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Abstract
Operating principles address general questions regarding the response dynamics of biological
systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In
analogy to design principles, the question arises: Why are some operating strategies encountered
more frequently than others and in what sense might they be superior? It is at this point impossible
to study operation principles in complete generality, but the work here discusses the important
situation where a biological system must shift operation from its normal steady state to a new
steady state. This situation is quite common and includes many stress responses. We present two
distinct methods for determining different solutions to this task of achieving a new target steady
state. Both methods utilize the property of S-system models within Biochemical Systems Theory
(BST) that steady-states can be explicitly represented as systems of linear algebraic equations. The
first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire
admissible solution space. Operations on the basis of the solution space permit modest alterations
of the transients toward the target steady state. The second method uses standard or mixed integer
linear programming to determine admissible solutions that satisfy criteria of functional
effectiveness, which are specified beforehand. As an illustration, we use both methods to
characterize alternative response patterns of yeast subjected to heat stress, and compare them with
observations from the literature.
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Introduction
Biological design principles refer to structural or regulatory features of biological systems
that are observed more often than expected. They are thought to have survived evolution,
thereby making them apparently superior to hypothesized alternative structures that a priori
might seem equally reasonable and valid [1; 2]. The typical question in the investigation of
design principles is: What is the advantage of a particular structural or regulatory feature
over an otherwise equivalent design that lacks this feature?
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Design principles are identified and investigated through comparisons with reference cases.
In static network analysis, a candidate structure is declared a motif [3; 4; 5; 6] if it is found
significantly more often than in random graphs, as they were originally proposed over fifty
years ago by Erdös and Rényi [7]. Within Biochemical Systems Theory (BST; [1; 8; 9; 10]),
the role of a design feature is analyzed by comparing two systems that have exactly the same
structure except for the feature or interest. The approach of choice for such an analysis has
been the Method of Controlled Mathematical Comparisons (MCMC) [2; 11]. A key
component of this method is the establishment of objective criteria of functional
effectiveness [11; 12]. These criteria, which are formulated before the comparison of two
system structures is performed and interpreted, serve as a metric according to which either
the system of interest or some alternative is deemed superior. Typical criteria are stability,
robustness, a short response time to stimuli, adequate responsiveness to external demands,
and maybe a transient response profile that does not deviate too far from the nominal profile.

MCMC originally focused on algebraic analyses, but was subsequently augmented with
computational and statistical methods [1; 12; 13; 14; 15]. Dynamic biological systems that
were successfully analyzed with respect to design principles include pathway topologies [1;
12; 13; 16], immune cascades [12], gene regulatory circuits [17; 18; 19], signaling systems
[20], and riboswitches [21]. As this entire volume is dedicated to design principles, it is not
necessary to review the complete history and development of the search for design
principles, or the key methods that were originally outlined by Michael Savageau over a
quarter century ago, and the reader is referred to the references above and to other articles in
this volume for further information.

While design principles have become a fashionable topic of investigation in recent years,
their dynamic counterparts, operating principles, have received only a small fraction of the
attention. Operating principles address questions regarding the dynamics of a response as we
observe or hypothesize it, in comparison to a priori equally valid alternatives [22; 23; 24].
Like in the case of design principles, operating principles may be investigated in natural
systems, where the goal is to discover an objective explanation for the suitability or
optimality of an observed set of procedures, or in synthetic, engineered systems, where the
goal is the optimization of a procedure with respect to some target objective.

An example for an investigation of natural operating principles is the following question: If
a system is forced by the environment to move to a new steady state, and if this state may be
achieved either by drastically changing a few control variables or by slightly changing many
control variables, which strategy is preferable? Alvarez and colleagues [25] analyzed this
question heuristically for changes in yeast metabolism during the diauxic shift and
determined that many genes in the living yeast cell were changed by a modest degree. A
different aspect of natural operating principles was investigated in the response of yeast cells
exposed to heat stress [14; 26; 27; 28; 29]. In this case, the lead questions were: Which
genes are actually up-regulated in expression and by how much? What are the metabolic
consequences of this up-regulation? Could there be alternative up-regulation scenarios that
might perform better? Can we find objective criteria explaining the emergence or natural
selection of the strategy that is actually observed in yeast? Yet another example concerned
the question of how bacteria using a PTS system for energy production can restart glycolysis
after starvation, when one would expect the initial phosphate donor, phosphoenolpyruvate,
to be depleted [30; 31].

Questions regarding the operation of synthetic systems are of the following types. Which
sets of process manipulations or alterations will cause the system to reach a target objective?
What is the advantage of utilizing or altering a particular sequence of processes instead of an
alternative sequence? Is one set “better” than another? Is one of them optimal with respect to
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objective criteria? As a specific example of this situation, the task was posed to optimize the
product yield of a feedback-regulated pathway with two successive branches by selecting
and altering a small, fixed number of genes or enzymes. The results, which were not easy to
predict without a quantitative analysis, demonstrated that the locations and magnitudes of
optimal manipulations depended not so much on the topological structure of the pathway as
on the locations of its regulatory signals [22].

