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ABSTRACT

Motivation: Structural variations and in particular copy number
variations (CNVs) have dramatic effects of disease and traits.
Technologies for identifying CNVs have been an active area of
research for over 10 years. The current generation of high-throughput
sequencing techniques presents new opportunities for identification
of CNVs. Methods that utilize these technologies map sequencing
reads to a reference genome and look for signatures which might
indicate the presence of a CNV. These methods work well when CNVs
lie within unique genomic regions. However, the problem of CNV
identification and reconstruction becomes much more challenging
when CNVs are in repeat-rich regions, due to the multiple mapping
positions of the reads.
Results: In this study, we propose an efficient algorithm to handle
these multi-mapping reads such that the CNVs can be reconstructed
with high accuracy even for repeat-rich regions. To our knowledge,
this is the first attempt to both identify and reconstruct CNVs in
repeat-rich regions. Our experiments show that our method is not
only computationally efficient but also accurate.
Contact: eeskin@cs.ucla.edu
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1 INTRODUCTION
Structural variations and in particular copy number variations
(CNVs), in which certain regions of the genome appear in multiple
copies in different individuals, have been shown to affect gene
expression, cause disease and alter an organisms phenotype (Aitman
et al., 2006; Gonzalez et al., 2005; Sebat et al., 2007). In order to
detect CNVs, a genome of interest (donor genome) is compared with
a known reference genome. Many methods based on microarray
technologies and comparative genomic hybridization (CGH) (Chen
et al., 2008; Daruwala et al., 2004; Lai et al., 2005; Lucito et al.,
2003) have been proposed, in which a donor genome along with
a reference genome is hybridized to a tiling array. The ratio of
intensities (donor/reference) is used to determine the presence of
structural variation which may be a CNV. When a donor genome
has higher intensity at a particular array location, it implies that
a CNV may be present. Although able to accurately estimate the
number of copies for a given region, these array-based methods are
unable to identify the boundaries of CNVs with high resolution and

∗To whom correspondence should be addressed.

furthermore are not at all able to identify the boundaries of junctions
between CNV copies.

High-throughput sequencing (HTS) technology presents new
opportunities to detect CNVs using paired-end sequencing. The idea
behind these methods is that two reads are generated from a donor
sequence which are known to occur a certain distance apart. If
the two sequences have a different distance when mapped to the
reference, this indicates the presence of a CNV. A few recent studies
have proposed methods to detect CNVs using datasets generated
by HTS technologies (Alkan et al., 2009; Chiang et al., 2009; He
et al., 2010; Medvedev et al., 2009, 2010; Simpson et al., 2010).
Alkan et al. (2009) divided the genome into 1 kb windows and
counted the number of reads mapped to each window (depth of
coverage). Furthermore, they used a set of fixed regions which are
unique among all primates as control windows and calculated the
average depth of coverage for those regions. Then they scaled the
results to predict the copy number of other windows. Simpson et al.
(2010), using sequence data generated with inbred mouse strains,
attempted to predict occurrences of CNVs by using a Hidden Markov
Model. Their method breaks the genome into a series of windows
and determines the copy number state at each window. Adjacent
windows that have the same copy number state are combined to
determine the full region of the CNV. Unfortunately, the boundary
resolution for this method is limited by the size of the window, which
is typically at least 1 kb. Chiang et al. (2009) used a sliding window
approach in order to identify genomic regions that are suspected to
contain CNVs and to estimate the location of their breakpoints. This
method is able to predict the breakpoints with greater resolution,
because it is not limited by the choice of window size. Both of
these methods have successfully identified true CNVs. However,
their focus has been primarily on predicting the genomic sequence
that exist in variable copies.

