
detecting differences in protein abundance may be of interest
in the present setting, we used t tests as opposed to a more
involved procedure to highlight the utility of ProPCA, espe-
cially as compared with log(SC) and ProALT. Additionally, we
point out that the sample correlation coefficient between
across-replicate means and standard deviations of ProPCA

FIG. 4. Estimated power versus putative type 1 error rate (�) with validation (Progenesis PPA measurements). a, power results for
Progenesis PPA measurement data (as in Fig. 2). At � � 0.05, the estimated power of ProPCA is 0.60, the estimated power of log(SC) is 0.53,
and the estimated power of ProALT is 0.47. Overall, ProPCA appears to outperform log(SC) and ProALT; however, the margin is not as large
as in Fig. 2 where msInspect/AMT PPA measurements are utilized. This may be because log(PPA) measurements from the Progenesis software
were not as highly correlated with log protein abundance as those from msInspect/AMT (see “Alternative PPA Measurements” under “Results”).
b–e, permutation test results for Progenesis PPA measurement data (as in Fig. 2). The p value distributions appear to be nearly uniform,
suggesting that the testing and estimation procedures are properly calibrated.

TABLE II
Summary of spectral counts and peptide and protein information for HepG2 cell lysate data

Run ID/replicate No. spectral counts No. peptides No. proteins

HFIP-assisted lysis
1 1704 632 293
2 1870 693 315
3 1893 723 321
Mean 	 S.D. 1822.33 	 103.12 683.67 	 46.37 309.67 	 14.74

Conventional lysis
1 1751 645 275
2 1688 590 261
3 1700 614 260
Mean 	 S.D. 1713 	 33.45 616.33 	 27.57 265.33 	 8.39
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estimates was very low (�0.016) when computed using all
identified proteins in the HepG2 data set. This is notable
because high correlation between these means and standard
deviations is one motivation for some alternatives to t tests
(36, 42). Using ProPCA, 210 of the 407 proteins were found to
be significant at the 0.05 level. Using log(SC) and ProALT, 201
and 98 proteins were found to be significant at the 0.05 level,
respectively. Thus, as with the UPS2 standards, ProPCA iden-
tifies more proteins with p value below 0.05 than the two
alternatives. These results do not account for multiple com-
parisons (also referred to as “multiple testing”), which are
important when a large number of comparisons are made. To
adjust for multiple testing, we performed the Benjamini-Hoch-
berg (43) “step up” procedure to identify significant proteins
and preserve a false discovery rate (FDR) of 5%. Other ap-
proaches to adjust for multiple testing, such as the Bonferroni
correction (34), control the probability of making any false
discoveries (the family-wide error rate) rather than controlling
the proportion of false discoveries; this tends to be overly
conservative. The Benjamini-Hochberg procedure, on the
other hand, is a widely used and easily implemented statistical
method for controlling the FDR at a specified level.

Using the Benjamini-Hochberg procedure, 102, 85, and 68
proteins were found to be significant using ProPCA, log(SC),
and ProALT, respectively. Although ProPCA finds many more
significant proteins at the specified thresholds, we found that
ProALT obtains a greater number of extremely small p values
than ProPCA (the smallest ProPCA p value is 5.24 � 10�5,
and 10 ProALT p values are smaller than this). This may be
related to the low match rate and missingness patterns in the
cell lysate data and merits further investigation (recall that the
match rate in the HepG2 data was 17%). Despite this obser-
vation, we believe these results indicate that ProPCA has
more power to detect differentially recovered proteins than its
competitors. We conjecture that with higher PPA match rates
ProPCA would show greater performance gains over log(SC)
and ProALT. This conjecture is supported by our analysis of
the UPS2 standards.