One might ask whether operating principles are truly different from design principles,
because the possible space of dynamic responses is clearly constrained, if not determined, by
the physical and regulatory structure of a system. While design and operation are coupled to
some degree, their distinction is both reasonable and necessary, because a cell or organism
could theoretically respond to the same demand in different ways, even within exactly the
same structural confines, as the diauxic shift study [25] demonstrates. Furthermore, cells can
be exposed to drastically different demands, which require appropriate responses within the
same structural design. A good example is the blue-green alga Synechocystis, which
generates energy either autotrophically per photosynthesis, heterotrophically per
consumption of carbohydrates, or through a mixture of the two. It has been shown that the
distribution of flux rates within its metabolic pathway system, and thus the operation of the
system, shifts dramatically between these three modes [32]. In a different example, it was
shown that plant cells use the same metabolic pathway system, but with distinctly different,
dynamically changing flux distributions, to produce woody materials during their
development or in different transgenic strains [33; 34].

As in the case of design principles, it is impossible to study operating principles in
exhaustive generality. The analysis described here therefore focuses exclusively on one
pertinent special case, namely, where a biological system must shift from its normal steady
state to a new steady state, a response that is typical in the face of persistent changes in a
cell’s environment. While the two steady states will be at the center of the present analysis,
features of transients will also be discussed. In first approximation it may even be possible
to consider slow-changing, longer-term trends as a series of different “almost-steady-states”
[35].

Most analyses of design principles in the past had the benefit of clear reference systems that
were topologically very similar to the system of interest. For instance, a system with
feedback was compared to a system without this particular feedback signal. In the case of
operating principles, it is not always a priori clear what the alternatives are. For instance, we
cannot simply compare up-regulation of one process against unaltered operation, because
the two would lead to different transients and presumably to different steady states. Instead,
the approach toward a new steady state will almost always require alterations in larger sets
of independent variables. Thus, the first important step in the analysis of operating principles
is an exhaustive exploration of the admissible set of operating strategies. Once this set is
characterized, the true discovery of operating principles consists of the selection of the one
strategy that is superior to all others under the chosen criteria of functional effectiveness and
optimality.

Methods and Theoretical Results
Canonical models, and in particular S-systems within Biochemical Systems Theory [1; 8],
are especially well suited for analyzing operating principles. As in the case of design
principles, the primary reasons are twofold. First, these systems have a fixed structure,
where each component has a well-defined meaning and where system features are mapped
onto parameters in a one-toone fashion [1; 10]. Secondly, S-systems permit a linear
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representation of their steady states within the language of linear algebra, upon a logarithmic
transformation of all variables [36].

As described many times, S-systems always have the format

(1)

Here, the Xi, i = 1, …, n are dependent variables, which may change under the action of the
system, while Xi, i = n+1, …, n+m are independent variables, which may affect the action of
the system but are themselves not affected by the system. The parameters αi and βi are non-
negative rate constants, and gij and hij are real-valued kinetic orders. The literature on these
systems is quite rich (e.g., see references in [10]).

The generic situation to be addressed here concerns a biological system, represented by S-
system equations, that needs to respond to a changed environmental demand by assuming a
new steady state. It is not difficult to imagine that this task usually has many solutions and
that distinctly different settings of independent variables may lead to the same steady state
with respect to the dependent variables. This multiplicity of possibilities is due to the fact
that most systems contain many more processes than variables. Because these processes are
usually under the control of independent variables, different choices of independent
variables correspond to distinct solution strategies.

The non-trivial steady state of an S-system model can be formulated in matrix notation as

(2)

[37], where yD denotes the vector of the logarithms of the dependent variables at steady
state, yI is the corresponding vector of independent variables, the elements of the matrices
AD and AI are aij = gij – hij for all i and j, separated into dependent and independent
variables, and bi = log(βi/αi) for i = 1, …, n.

In a typical analysis, all parameter values are known and one computes the non-trivial steady
state, which may then be used for other diagnostics like stability, sensitivity, and gain
analysis [1; 10; 36]. This steady state can be expressed explicitly as

(3)

where  and  are the so-called sensitivity and logarithmic gain matrices,
respectively [37].

For our purposes here, we must turn the task around. We assume that the system has to
switch from some initial steady state to a target steady state yD that is mandated by new
environmental demands. We furthermore suppose that we know the numerical values of the
dependent variables at this target steady state. The question thus becomes how the
independent variables should be changed to achieve this state (cf. [35; 38]). Again using
stress as an example, we might observe an altered metabolic steady state and ask which
enzymes would have to be altered in activity to reach the stress state.
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For ease of representation, we rewrite Eq. (3) as

(4)

Since  is constant and AD and b are known, we define

(5)

which yields the simplified representation

(6)

For the special case where m = n and L has full rank, we can invert the system of equations
and express each independent variable as a unique linear function of the new variables that
constitute y′D ; namely we obtain

(7)

Expressed in words, we can demand numerical values for the dependent variables of a
particular target steady state, and Eq. (7) determines how the independent variables have to
be set for the system to reach this state. If the new state is stable, and if the system starts
within its basin of attraction, one may actually reach this state by starting the system at the
original steady state and resetting the independent variables according to Eq. (7). Of course,
we do not know how much time the dynamic system will require to come sufficiently close
to the target.