More recent methods (He et al., 2010; Medvedev et al.,
2009, 2010) are based on the discordant paired-end reads, which are
the reads mapped to the reference genome in an unexpected way.
Discordant reads may indicate the occurrence of CNVs. Medvedev
et al. (2009) proposed a method to use discordant paired-end reads to
identify structural variations. In this work, they identify discordant
reads, which indicate different types of structural variations, for
example, insertion, deletion or translocation. These discordant reads
are clustered to provide high confidence for the occurrence of a
structural variation. Medvedev et al. (2010) proposed an elegant
method to detect copy number variations using paired-end reads.
Similar to the work in Medvedev et al. (2009), they first cluster
discordant paired-end reads to identify CNV boundaries. Next they
build a ‘donor graph’, in which the genome is represented as a set
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of sequence blocks connected with a set of edges. The donor graph
can be used to reconstruct both the reference and donor genomes
by walking along the edges of the graph. Finally, a maximal flow
algorithm is applied to estimate the most likely copy-counts. They
show their method is reliable to predict CNVs as small as 1 kb.
However, their method aims to solve the general CNV detection
problem, where the CNVs can have very complex structure. For
example, there might be multiple copies of CNVs in the reference
sequence. The CNVs might be deleted in the donor sequence. The
copies of CNVs may also be far away from each other. Due to this
complexity, it is hard to reconstruct the exact CNV copies. Therefore,
in this work, we focus on the CNV detection and reconstruction
problem for tandemly organized de novo CNVs, which are roughly
89% of all CNVs with size ≥10 kb found in the mouse genomes
(She et al., 2008). These tandem CNVs have the properties that
there are no gaps or very short gaps between the copies and that
there is only one copy in the reference CNV. This structure allows
us to efficiently reconstruct the exact CNV copies. Another limit
of the method in (Medvedev et al., 2010) is it only targets CNV
detection in regions which are not repeat rich, namely in regions
whose sequences are relatively unique. This may greatly reduce the
applicability of the method given the existence of many repeat-rich
regions in the genomes.

In this study, we propose an efficient algorithm to handle the
problem of tandem CNV reconstruction in repeat-rich regions. We
first identify the left-most and the right-most boundaries of the CNV
region in the reference sequence from a set of candidate mapping
positions by an efficient pruning strategy. Then, we propose a
branch and bound algorithm which can efficiently select the mapping
positions for the internal junctions of the CNV copies from a set
of candidate positions. To our knowledge, this is the first attempt
to both identify and reconstruct CNVs in repeat-rich regions. Our
experiments show that our method is not only computationally
efficient but also accurate.

2 METHODS
A tandem CNV occurring in the region [b,e] of a reference genome is denoted
as [b1,e1|b2,e2|b3,e3|...|bf ,ef ], where ‘|’ denotes a ‘concatenation’ of two
copies, bi denotes the starting position of the i-th copy, ei denotes the ending
position of the i-th copy, ‘ei|bi+1’ denotes an internal junction between the
i-th copy and the i+1-th copy, ‘f ’ denotes copy-counts, or the number of
copies, b=min(bi),e=max(ei) for 1≤ i≤ f . We call the CNV in the reference
genome the reference CNV and the region [b1,e1] the reference CNV region.
Thus, the region of a CNV is defined as a pair of start and end positions of
the CNV. We call the CNV in the donor genome, or the genome of interest,
the donor CNV and the region [b1,e1|b2,e2|b3,e3|...|bf ,ef ] the donor CNV
region. bi and ei correspond to the start and end positions for the i-th copy and
therefore different copies can have different prefixes and suffixes from the
reference CNV. Since the b and e can be any of the bi’s and ei’s, and the order
of the copies of the donor CNV can vary, for simplicity, we assume b1 =b
and ef =e. For example, assume the reference sequence is ‘ACTGCGAT’,
the donor sequence is ‘ACT GCGA GCG CGA T’ (for illustration purpose,
we insert a space between adjacent copies), then the reference CNV region
is [4,7] (the index of the symbol starts from 1), the donor CNV region is
[4,7|4,6|5,7] and the copy-counts is 3.

Notice there is no gap between copies of tandem CNVs. However,
since we allow different copies to have different prefixes and suffixes from
the reference CNV, this is equivalent to allowing insertions and deletions
between copies. b is the left-most boundary and e is the right-most boundary
of the reference CNV. We also assume the copies have similar length.

Fig. 1. A discordant pair can imply the presence of a CNV.

If they are too different, we consider them as insertions or deletions instead
of tandem CNVs. The problem of CNV reconstruction is to reconstruct
the donor CNV region [b1,e1|b2,e2|b3,e3|...|bf ,ef ] given only the set of
paired-end reads generated from the whole donor genome and the reference
genome.