As discussed above, the results in Table II suggest that the
HFIP lysis method may lead to the recovery of more proteins
by LC-MS/MS analysis than the conventional lysis method.
Moreover, the ProPCA results suggest that the different lysis
techniques (with HFIP or without) lead to the recovery of

somewhat different sets of proteins. To better understand the
differences in protein recovery enabled by each lysis ap-
proach, we performed an exploratory gene ontology (GO)
term enrichment analysis by means of the MetaCore software
suite (GeneGO, St. Joseph, MI) using the significant proteins
identified by ProPCA (those that were significant at a 5% FDR
according to the Benjamini-Hochberg method). Significantly
enriched gene ontology cellular localization terms were iden-
tified, and the most prominent terms are found in Fig. 5. It
appears that the addition of HFIP into the lysis buffer leads to
improved recovery of membrane-associated proteins; pro-
teins of various macromolecular complexes; cytoskeleton-
associated, ribosomal, and nuclear proteins; and proteins of
other organelles in addition to superior recovery of cytosolic
proteins. We attribute this enrichment of hydrophobic as well
as membrane- and complex-associated proteins to the ability
of HFIP to form strong hydrogen bonds and bind with and
dissolve cellular molecular formations incorporating receptive
moieties, such as amino groups, amides, oxygen, and double
bonds. Interestingly, mostly mitochondrial proteins and some
cell adhesion/cell motility as well as complex-forming proteins
were better extracted using the conventional urea-based lysis
buffer without the addition of the acidic fluoroalcohol. Al-
though elucidation of grounds for this phenomenon would
require supplementary experiments, we did expect that the
addition of hexafluoroalcohol would not result in overall im-
provement of protein solubility because proteome constitu-
ents exhibit vastly different physical and chemical properties.
Nevertheless, the ProPCA analysis supports the notion of
possible targeted tune-up of cell or tissue lysis conditions to
recover certain proteins of interest more efficiently.

DISCUSSION

Peptide-protein roll-up is an important issue in the analysis
of bottom-up LC-MS/MS proteomics data. We have pro-
posed ProPCA, a new method for peptide-protein roll-up, and
have shown that ProPCA estimates are more highly correlated
with the logarithm of protein abundance than estimates de-
rived using other peptide-protein roll-up procedures. Addi-
tionally, we showed that ProPCA has substantially greater
power to detect differences in protein abundance between
two groups than competing roll-up procedures. In principle,
these procedures could be extended to handle more than two

FIG. 5. Functional characterization of HepG2 proteomes differentially recovered using alternative cell lysis methods. Proteins that
exhibited significant differential recovery (enrichment) in the HepG2 data (FDR, 5%) were segregated into two groups: one containing proteins
that appeared to be more enriched in the conventional lysis data and the other containing proteins that appeared to be more enriched in the
HFIP lysis data (this determination was based upon the sign of the associated t statistics). The two lists were analyzed separately using the
GeneGO software suite. Each analysis produced a list of significant GO localization terms and associated p values. GO localization terms with
significant differential enrichment in the HepG2 cell lysate experiments are shown. Each bar represents the difference in negative log-
transformed p values (�log(p)) of the specific GO localization term. p values indicate enrichment (recovery) of proteins corresponding to each
GO term and were determined using the GeneGO software suite. Positive difference scores indicate likely increased enrichment by
HFIP-assisted lysis. GO localization terms are arranged so that terms with likely increased enrichment by HFIP-assisted lysis appear at the top
of chart; additionally, terms corresponding to similar functional and subcellular organelle association are grouped and colored accordingly:
these generalized localization and functional categories are shown on the left side of the figure.
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groups, and we would expect ProPCA to perform well in this
setting too.

In addition to showing the benefits ProPCA in the analysis
of the UPS2 standards, we showed that ProPCA identified
more significant proteins than other procedures when applied
to the HepG2 cell lysate data. Our preliminary experiments
with HepG2 cells were performed using relatively small
amounts of starting material without applying any prefraction-
ation techniques, which resulted in quantitative characteriza-
tion of a small fraction of the HepG2 proteome. Scaling up the
analogous experiments and enhancing separation platforms
in up-front mass spectrometry analysis will undoubtedly allow
for more exhaustive profiling of a cellular proteome and more
extensive coverage of gene ontology terms. However, in our
experience, the inclination for enhanced recovery of the afore-
mentioned protein classes caused by one or another lysis
condition will be similar to that detected with ProPCA based
on a smaller fraction of the proteome. The preliminary results
presented here should contribute to the existing body of
research.

ProPCA does not rely on stable isotopic labeling. Indeed,
our testing and validation results are derived from label-free
proteomics experiments. However, in principle, ProPCA may
also be used for peptide-protein roll-up in the analysis of
proteomics experiments that utilize stable isotope labeling
methods.
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