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Abstract
Complexity is the grand challenge for science and engineering in the 21st century. We suggest that
biology is a discipline that is uniquely situated to tackle complexity, through a diverse array of
technologies for characterizing molecular structure, interactions and function. A major difficulty
in the analysis of complex biological systems is dealing with the low signal-to-noise inherent to
nearly all large-scale biological data sets. We discuss powerful bioinformatic concepts for
boosting signal-to-noise through external knowledge incorporated in processing units we call
Filters and Integrators. These concepts are illustrated in four landmark studies that have provided
model implementations of Filters, Integrators, or both.

Introduction
Complexity distinguishes a system that has many parts in an intricate arrangement that gives
rise to seemingly inexplicable or emergent behaviors. For example, a radio captures an
electromagnetic signal and converts it through electronic circuitry into sound that we hear.
To most, the radio is a black box with an input (electromagnetic waves) and an output
(sound waves). However, understanding the inner workings of this box requires going head-
to-head with the challenges of complexity. What are the component parts of the system and
how are these parts interconnected? How do these connections influence functions and
dynamic system outputs? In biology, ultimately one would like to create models that predict
the emergent behaviors of complex entities— and even re-engineer these behaviors to
humankind’s benefit.

To decipher complexity, biologists have developed an impressive array of technologies—
next-generation sequencing, tandem mass spectrometry, cell-based screening, and so on—
which are capable of generating millions of molecular measurements in a single run. This
enormous amount of data, however, is typically accompanied by a fundamental problem—
an incredibly low rate of signal-to-noise. For example, the millions of single nucleotide
variants (SNVs) found in a typical genome-wide association study or by the International
Cancer Genome Consortium (Hudson et al., 2010) make it extremely difficult to identify
which particular SNVs are the true causes of disease. Due to the overwhelming number of
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measurements, such analyses either lack power to detect the true signal or must admit an
unacceptable quantity of noise.

Fortunately, biologists have two major weapons with which signal-to-noise may be
improved. First is what we know about complexity, which can and should be used as strong
prior assumptions when analyzing biological data. Known principles of complexity such as
modularity, hierarchical organization, evolution, and inheritance (Hartwell et al., 1999) all
provide important insights into how biological systems are constructed and how they
function. Second is the availability of data in many complementary layers— including the
genome, transcriptome, proteome, metabolome, and interactome. A recent wave of new
bioinformatic methods has demonstrated how both weapons— strong prior assumptions
related to complexity and systematic accumulation of complementary data— can be used
together or separately to exact substantial increases in signal-to-noise.

In what follows, we summarize these developments within a general paradigm for signal
detection in biology. Central to this paradigm are processing units we call Filters and
Integrators, which draw on prior biological assumptions and hierarchical data to reduce
noise and to boost statistical power. To illustrate these ideas in context, we review four
landmark studies that have provided model implementations of Filters and Integrators.

The signal detection paradigm
Imagine a biological data set as a stream of information flowing into a hypothetical signal
detection device (Figure 1A). The information flow is quantized into atomic units or events,
representing measurements for entities such as genes or proteins, protein interactions, SNVs,
pathways, cells, or individuals. Each event contains a certain amount of information, ranging
from a single measurement (e.g., strength of protein interaction) to thousands (e.g., a SNV
state or gene expression value over a population of patients). Some events represent true
biological signals, with the definition of ‘signal’ depending exquisitely on the type of results
the experimentalist is looking for (e.g., a SNV causing disease or a true protein interaction,
many examples are given later). The remaining events are noise, which can be due to errors
that are technical in nature (uncontrollable variation in different instrument readings
collected from the same sample) or biological in nature (uncontrollable variation in different
samples collected from the same biological condition). An event may also be considered
part of noise even if it is biological and reproducible, simply because it encodes aspects of
phenotype irrelevant to the current studies.

Since we do not know exactly which events are signal, the device scores each event and
accepts those for which the score exceeds a decision threshold (Figure 1A). It is precisely
this decision that becomes problematic in many large-scale biological studies, in which one
either mistakenly rejects a large proportion of the true signal (low statistical power) or must
tolerate a high proportion of accepted events that are noise (high False Discovery Rate or
FDR).