To reconstruct the CNV copies in the donor sequence, we first need to
identify the reference CNV region [b1,e1]. We first apply a similar strategy
as Medvedev et al. (2009) proposed, which uses clusters of discordant reads
crossing the same junction to identify positions b1 and e1, which are the
left most boundary and the right most boundary of the reference CNV,
respectively.An example of discordant reads is shown in Figure 1. Discordant
reads are identified as those in which the insert length of the two segments are
very different from the expected insert length and the mapping position of the
backward read (the right segment of the paired-end read) is smaller than that
of the forward read (the left segment of the paired-end read). Discordant reads
are clustered based on the fact that the individual reads sampled from the
same side of the same junction can be no more than a certain distance apart.
In this case, this distance is the maximum insert length. Once we obtain
the reference region, we can estimate the copy-counts using the formula
e−λfl×(λfl)r

r! (Medvedev et al., 2009), where l=e1 −b1 denotes the length
of the reference CNV region, f denotes the copy-counts, λ= c

length(read) , r
denotes the total number of reads mapped to the reference CNV, c is the
read coverage and length(read) returns the total length of both paired-end
reads. This formula models the likelihood of having copy-counts f in the
donor CNV. This formulation assumes that the number of reads generated
from a region follows a Poisson distribution. Therefore, we can determine
the copy-counts value that maximizes this likelihood. The copy-counts can
be accurately estimated when the true number of reads sequenced from the
region is similar to the number of reads mapped to the region. Once we
estimate the copy-counts, we need to further identify the internal junctions
of the donor CNV.

2.1 Estimate copy-counts of repeat-rich regions
The formula to estimate copy-counts no longer works for repeat-rich regions.
This is because the total number of reads mapped to the region is usually
very different from the number of reads sequenced from the region. Since the
region contains repeats which also occur elsewhere in the genome, the reads
sequenced from all these repeats may be also mapped to the region and the
reads sequenced from the region may be mapped to the repeats elsewhere.
Without an accurate number of reads mapped to the region, the formula
cannot estimate the copy-counts correctly.

To address the problem, we first identify the forward clusters of the
forward reads {fo1,fo2,...,fom} and the backward clusters of the backward
reads {ba1,ba2,...,ban}, where foi is the right most mapping position of the
i-th forward cluster and baj is the left most position of the j-th backward
cluster. Next we check all the candidate regions of [baj,foi] for all 1≤ i≤
m,1≤ j≤n,baj < foi. For each region, we obtain the total number of reads
mapped to the region. As stated before, we cannot estimate the copy-counts
directly using this number. Instead, for a region [baj,foi], we check all the
mapping positions for each read sequenced from the genome, and count how
many reads have mapping positions in the region. We denote the number of
reads having mapping positions in the region as d. Then assume the read
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length is g, for every length g-mer in the region, we check all of its mapping
positions in the genome that are not in the region. We sum the number of
such mapping positions for all the length g-mers in the region and we denote
the number as o. Therefore, there will be totally fl+o possible reads that may
map to the region, where l= foi −baj . Given the coverage c, the number of
reads that are expected to be sequenced from the donor CNV as well as
the corresponding repeats is (fl+o)c

length(read) . All these reads will have mapping

positions in the region [baj,foi]. Therefore, d ≈ (fl+o)c
length(read) .

Assume the copy-counts is f , then the Poisson likelihood function needs

to be modified as e−λ(fl+o)×(λ(fl+o))d

d! where l= foi −baj . As we can see, fl
approximates the length of the corresponding donor CNV for region [baj,foi],
o approximates the sum of the length of all the corresponding repeats in the
genome which are not contained but have occurrences in the region and d
approximates the number of reads sequenced from the region as well as from
all the corresponding repeats. Therefore, this modified formula is a natural
extension of the original Poisson formula when the same mapping algorithm
is used to map the reads to the reference and is able to estimate the copy-
counts f correctly. To our knowledge, this is the first method that is able to
estimate the copy-counts of CNVs in repeat-rich regions.