For cases where m < n, the matrix L is “tall,” which reflects an over-determined system that
generally permits no solution. Nevertheless, for practical purposes we can compute a least-
squares solution, which minimizes the deviation from the target state and is given as the
regression equation

(8)

where L+ is the pseudo-inverse of L [39].

In the most pertinent case, the number of independent variables is larger than the number of
dependent variables (m > n). This relationship is not always true in actual systems, but it
usually holds, because most systems contain more processes than pools and each process
normally involves at least one independent variable. The matrix equation (6) now can no
longer be inverted directly, and if the rank of L is r, the solution consists of an m – r
dimensional space. Even though an inversion is not directly possible, the solution space may
be characterized with methods of linear algebra, where the starting point is the pseudo-
inverse. Specifically, the solution space, which consists of every admissible yI, can be
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spanned through the following steps. First, find a particular solution yI_PS. Then use yI_PS
and the span of the null space of L to describe the entire solution space as

(9)

(10)

Here, λ is any given real-valued (m–n)-dimensional vector, rank(L) = n, and B is a matrix in
which each column is a basis vector. Together, these column vectors constitute a basis of the
null space of L.

Illustration Examples
It is useful to demonstrate the theoretical results with simple didactic examples. The first
representative case is a cascaded system (Fig. 1), where the numbers of precursors and state
variables are the same (n = m = 4) and the system has a unique solution. The cascade could
describe the expression of a formerly inactive gene X5, which becomes activated (X1) and is
subsequently transcribed; X6 could model nucleotides that are assembled into mRNA (X2);
X7 could represent amino acids, which are assembled into an enzyme (X3), which
subsequently catalyzes the conversion of a metabolic substrate X8 into a product X4. The
final product could directly or indirectly repress the expression of the gene. The generic S-
system representation of the model is

(11)

Without loss of generality in this and the later illustration examples, all rate constants αi and
βi are arbitrarily set to 1 and the independent variables are initially defined as 1.2. By this
definition we know that y′D = yD because b = 0. The values of the kinetic order parameters
in this and other systems are given in Table 1.

The second example is a simple linear pathway with feedback and an exogenous demand for
product (Fig. 2). This example was chosen in contrast to the cascaded system, because it
involves several precursor-product relationships, which constrain the parameters of the
corresponding effluxes and influxes. While one may initially wonder what the effects of
these constraints may be, we will see that these constraints have no real bearing on the
characterization of a set of independent variables that moves the system to the target steady
state. The enzymes for the conversions of X2 into X3 and X4 are explicitly modeled, as are
the input to the pathway and the demand for X4, such that n = m = 4. The generic S-system
model is
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(12)

Again, all rate constants αi and βi are arbitrarily set to 1 and the independent variables to 1.2.
The values of the kinetic orders are given in Table 1.

For our illustration, we start both systems arbitrarily at (1, 1, 1, 1) and let them reach their
nominal steady states. While at the steady state, the environmental demand changes at time t
= 60 or t = 150, respectively, and we assume that all variables in the cascade and the linear
pathway must move to a new target value of 2. Because n = m = 4, the solutions are in both

cases unique. They are given as  and

, respectively. Numerical simulation demonstrates that
the systems indeed respond by moving to the desired target states (Fig. 3). The vectors XI in
the inverse solutions do not convey anything about the transients.

The third and fourth introductory examples are cascaded and linear pathways with fewer
independent than dependent variables (Fig. 4). S-systems models were constructed
according to well-documented guidelines, and the values of the kinetic orders for the
cascaded system were defined as presented in Table 1. The target values were defined as 3.
It could seem that theses scenarios are rather unrealistic, but they do occur in cases like the
ones shown here as well as in cases of strongly connected pathways where not all genes or
enzymes are accessible to manipulations. If it is infeasible or impossible to alter some of the
independent variables, m is in effect decreased and may become lower than n.

This “unsolvable” situation may be addressed in different ways. First, instead of searching
for an exact solution, one may solve the corresponding regression problem (see Eq. 8) and
find a set of independent variables that moves the system to a steady state that is as close as
possible to the target state (Fig. 5). In the numerical example here, the solution vector is

, and we see that X3 and X4 are not quite on target.