Boosting signal with Filters and Integrators
To increase signal-to-noise, a pivotal trend in bioinformatics has been to augment the signal
detection process with complementary data sets and with prior knowledge about the nature
of signal. The vast majority of these approaches fall into either of two categories that we call
Filters and Integrators (Table 1). Filters attempt to cull some events from the information
flow immediately and reject them as noise. For example, a detection system for differential
expression might reject certain genes immediately if their expression levels fail to exceed a
background value in any condition. Integrators, on the other hand, transform the information
flow by aggregating individual events into larger units to yield a fundamentally new type of
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information. For example, genes might be aggregated into clusters of similar expression or
of related function, in which the median level of the clusters— not their individual genes—
are propagated as the ‘events’ on which final accept / reject decisions are made (Park et al.,
2007). Importantly, the combining of Filters or Integrators results in a new device which
itself can be recombined with other signal detection systems in a modular fashion.

Both Filters and Integrators influence statistical power and FDR, but by fundamentally
different means. Filters reduce the fraction of noise passing through the system and, as a
consequence, the FDR. Alternatively, FDR can be held constant as filters are added by
relaxing the decision threshold, resulting in higher statistical power (Figure 1B,C). By
comparison, Integrators combine a train of weak signals into fewer stronger events, leading
to an increase in ‘effect size’ and thus a direct increase in statistical power. These methods
compliment the more classical means of boosting power by increasing the amount of
information per event (also called the sample size, Figure 1A).

In each of the following examples, boosting power with a combination of Filters and
Integrators has been critical to the success of a landmark genome-scale analysis project.

Example 1: Pathway-level integration of genome-wide association studies
Genome-wide association studies (GWAS) seek to identify polymorphisms, such as SNVs,
that cause a disease or other phenotypic trait of interest. Despite the success of this strategy
in mapping SNVs underlying many diseases, the identified loci typically explain only a
small proportion of the heritable variation. For such diseases, one likely explanation is that
the genetic contribution is distributed over many functionally-related loci with large
collective impact, but with only modest individual effects which do not reach genome-wide
significance in single-SNV tests (Wang et al., 2010; Yang et al., 2010).

Based on this hypothesis, Segre et al. (2010) investigated the collective impact of
mitochondrial gene variation in type II diabetes. They described a method called
MAGENTA that performs a meta-analysis of many different GWAS to achieve larger
sample sizes than any single study, thereby increasing statistical power. MAGENTA also
includes both filtering and integration steps (Figure 1D). First, a Filter is applied so that
SNVs that fall far from genes are removed. Next an Integrator is applied to transform SNVs
to genes, such that each gene is assigned a score equal to the most significant p-value of
association among its SNVs. Gene scores are further corrected for confounding factors such
as gene size, number of SNVs per kilobase, and genetic linkage. Finally, a second Integrator
combines the scores across sets of genes assigned to the same biochemical function or
pathway, resulting in a single pathway-level p-value of association.

Simulation studies using MAGENTA suggest a potentially large boost in power to detect
disease associations (Supplemental Figure 1A). For example, the method has 50% power to
detect enrichment for a pathway containing 100 genes of which 10 genes have weak
association to the trait of interest. This performance is compared to only 10% power to
detect any of the 10 genes at the single SNV level. At this increased power, MAGENTA did
not identify any mitochondrial pathways as functionally associated with type II diabetes,
suggesting that mitochondria have overall low genetic contribution to diabetes susceptibility
overall– a surprise given the conventional wisdom about the disease. On the other hand, in
an independent analysis of genes influencing cholesterol, MAGENTA identified pathways
related to lipid and fatty acid metabolism which, troublingly, had been missed by classical
GWAS.
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Example 2: Mapping disease genes in complete genomes
Sequencing and analysis of individual human genomes is one of the most exciting emerging
areas of biology, made possible by the rapid advances in next-generation sequencing
(Metzker, 2010). As complete genome sequencing becomes pervasive, one of the most
important challenges will be to determine how such sequences should best be analyzed to
map disease genes. The signal filtering and integration paradigm provides an excellent
framework for developing methods in this arena. As a landmark example, Roach et al.
(2010) described a filtering methodology for disease genes based on the complete genomic
sequences of a nuclear family of four. This approach was used to identify just three
candidate mutant genes, one of which encoded the Miller syndrome, a rare recessive
Mendelian disorder for which both offspring, but neither parent, were affected.