For illustration purpose, we show a simple example: assume the reference
sequence contains three identical copies of a repeat of length 135 bp. For
simplicity, we consider l=100 since any read sequenced from the last 35 bp
of the repeat would not map to the repeat. One of the repeats is a candidate
CNV region [baj,foi]. The repeat is copied one more time in the donor
sequence, thus f =2. Let us simply assume the sequencer generates reads
for each 36mer of the repeat, where each repeat generates hundred 36mers,
thus c=36. Therefore, there can be totally 400 reads mapped to the reference
CNV region, where the true number of reads sequenced from the donor CNV
should be only 200 bp. Thus, the number of reads mapped to the reference
CNV region may be very different from the number of reads sequenced from
the donor CNV. However, if we use the above strategy to count the number of
reads that have mapping positions in the reference CNV region, the number
d is 400. Then next for each 36mer in the reference CNV region, we check
all of its mapping positions in the genome that are not in the region. And we
know each 36mer in the reference CNV has two mapping positions that are
not in the region since the repeat has three identical copies. Therefore o, the
sum of the number of such mapping positions for all 36mer in the region is
200. As we know, the Poisson likelihood function works when the number
of reads mapped to a region is indeed the same as or similar to the number
of reads sequenced from the region. Since we have (fl+o)c

length(read) = d only when
f =2, the new Poisson likelihood function is able to accurately estimate the
copy-counts.

2.2 Categorize occurrences of CNVs in repeat-rich
regions

The repeats in the reference genome can also introduce significant confusions
in identification of the internal junctions. For example, assume the reference
sequence is ‘ACTGCAACTGCA’, the donor sequence is ‘ACTGCA GCA
CTGCA ACTGCA’, the reference CNV ‘ACTGCA’ is copied three times
in the donor sequence as ‘ACTGCA’, ‘GCA’ and ‘CTGCA’, respectively. If
we have a paired-end read ‘CTG - - GCA’ spanning the first and the second
copies (for illustration purpose, we assume each segment of the paired-end
reads is of length 3 and the insert length, or the length of ‘-’, is also 2), when
we map the read back to the reference sequence, since the two segments of
the paired-end reads are mapped individually, we may end up with multiple
mapping positions since ‘GCA’ can be mapped to both positions 4 and 10
and ‘CTG’ can be mapped to both positions 2 and 8. How do we determine
which positions are the true mapping positions that can generate this read?

To answer the above question, we first categorize the occurrence of a CNV
into one of the following three categories:

(1) The reference CNV is in a non-repeat region such that the internal
junctions as well as the left most and the right most boundaries can be
identified uniquely using the clustered discordant paired-end reads.

(2) Middle area of the reference CNV is in the repeat-rich region. More
specifically, the left-most and the right-most boundaries of the CNV
region can be identified uniquely. However, due to repeats in the
middle of the CNV region, some or all of the internal junctions
cannot be identified uniquely and there may be multiple mapping
positions for the internal junctions. In this case, we need to identify
the correct mapping positions for the internal junctions. For example,
the reference sequence is ‘ACTGAGACTCTAT’, the donor sequence
is ‘AC TGAGACTCTA TGAGA CTCTA T’, the reference CNV is
‘TGAGACTCTA’ and it contains repeats ‘GAGA’ and ‘CTCT’.

(3) The whole reference CNV is in the repeat region such that at least
one of the left and the right most boundaries and some or all of
the internal junctions cannot be identified uniquely. For example,
the reference sequence is ‘ACTGTGAGACTCTATAT’, the donor
sequence is ‘ACTG TGAGACTCTA TGAGA CTCTA TAT’, the
reference CNV is ‘TGAGACTCTA’ and it contains repeats ‘GAGA’
and ‘CTCT’. What is more, the length 2 substrings ‘TG’ and ‘TA’
at the left most boundary and right most boundary, respectively, also
have duplicates in the reference sequence (in ‘ACTG’ and ‘TAT’,
respectively).

2.3 Algorithms for CNV reconstruction in repeat-rich
regions

We next develop different algorithms to handle each category according to
their unique properties.

2.3.1 The reference CNV is in non-repeat region In this case, all the donor
CNV junctions are mapped uniquely to the reference CNV, which can be
uniquely identified and we do not have any false positive mapping positions.
So we can identify these positions and reconstruct the donor CNV easily.