As a variation on this theme, closeness to the target state may be defined differently for each
dependent variable, through the use of appropriate weights. This strategy allows for the
option that some “important” dependent variables can be selected to come as closely as
possible to their target values, while others are possibly not. Finally, one may ignore some
of the dependent variables, whose specific values are not considered as important as those of
other variables, and restrict the optimization to a subset of important dependent variables,
thereby in effect reducing n. Examples for less important variables might be intermediates in
linear pathways,

To be specific, suppose it is most important that variable X4 of the cascaded pathway attain
the target value, while other variables are of secondary importance. The original task can be
written as
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(13)

To enforce that X4 moves to the target, presumably at the cost of other variables, we separate
the equation for X4 in Eq. (13) from the rest, which yields

(14)

Using the notation  and , the particular
solution of

yI based on this separated equation is now given as

(15)

where

(16)

B4 is a 3×2 matrix where each column is a basis vector of the null space of L, and λ is any
real-valued 2-dimensional vector. Having enforced that the fourth variable will reach the
target value, we still have options for the remaining independent variables. Namely, the
equation

(17)

allows us to define criteria such as a least-squares error for the remaining variables, which
correspond to different choices for λ. For instance, we can use the pseudo-inverse to define

(18)

which yields the solution as
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(19)

The result of this operation is shown in Fig. 6. In comparison with Fig. 5, X4 now reaches
the target value 3 exactly, while the remaining variables approach the value 3 only
approximately. In particular, the improvement in X4 is “paid for” with an inferior
performance of X3. The solution vector of independent variables in this case is

. If X3 is most important in the same system, the solution

vector is  and X4 overshoots the target (plot not shown).

The most pertinent case is n < m. A representative example is the pathway shown in Fig. 7,
which has four dependent and seven independent variables. The S-system was constructed
according to usual guidelines (see Table 1 for parameter values), and as before, we set all
independent variables arbitrarily set to 1.2 and solved the system from (1, 1, 1, 1) to its
normal steady state. Subsequently, we assumed that the environmental demand changed by
requiring all target values for the dependent variables to assume the value of 2.

Because n < m, the solution consists of a space that can be expressed by a particular solution

plus a linear span of a basis of the null space of . The particular solution is
computed as

(20)

(21)

and any feasible solution can be characterized by the particular solution plus an arbitrary
vector in the null space of L:

(22)

where λ may be any 3-dimensional real-valued vector and B is a matrix in which each
column is a basis vector of the null space of L.

Choosing any yI inside this solution space is guaranteed to lead the system to the target
steady state. Two examples of admissible solutions in Cartesian space are

 and

. The former of these
solutions is the least-squares solution, while the latter is the least-squares solution plus the
first basis vector of the null space. These and other solutions within the admissible space
move the system to the target steady state of (2, 2, 2, 2) as expected, but the transient
behaviors of these systems are different, and it is not a priori clear how to manipulate them.

Interestingly, it is possible to alter any solution to some degree in a targeted fashion by
controlling the basis vectors of the three-dimensional null space of L. In the given numerical
case, the basis vectors are
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(23)

These basis vectors can be computed directly in Matlab with the Null command, which
applies singular value decomposition to obtain an orthogonal basis set. Different effects are
observed when any of these basis vectors is altered. For instance, increasing B1 by a positive
factor causes all responses to speed up (Fig. 8), while increasing B2 or B3 causes X1, X2 and
X3 to accelerate but X4 to slow down (data not shown). Thus, the transient behavior can be
controlled to some degree through the basis vectors. However, the effects of such
manipulations are difficult to predict, and it is more straightforward to use direct
optimization methods as we will discuss them next.

Optimal Operating Strategies
The computation of the pseudo-inverse in the steady-state equations of the S-system, along
with the characterization of the null space, results in the space of all possible solutions.
Within this space, any computed resetting of the independent variables leads to a desired
steady state in terms of the dependent variables. While it is mathematically and practically
satisfying to have a concise representation of this solution space, one will wonder whether
some admissible solutions within this space are “better” than others. Clearly, the answer
requires optimization, which, interestingly, does not need an explicit characterization of the
solution space per se. The optimization does require an objective function, which is to be
selected according to the chosen criteria of functional effectiveness.

Operating principles have not yet been analyzed often enough to permit a listing of “typical”
criteria of functional effectiveness, and judging by the exploration of design principles, one
might expect them to change from one application to another. Among likely, generic criteria
one will often establish similar metrics as for design principles, which often include local
stability, modest gains and sensitivities, and tolerance of the steady state to perturbations.
Also as in the case of design principles, one might prefer fast response times and bounded
transients. Another typical criterion in superior designs is a minimal accumulation of
intermediates. Here, this criterion is automatically satisfied when a complete target profile of
steady-state values is mandated, but if no target values for intermediates are specified, it
may indeed serve as a criterion.

In addition to these criteria gleaned from design principle analysis, operating strategies are
distinguishable in other respects. In the work presented here, we focus primarily on two
aspects that appear to be particularly pertinent: the collective deviation of independent
variables from their nominal levels, and the number of independent variables that are to be
changed. These criteria are important to a cell, because they are directly related to the effort
that has to be expended in terms of gene expression and the dynamics of RNAs and proteins
[40], and to the degree of possible side effects from such changes. Secondarily, we will look
into the profiles of transients between steady states. One could presumably study a variety of
additional criteria, such as a favorable dynamic sensitivity profile [41; 42].