To begin the analysis, the four genome sequences were processed to identify approximately
3.7 million SNVs across the family. SNVs were then directed through a series of filters
(Figure 1D). In the first, SNVs were rejected if they were unlikely to influence a gene-
coding region annotated in the human genome reference map (http://genome.ucsc.edu/),
leaving approximately 1% of SNVs which led to mis-sense or nonsense mutations or fell
precisely onto splice junctions. A second filter removed SNVs that were common in the
human population and thus were unlikely to cause a rare Mendelian disorder. Like the first
one, this filter yielded an approximate 100-fold decrease in the number of candidates. A
third filter was designed to check inheritance patterns, which can be gleaned only from a
family of related genomes. SNVs were removed which had a non-Mendelian pattern of
inheritance (result of DNA sequencing errors) or did not segregate as expected for a
recessive disease gene, in which each affected child must inherit recessive alleles from both
parents. This filter yielded another 4 to 5-fold decrease in candidate SNVs versus using only
a single parental genome. Finally, an Integrator was used to translate all remaining SNVs
into their corresponding genes.

Using the entire system of filters and integrators under a compound heterozygote recessive
model, a total of three genes were identified as candidates. One of these (DHODH) was
concurrently shown to be the cause of Miller syndrome. In this way, the family genome
sequencing approach used the principles of Mendelian genetics (prior knowledge) to correct
approximately 70% of the sequencing errors and reduce enormously the search space for
disease traits (corresponding to an increase in statistical power from 0.15% to 33%,
Supplemental Figure 1B).

Example 3: Assembly of global protein signaling networks
Another area in which filtering and integration are turning out to be key is assembly of
protein networks. An excellent example of network assembly is provided by the recent work
of Breitkreutz et al. (2010), in which mass spectrometric analysis was used to report a high
quality network of 1844 interactions centered on yeast kinases and phosphatases. Central to
the task of network assembly was a signal detection system for quality control and
interpretation of the raw data. The data consisted of a stream of more than 38,000 proteins
that had been co-immunoprecipitated with a different kinase or phosphatase used as bait.
Bait proteins can interact both specifically and non-specifically with a wide variety of
peptides, and the non-specific interactions comprise a major source of noise. To remove
non-specific interactions the authors introduced a method called Significance Analysis of
INTeractome (SAINT), in which each putative interacting protein is assigned a likelihood of
true interaction based on its number of peptide identifications (representing an increased
amount of information per event or sample size, Supplementary Figure 2A). After filtering,
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the remaining protein interactors are funneled to an Integrator stage in which they are
clustered into modules based on their overall pattern of interactions (Table 1).

The resulting modular interaction network reveals an unprecedented level of cross-talk
between kinase and phosphatase units during cell signaling. In this network, kinases and
phosphatases are not mere cascades of proteins ordered in a linear fashion. Rather, they are
more akin to the neurons of a vast neural network, in which each kinase integrates signals
from myriad others, enabling the network to sense cell states, compute functions of these
states, and drive an appropriate cellular response. It is likely that evolution tunes this
network, such that some interactions dominate and others are minimized in a species-
specific fashion. This might help explain two paradoxical effects seen pervasively in both
signaling and regulation: (1) The same network across species can be used to control very
different phenotypes (McGary et al., 2010); and (2) Very different networks across species
can be used to execute near identical responses (Erwin and Davidson, 2009).

Example 4: Filtering gene regulatory networks using prior knowledge
One of the grand challenges of biology is to decipher the networks of transcription factors
and other regulatory components that drive gene expression, phenotypic traits, and complex
behaviors (Bonneau et al., 2007). Towards this goal, probabilistic frameworks such as
Bayesian networks have been extensively applied to learn gene regulatory relationships from
mRNA expression data gathered over multiple time points and/or experimental conditions
(Friedman, 2004). However, due to a limited sample size, large space of possible networks,
and probabilistic equivalence of many alternative models, these approaches are often unable
to find the underlying causal gene relationships.