2.3.2 Middle area of the reference CNV is in the repeat region In this case,
we assume that the left most and the right most boundaries of the reference
CNV are not in the repeat region and can be identified uniquely. However,
repeats within the reference CNV lead to possible multiple mapping positions
for the remaining donor CNV junctions, namely the two segments of a
discordant paired-end reads can be mapped to multiple places in the reference
CNV due to repeats. In order to reconstruct the CNV, we need to identify the
correct mapping positions of the junctions. This cannot be achieved alone by
clustering discordant paired-end reads, since there will be multiple clusters
at different positions for the same junction.

We solve the problem by estimating the length of the donor CNV first and
then select one mapping position for each junction such that the reconstructed
donor CNV has length closest to the estimated length. We estimate the length
of the donor CNV using the number of reads that have mapping positions in
the reference CNV. Since the left most and the right most boundaries of the
reference CNV can be identified uniquely, we can find out the total number
of reads having mapping positions in this region. As we showed before, the
reads are generated with a Poisson distribution with respect to the length
of the region l and the coverage ratio c. Given the total number of reads
d having mapping positions in the reference CNV region, we have shown
d ≈ (fl+o)c

length(read) where f is the copy-counts, o is the sum of the number of
mapping positions out of the reference CNV region for all length(read)-mer
in the reference CNV region. Therefore, we can consequently estimate the
length of the donor CNV region as fl ≈ d×length(read)

c -o. We can also estimate
the copy-counts according to the process we described in the previous section

using the formula e−λ(fl+o)×(λ(fl+o))d

d! . The number of mapping positions needs
to be selected are then determined by the copy-counts. The problem of
selecting the correct mapping positions is formalized with the following:

Problem 1. Given an estimate length l of the donor CNV, the position of the
left most boundary b and the position of the right most boundary e, the copy-
counts f , a set of n candidate junctions J =[e1|b1,e2|b2,...,en|bn],
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select f -1 junctions F =[ei1 |bi1 ,ei2 |bi2 ,...,eif −1 |bif −1 ] from
the set J such that ||Length(F,b,e)−l|| is minimized, where
Length(F,b,e)= (ei1 −b)+(ei2 −bi1 )+···+(eif −1 −bif −2 )+(e−bif −1 )=
(ei1 −b)+∑f −1

j=2 (eij −bij−1 )+(e−bif −1 ).

A naive algorithm requires full enumeration of all the possible f −1
junctions from the set J , whose complexity is O

( n
f −1

)
. Given n is usually

as big as a few hundred to thousand, this complexity becomes too expensive
to reconstruct a single CNV even for small f . Therefore, we design the
following branch and bound algorithm to alleviate the expensive computation
for solving the above problem.

We consider the junctions as nodes in a search tree. We randomly select
a junction and then select one more junction at each step in a depth-
first search manner. For any set of selected junctions, we derive an upper
bound as well as a lower bound for Length(F, b, e) which we show are
not dependent on the order of the junctions. The two bounds are updated
at each step of the search process. Based on these two bounds, a lower
bound for the function ||Length(F,b,e)−l|| is derived. A standard branch
and bound algorithm is then applied to efficiently select the optimal set of
junctions. Once a set of f −1 junctions are selected, or we reach a leaf node
of the search tree, the upper bound of search tree is updated as the value of
||Length(F,b,e)−l|| which is then used to prune branches of the search tree.
The upper bound is updated once a new leaf node is reached and a lower
value of ||Length(F,b,e)−l|| is obtained. The algorithm stops till there is no
more branch to be explored. We next prove a set of lemmas used to design
the branch and bound algorithm.

Given a set F =[ei1 |bi1 ,ei2 |bi2 ,...,eif −1 |bif −1 ], an order of junctions in
F is [ej1 |bj1 ,ej2 |bj2 ,...,ejf −1 |bjf −1 ] such that there is an one-to-one mapping
from jh to it for h,t ∈{1,...,f −1} and jh,it can be different. We call jh
an order index for the corresponding junction. The order of the junctions
indicates the order of the copies of donor CNV and there are totally
(f −1)! different orders. We first show an important property of the function
Length(F,b,e) with respect to the order of the junctions.