To formalize the deviation from normal operation, we introduce a vector d that represents
the change in the vector of independent variables such that the system reaches the target
steady state y∼D, which is assumed to be known. With these definitions, we can formulate
the target state as
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(24)

and this expression can be rearranged as a linear constraint on d. Namely, we can write

(25)

Now let

(26)

If all zi are set to 1, the optimization task allows every independent variable to change as
long as the linear constraints are satisfied, but the identification of specific solutions still

depends on the dimension and rank of  as well as the chosen criteria of functional
effectiveness.

One of the most commonly used criteria for finding a particular solution is the total squared
error E, which in this case can be written as

(27)

where ||•||2 is the 2-norm. The solution d ̂ with the lowest E corresponds to an optimal
operating strategy where the first criterion, i.e., the collective deviation in independent
variables from their nominal values, is minimized.

The second criterion requires finding a minimum set of independent variables whose
alteration is necessary for reaching the target steady state. This task is equivalent to solving
the following Mixed Integer Linear Programming (MILP) problem:

(28)

The CPLEX solver in AMPL can be used to solve this type of MILP.

Similar to optimization tasks in the field of biotechnology, where the typical objective is the
maximization of a metabolite pool or flux, it is here also possible to account for constraints
on concentrations and fluxes [43; 44; 45; 46; 47] as well as more complex limitations such
as metabolic burden [9] or the feasibility of parameter regions that correspond to admissible
physiological states [28]. In particular, the metabolic burden, which is associated with the
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total mass of all protein (cf. discussion in [9]), can be an important issue of cellular protein
economy because it was shown for the case of recombinant bacteria that the growth rate
decreased monotonically with increasing numbers of introduced plasmid copies (e.g., [48;
49; 50]).

Moreover, one should expect that it is easier to up- or down-regulate some genes or enzyme
activities than others. In fact, it might not be practically feasible to change some enzyme
activities at all. If so, the corresponding independent variables in the model are off limits in
the selection of any viable operating strategies. Other processes might be accessible to
manipulations but limited in the degree of alteration. We will discuss some of these concepts
in the following Case Study.

Case Study
As a specific case study, we consider the response of yeast cells to heat stress. The first
indications of such a response are observable within minutes of the initiation of heat stress:
transcription factors are mobilized and translocated [51], and numerous genes respond with
strong changes in expression [52; 53; 54]. At the proteomic level, heat shock proteins
emerge in high numbers [55; 56; 57]. At the metabolic level, a significantly altered profile of
sphingolipids guides the expression of some key genes [58], and, most important for the
following illustration, the protective disaccharide trehalose is produced in huge amounts [40;
59].

Several modeling studies have investigated the dynamics of trehalose upon heat shock in
recent years [14; 26; 28; 29; 40; 60; 61], which allows us to keep the discussion of
background information to a minimum. In a nutshell, material is siphoned off glycolysis at
the level of glucose 6-phosphate and channeled toward the production of glucose 1-
phosphate, UDPG, glycogen, trehalose 6-phospate and trehalose, with trehalose
accumulating in large quantities. The enzyme trehalase splits trehalose into two glucose
molecules and thereby completes the trehalose cycle (see Fig. 9). Because the present study
is focused on methodological advances rather than new biological insights, we take the S-
system model of the trehalose cycle in [14] at face value and analyze alternative operating
strategies.

The S-system equations describing the system were taken directly from [14]. They are

(29)
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Of primary interest here is the response of yeast to heat stress, which affects most of the
reactions steps in the pathway. According to literature studies (cited in [14]), the alterations
among the dependent and independent variables under heat stress are distinctly different,
with some variables and steps changing substantially and others not as much or not at all
(Tables 2 and 3).

In this case, n = 7 and m = 12, which indicates quite a bit of flexibility among different
solutions. Application of the pseudo-inverse method reveals the space of all admissible
solutions; an example of a possible solution is

. XI is computed using the pseudo-inverse of L and the original basis of the null space of L,
which was obtained through singular value decomposition in MATLAB, and

. As to be expected, this vector of independent variables moves the
system to the target steady state. However, the solution is much slower than the observed
solution (Fig. 10).

The solution space obtained with the pseudo-inverse method is 5-dimensional, and a basis is

As in the illustrative example of a branched pathway, it is to some degree possible to affect
the transient speed by manipulating the basis vectors. Tuning B1 or B2 causes the glycogen
concentration to speed up but has almost no effect on trehalose or the other variables.
Increasing B3 accelerates trehalose and no other variables, increasing B4 speeds up both
trehalose and glycogen, while increasing B5 speeds up trehalose but slows down glycogen
production (Fig. 11).