Recently, Zhu et al. (2008) showed that supplementing gene expression profiles with
complementary information on genotypes may help to overcome some of these problems.
These authors sought to assemble a gene regulatory network for the yeast Saccharomyces
cerevisiae using previously-published mRNA expression profiles gathered for 112 yeast
segregants. Rather than assemble a Bayesian network from expression data alone, the data
were first supplemented with the genotypes of each segregant. The combined data set was
then analyzed to identify expression quantitative trait loci (eQTL)— genetic loci for which
different mutant alleles associate with differences in expression for genes at the same locus
(cis-eQTL) or for genes located elsewhere in the genome (trans-eQTL). The eQTLs were
then used as a filter to prioritize some gene relations and demote others. Any candidate
cause-effect relations in which the effect gene is near an eQTL were removed, since the cis-
eQTL already explains the gene expression changes at that locus. Conversely, cause-effect
relations that were supported by trans-eQTLs and passed a formal causality test were
prioritized. As indicated by previous simulation studies (Zhu et al., 2007), supplementing
gene expression profiles with genetic information significantly enhanced the power to
identify bona fide causal gene relationships. Further improvement was achieved by
introducing a second filter which prioritized cause-effect relations that correspond to
measured physical interactions, including data from the many genome-wide chromatin
immunoprecipitation experiments published for yeast which document physical interactions
between transcription factors and gene promoters.

Summary
Biology is expanding enormously in its ability to decipher complex systems. This ability
derives from the expanded power to incorporate diverse and complementary data types and
to inject prior understanding of biological principles. Signal detection systems such as those
discussed here— along with their Filters, Integrators, and other components— are leading to
fundamental new biological discoveries and models, some of which will ultimately
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transform our understanding of healthcare. It is also likely that many of the strategies,
technologies and computational tools developed for healthcare can be applied to problems of
complexity inherent in other scientific domains, including energy, agriculture and the
environment. Healthcare and energy will attract significant societal resources moving
forward— and hence offer unique opportunities to push the development and application of
approaches for attacking complexity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Boosting signal-to-noise in biological data using prior knowledge
(A) Signal detection paradigm in which an input data stream is routed through a series of
filtering and integration units, ending in a statistical test which makes accept or reject
decisions. Symbols: m, information per event or sample size; Δ, effect size; tα, threshold test
value; FDR, False Discovery Rate. (B) Probability distribution P(t) of the test statistic t over
the entire data stream of signal plus noise [purple]. This distribution is factored into a red
signal and a blue noise component. FDR and power are visualized in terms of the areas
under these curves to the right of a decision threshold tα. (C) Effect of varying parameters on
the signal, noise, and signal plus noise probability distributions. The power is increased by
more than six-fold compared to panel B, at an identical FDR. Colors are shown as in panel
B. (D) A specific implementation for disease gene mapping as described in Segre et al.
(2010) and Roach et al. (2010). The input signal is a stream of SNPs with each SNP
observed across a population of individuals. This input is filtered to remove SNPs based on
multiple criteria, and multiple SNPs are integrated into genes and/or pathways.
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Table 1

Seven ways to boost power with knowledge

Power
Boost Example Use in Filters or Integrators

Sequences
& structures

Filtering GWAS to focus on SNVs close to gene coding regions (Segre et al., 2010).
Integrating information about multiple SNVs that fall near the same gene (Segre et al., 2010).

Molecular
function

(Gene sets)

Integrating individual signals from functionally related genes (Chasman, 2008; Wang et al., 2010).

Molecular
networks

(Interactions)

Projecting data on networks to identify novel pathways enriched for differentially-expressed genes or candidate SNVs
(Ideker et al., 2002).
Filters can prioritize gene candidates by their network proximity to known disease genes (Lage et al., 2007) or via signaling
pathways that connect gene knockouts to their downstream effects (Suthram et al., 2008; Zhu et al., 2008).

Multiple layers
of data

Filtering based on multiple layers of data can retain true signals which are reflected coherently across data sets and filter out
noise which usually cancels out (Lee et al., 2004).

Evolutionary
conservation

Evolutionary filters retain information that is preserved across multiple species and therefore likely represents functionally
relevant signal (Erwin and Davidson, 2009; McGary et al., 2010).

Inherent
modularity

Inherent biological modules identified by clustering or eigenvalue decomposition can be used to integrate the stream of
information on individual biological entities to a new stream of information about modules (Zhu et al., 2008).

Focusing
phenotype by
'Asking the

right question'

Phenotypes of interest are often confounded by miscellaneous factors such as age, gender, race, or geographic location.
Subtracting away these factors represents a powerful filter that reduces information irrelevant to the analysis (Segre et al.,
2010).
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