Lemma 1. The order of junctions in F does not affect Length(F,b,e).

Proof. Since one order of junctions can be converted to any other different
orders by continuously swapping the order index of two junctions each time,
we just need to show this swapping operation does not change Length(F,b,e).
Assume we have one order F =[...,ei|bi,...,ej|bj,...] and another order F ′ =
[...,ej|bj,...,ei|bi,...], where the only difference between F and F ′ is that
the order index of ei|bi and ej|bj is swapped. Then assume F contains totally
n junctions:

Length(F ′,b,e) = (e1 −b)

+
i−1∑

m=2

(em −bm−1)+(ej −bi−1)+(ei+1 −bj)

+
j−1∑

m=i+1

(em −bm−1)+(ei −bj−1)+(ej+1 −bi)

+
n∑

m=j+1

(em −bm−1)+(e−bn)

= (e1 −b)

+
i−1∑

m=2

(em −bm−1)+(ei −bi−1)+(ei+1 −bi)

+
j−1∑

m=i+1

(em −bm−1)+(ej −bj−1)+(ej+1 −bj)

+
n∑

m=j+1

(em −bm−1)+(e−bn)

= (e1 −b)+
n∑

m=2

(em −bm−1)+(e−bn)

= Length(F,b,e)

Therefore, the order of junctions in F does not affect
Length(F,b,e).

We next show that we can derive an upper bound as well as a lower bound
for Length(F,b,e) given any subset junctions of F.

Lemma 2. The upper bound of Length(F,b,e) is (e1 −b)+∑k
m=2(em −

bm−1)+(e−bk)+(n−k)(e−b) given the size of F is n, a subset of selected
junctions as F ′ =[e1|b1,e2|b2,...,ek |bk], where k ≤n.

Proof. We prove this lemma by induction. When the subset is of size 1,
assume F ′ =[e1|b1], then we need to select n−1 more junctions.

Length(F,b,e) = (e1 −b)+
n∑

m=2

(em −bm−1)+(e−bn)

= (e1 −b)+(e−b1)+
n∑

m=2

(em −bm)

≤ (e1 −b)+(e−b1)+
n∑

m=2

(e−b)

= (e1 −b)+(e−b1)+(n−1)(e−b)

Similarly, when the subset is of size k, assume F ′ =[e1|b1,e2|b2,...,ek |bk],
we have

Length(F,b,e)≤ (e1 −b) +
k∑

m=2

(em −bm−1)+(e−bk)

+ (n−k)(e−b)

The same idea can be applied to derive the lower bound of Length(F,b,e).

Lemma 3. The lower bound of Length(F,b,e) is (e1 −b)+∑k
m=2(em −

bm−1)+(e−bk) given the size of F is n, and a subset of selected junctions
as F ′ =[e1|b1,e2|b2,...,ek |bk], where k ≤n.

Proof. The proof is done by induction and is similar to that of Lemma 2.
We omit the proof here.

Similarly, when the subset is of size k, assume F ′ =
[e1|b1,e2|b2,...,ek |bk], we have

Length(F,b,e)≥ (e1 −b)+
k∑

m=2

(em −bm−1)+(e−bk)

Given the upper bound up and the lower bound lo of Length(F,b,e), we
can compute a lower bound δ′ for δ=||Length(F,b,e)− l|| as the following:
(i) if lo ≤ l≤ up, δ′ =0. (ii) If l≤ lo, δ′ = lo−l. (iii) If l≥up, δ′ = l−up.
Therefore, we can apply the standard branch and bound algorithm to select
the set of junctions which minimize δ. Our experiments show later that this
branch and bound algorithm is much more efficient than the naive algorithm.

The above algorithm is able to select an optimal set of junctions to
minimize the objective function ||Length(F,b,e)− l||. However, this does
not guarantee the selected junctions are the true junctions. This is because
the estimated length is very close but usually not exactly the same as the
true CNV length, since the estimated length is based on a limited amount
of reads generated from the reference CNV region. Also the false positive
positions of the donor junctions maybe selected by the above process, if some
combination of them leads to the minimum difference between the estimated
length and the reconstructed CNV length. Our experiments on simulated data
show that on general the above process works pretty well even with these
two limitations.
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In Problem 1, Length(F,b,e) is the length of the donor CNV based on our
assumption b1 =b and ef =e. Without this assumption, we can use discordant
reads to identify the mapping positions for the left most junction containing
b1 and the right most junction containing ef between the donor CNV and
the genome. Then we can include these mapping positions in the candidate
junction set J . All of the above lemmas and algorithms can be easily adapted
to handle this more general problem. Due to space limit, we do not show the
generalization of the above algorithm.