In contrast to exploring the entire solution space, the direct optimization method allows us to
select criteria of functional effectiveness a priori and to optimize the solution toward these
criteria under the constraint that the target steady state is reached. As the first example,
suppose the overriding criterion is to alter the independent variables as little as possible in
magnitude. Least-squares optimization toward this criterion yields a solution that not only
reaches the target steady state but also exhibits only modest variations in enzyme activities
(Table 3; column 4).

As a second example, we mandate to keep the number of altered independent variables to a
minimum. MILP optimization reveals that this minimum number is 7, and the steady state is
reached upon quite strong alterations in this minimum set (Table 3; column 5).

There are unlimited combinations on this theme, depending on the choice of criteria of
functional effectiveness. For instance, we may consider a more complex scenario, which
accommodates the following criteria. First, suppose that the phosphofructokinase step (X10)
cannot be altered. This supposition was motivated by actual observations in yeast (cf. [26]),
and rationale for this restriction was presented based on different types of analyses [28; 29].
The restriction is easy to implement by fixing X10 = 1. Secondly, 20 transporters are
involved in glucose uptake and fine tuned for different glucose concentrations in the
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medium, which may mean that the glucose transport step probably cannot be altered
effectively from what is observed. Thus, we enforce X8 = 8, which corresponds to the
observed level. Third, the rates of glycogen and trehalose production (  and ) should be
sufficiently large to achieve a timely response to elevated temperatures, which we
implement by setting these flux rates to those actually observed and not permitting them to
be altered. If subscript e indicates the nominal steady-state values under heat stress condition
(as discussed in [14]), we obtain

These conditions impose further constraints on the system and are easily formulated in the
MILP. The size of the solution space (number of free variables minus the number of linearly
independent equality constraints) is now drastically reduced from 5 to 1. Within the
constrained system, we can again identify the minimal set or least squares solution (Table 3,
Columns 6 and 7) or could use some other criterion of function effectiveness.

Both results are interesting. First, the constrained least-squares solution turns out to be very
similar to the nominal solution, which indicates a similar strategy as in the case of the
diauxic shift (see introduction and [25]). Second, the minimum-set solution shows
drastically different values than the nominal solution and identifies glycogen phosphorylase
as the most dispensable reaction step. In an entirely different study [62], this same step was
also identified as only modestly relevant for the trehalose response. The question of which
strategy is superior depends on the criteria of functional effectiveness. One might say that
the least-squares solution should be the preferred means of operation because all variables
remain as close to their normal operating points as possible and the strategy produces
glycogen faster. Yet, if the cost of gene expression and the production of transcription
factors and mRNAs is a major concern, then the minimum-set solution might be superior
because its sum of independent variables is smaller. In short, the superiority is context-
dependent rather than universal.

Table 3 seems to indicate that much “cheaper” solutions than the nominal solution can be
found, which raises the question of why the nominal solution employs alterations in
independent variables that are so much more dramatic than the least squares or minimum set
solutions. At least one answer can be found in the response time: although all solutions
reach exactly the same steady state, the nominal solution is more than ten times faster than
the least squares and minimum-set solutions (Figure 12; note different time scales).

The issue of drastically different transient speeds begs the question of whether and how the
least-squares and minimum-set solutions could be accelerated. The most direct way of
accomplishing acceleration arises if every flux contains its own independent variable. For
instance, if every flux is governed by an enzyme which enters the flux with a kinetic order
of 1, then multiplication by the same factor ϕ > 1 will speed up the dynamics of the entire
system by ϕ. This advance does not come for free though, because the cost of the solution
with respect to the chosen criterion increases and the result may no longer be optimal. For
instance, the metabolic burden, which roughly corresponds to the sum of independent
variables, increases ϕ -fold. An increased metabolic burden can be a disadvantage because it
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puts additional stress on the cell due to higher levels of transcription and translation [48]. If
minimal metabolic burden is indeed a pertinent criterion of functional effectiveness, the
totality of changes in independent variables should be kept as small as possible.

If the independent variables have different kinetic orders or appear in several equations, a
systemic speed-up may still be possible. Specifically, one has to solve the equations

for all i = 1, …, n. In the trehalose case, these conditions result in a set of 14 linear equations
with 12 unknowns, which has no algebraic solution. Nevertheless, one can obtain a solution
in a least-squares sense, which indeed leads to an acceleration of the transients and
approximately reaches the target steady state. The required changes in independent variables
are presented in Table 4, where ϕLS = 11.19 and ϕMS = 6.29 are the acceleration factors for
the least-squares and the minimum-set solutions, respectively. These factors are computed
based on the settling time τ, which here is the amount of time needed for trehalose to reach
and stay within 95% of its nominal heat stress value. While the resulting trehalose profiles
are essentially the same as in the nominal scenario, the glycogen trends are still slower (Fig.
13). Interestingly, the steps directly associated with the dynamics of trehalose are very
similar to the nominal solution, and the glycogen phosphorylase step is again much lower
(Table 4).

Distinctly different solutions to speeding up the transients could possibly be reached in two
ways. First, the cell could initiate a fast transient toward a steady state with more extreme
values than needed, and in a second phase relax these values toward the true target state.
This strategy is expected to incur overshoots before the true target steady state is reached
[35]. Second, it is possible to compute settings in independent variables that reach states that
are not steady states. These computations require methods of nonlinear control theory,
which were demonstrated for S-systems elsewhere [63].

Discussion
Deciphering how nature solves problems has been the dream of scientists for a long time.
Consequently, enormous effort has been devoted to shining light on operating procedures n
nature, dissecting systems, and identifying and characterizing processes that cells employ to
solve specific problems. Given the seemingly unlimited variability and complexity of tasks
that need to be addressed, a comprehensive understanding of operating procedures, let alone
operating strategies or even operating principles, will not be gained in the foreseeable future.
Nonetheless, the overwhelming magnitude of the challenge does not suggest that we give
up, but that even small advances might be beneficial on our long journey.

Thanks to high-throughput techniques of molecular biology, the availability of large datasets
has grown immensely and will continue to increase. Along with this increase will be a more
and more pressing need to find means of interpretation and of comparing similar, yet
structurally different solution strategies. Similar to the investigation of design principles, the
study of operating principles is expected to lead to the discovery of motifs, which will
provide explanations of naturally evolved systems as well as guidance regarding the design
of new systems within the field of synthetic biology.

Lee et al. Page 15

Math Biosci. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We have shown in this article that a small sub-class of cellular tasks can be addressed quite
efficiently with mathematical and computational tools. Namely, we propose methods for
investigating the situation where a biological system is forced to move to a new steady state,
which we assume to be known. For example, in the heat stress scenario discussed here, the
cell must accumulate sufficient amounts of trehalose and possibly glycogen, while internal
glucose and trehalose 6-phosphate need to be carefully controlled, because they cause
adverse effects in high concentrations [59; 64; 65]. Thus, some pools in a pathway need to
be altered substantially, while others must remain more or less at their nominal level. We
show here that such tasks can be formulated rigorously in the language of linear algebra and
constrained optimization.

The analysis yields two main results. First, it defines the entire solution space of the
problem, and second, it allows a direct system optimization toward given criteria of
functional effectiveness. The elegance of these solutions is primarily due to the special
structure of S-system models, whose steady states are characterized by systems of linear
equations. With the exception of Lotka-Volterra [66; 67; 68] and lin-log models [69; 70],
whose steady states are also governed by linear equations, it seems very difficult to obtain
similarly general results with ad hoc models, such as pathway systems that are represented
with Michaelis-Menten rate laws and their generalizations.

Interestingly, Generalized Mass Action (GMA) representations within BST [10; 71], as well
as other model structures, may permit numerical solutions under favorable conditions,
although these solutions are not as general as in the case of S-systems. Namely, consider the
important special case where each flux representation contains at most one independent
variable, which enters the flux in a linear fashion, as it is typical for most enzymes. If all
parameter values and the target steady state are known, all terms in the steady-state
equations either become linear functions of one independent variable, or they do not contain
an independent variable at all. Furthermore, outside the independent variables, all other
components of each term combine to a single numerical value, so that the entire system of
steady-state equations is linear in the independent variables. As in the cases shown here, this
system may have a unique solution or be over- or underdetermined, and it can be analyzed in
each case with methods of linear algebra and optimization. The condition of linearity with
respect to independent variables can actually be further relaxed, for instance, to the
requirement that the same independent variable, if it appears in different terms, always has
the same kinetic order.

The tasks and solutions proposed here are reminiscent of optimization problems that have
been analyzed in the field for two decades [9; 28; 43; 44; 45; 46]. However, the two lines of
investigation represent different aspects of targeted alterations in pathways. In the typical
optimization tasks in biotechnology or metabolic engineering, a metabolite pool or flux is to
be maximized, while other features of the steady state profile are rather irrelevant as long as
they remain within general physiological constraints. As a consequence, the task typically
has a clearly defined, single optimal solution, although in some cases alternative optima with
the same value of the objective function occur, and it is furthermore possible to investigate
multi-objective optimization tasks [9; 72]. In the analysis here, the primary requirement is
that the system must reach a specified steady-state profile. This task often admits an entire
solution space, within which the system must operate. Within this space, questions of
superiority of one solution over another with respect to selected criteria can be explored.
Functional effectiveness is not usually considered in biotechnological optimization, but in
the case analyzed here provides the metric for comparing alternative strategies and declaring
one solution superior to another.
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An unresolved issue is the definition of criteria for functional effectiveness, which are not
necessarily known a priori. Is it advantageous to up-regulate just a few genes substantially,
or is it better to up-regulate many genes by a small amount? We do not yet have answers to
such questions, but we have taken a first step by asking these questions and by suggesting
that it might be advisable to observe how nature solves tasks in order for us to develop ideas
for what types of operating strategies might be candidates for optimality. Moreover, the
work presented here suggests tools for comparing different solutions with objectivity and for
declaring superiority of different alternatives once criteria are established.
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Figure 1.
A cascaded system with as many dependent (circles) as independent (squares) variables. The
cascade could represent, from top to bottom, gene expression, transcription into mRNA,
translation into protein, and a metabolic process catalyzed by enzyme X3.
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Fig. 2.
Linear pathway with feedback and an exogenous demand for product. The task of moving
the system to a new steady state has a unique solution.
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Fig. 3.
Resetting the independent variables according to the computed unique solutions moves the
cascaded (left) and linear (right) pathway systems to the desired target (2, 2, 2, 2). During
the initial phase (shaded light grey), the systems move from their arbitrary initial values (1,
1, 1, 1) to their nominal steady states. At time t = 60 or t = 150, respectively, the
environment changes, requiring all variables to reach the target value 2.
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Figure 4.
Over-determined cascaded and linear pathway systems with n = 4, m = 3. In the example of
a linear pathway, the reaction between X1 and X2 may not be accessible to alterations.
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Figure 5.
Least squares solution for the over-determined cascaded system in Figure 4.
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Figure 6.
Solution for the over-determined cascaded system in Figure 4, where X4 is forced to reach
the target state 3.
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Figure 7.
Branched pathway with a substrate cycle. The system contains four dependent variables
(circles) and seven independent variables, which model the system input (X5) and catalyzing
enzymes (X6, …, X11). The system is representative of the most prevalent situation where n
< m.
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Figure 8.
Manipulation of the basis vectors permits modest changes in transient speed. Here,
increasing B1 causes all transients to accelerate (arrow). Solid lines: no acceleration; dashed
lines: acceleration by increasing B1 twofold; dotted lines: acceleration by increasing B1
fourfold.
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Figure 9.
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Figure 10.
A possible solution within the space characterized by the pseudo-inverse method (dashed),
in comparison with the nominal solution discussed in [14]. While both solutions eventually
reach the same steady state, the transient of the solution computed here is comparatively
slow (see text for details).
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Figure 11.
The solutions obtained with the pseudo-inverse method can be manipulated by modifying
the basis vectors. In the left panel, basis vector B3 was multiplied with factors 1, …, 5 (in
direction of the arrow); this action did not affect the glycogen profile. In the right panel,
basis vector B5 was multiplied with factors 1, …, 5, in direction of the arrows. All solutions
eventually reach the same target steady state.
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Figure 12.
All solutions eventually reach the exact same steady state and the transients have similar
shapes, but the timing is quite different. While glycogen and trehalose in the nominal
solution come close to their steady state values within about 5 time minutes (left panel),
reaching the same levels takes ten or more times as long in the least-squares (right panel;
solid lines) and minimum-set (right panel; dotted lines) solutions (note different time scales).
Other variables respond on a time scale that is more similar to the nominal solution (not
shown).
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Figure 13.
Acceleration of the least squares (dotted lines) and minimum set (dashed lines) solutions in
the trehalose example leads to similar solutions as the nominal case (solid lines), but the
accelerated solutions reach the target only approximately (although they come very close).
The trehalose trend is now essentially indistinguishable from that in the nominal solution,
while the rise in glycogen is slower. Time courses of the other variables essentially match
those of the nominal case.
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Table 2

Dependent variables of the canonical model (Eq. 29) of the trehalose cycle. Steady-state values under optimal
temperature conditions were collected from the literature [14]; heat-stress values (scaled by optimal steady-
state values) computed with the S-system model upon changes in independent variables as shown in Table 4

Metabolite Variable Name

Steady-State Concentration [mM]
under Optimal Temperature

Conditions (from the Literature)

Computed Fold Change in Steady-State
Concentration during Heat Stress (Scaled

by Normal Steady State)

Glucose X1 0.03 1.46

Glucose 6-Phosphate X2 1 5.54

Glucose 1-Phosphate X3 0.1 3.99

Uridine Diphosphate Glucose X4 0.7 2.69

Glycogen X5 1 55.8

Trehalose 6-Phosphate X6 0.02 4.28

Trehalose X7 0.05 103
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Table 4

Accelerated least squares and minimum set solutions for the trehalose cycle

Catalytic or Transport Step Nominal Least Squares (accelerated) Minimum Set (accelerated)

Glucose transport 8 22.4731 28.8238

Hexokinase/Glucokinase 8 21.7616 27.7065

Phosphofructokinase 1 5.2507 7.9468

G6P dehydrogenase 6 1.2416 1

Phosphoglucomutase 16 9.4252 6.8941

UDPG pyrophosphorylase 16 12.4311 9.9536

Glycogen synthase 16 11.8831 9.1365

Glycogen phosphorylase 50 11.7559 6.2449

Glycogen use 16 8.9158 6.2494

α, α-T6P synthase 12 12.2458 12.4968

α, α-T6P phosphatase 18 18.3691 18.7455

Trehalase 6 6.1230 6.2485
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