2.3.3 The whole reference CNV is in the repeat region When the left
most boundary and the right most boundary of the reference CNV also have
multiple mapping positions in the reference genome, the algorithm discussed
in the previous section cannot be applied directly. This is because we cannot
estimate the length of the donor CNV without knowing the true boundaries
of the region. Therefore, we need to first identify the true boundaries of the
reference CNV.

Unfortunately, we are not able to uniquely identify the true boundaries
since they are mapped to multiple places in the reference genome. Therefore,
the best we can do is to find a pair of mapping positions for the left
most and right most boundaries and a copy-count value such that the
reconstructed CNV has length closest to the estimated length, which is again
d×length(read)

c -o. Assuming the left most boundary is mapped to n positions
in the reference genome, while the right most boundary is mapped to m
positions in the reference genome, the problem can be formalized with the
following:

Problem 2. Given the set of mapping positions for the left most boundary
B={b1,b2,...,bn}, where b1 <b2 < ···<bn, and the set of mapping positions
for the right most boundary E ={e1,e2,...,em}, where e1 <e2 < ···<em,
select a pair (bi,ej) and a copy-counts f such that Dist(B,E,f ,L,bi,ej)=
||(f −1)×(ej −bi)+(em −b1)−L|| is minimized for all 1≤ i≤n, 1≤ j≤m
and f ≥2, where L is the estimated length of the donor CNV.

We need to check all O(n×m) pairs to find the pair (bi,ej) minimizing
Dist(B,E,f ,L,bi,ej). A naive method requires checking all O(n×m) pairs
and testing many u≥2 for each pair until the best copy-counts is found. But
in reality, most of these searches can be pruned.

We next design a more efficient algorithm. We try to select the length of
the CNV, determined by the two boundaries, as well as the copy-counts at
the same time. The selection process can be terminated a lot faster, based
on our observation that to minimize Dist(B,E,f ,L,bi,ej), the copy-counts
needs to remain the same or decrease when the length of the CNV increases.
Therefore, we start our search from short CNV to long CNV, and decrease
the copy-counts continuously until the copy-counts is less than 2, which is
the stop criterion of the search process.

The algorithm works with the following lemma:

Lemma 4. Given a pair (bi,ej), f =argminf Dist(B,E,f ,L,bi,ej) and
a pair (b′

i,e
′
j), f ′ =argminf Dist(B,E,f ,L,b′

i,e
′
j) and ej −bi ≤e′

j −b′
i ,

Dist(B,E,f ′,L,b′
i,e

′
j)≤Dist(B,E,f ,L,bi,ej), we must have f ′ ≤ f .

Proof. We prove the lemma by contradiction. For the pair (bi,ej) and f =
argminf Dist(B,E,f ,L,bi,ej), there are two cases:

(1) f is the minimum copy-counts such that (f −1)×(ej −bi)+
(em −b1)≥L. Then Dist(B,E,f ,L,bi,ej)= (f −1)×(ej −bi)+
(em −b1)−L. Now assume f ′ > f , given ej −bi ≤e′

j −b′
i, we

have Dist(B,E,f ′,L,b′
i,e

′
j)= (f ′ −1)×(e′

j −b′
i)+(em −b1)−L>

(f −1)×(ej −bi)+(em −b1)−L=Dist(B,E,f ,L,bi,ej), which is
contradicted with Dist(B,E,f ,L,b′

i,e
′
j)≤Dist(B,E,f ,L,bi,ej).

Therefore, we can only have f ′ ≤ f .

(2) f is the maximal copy-counts such that (f −1)×(ej −bi)+
(em −b1)≤L. Then we must have f ×(ej −bi)+(em −b1)>L.
Since f =argminf Dist(B,E,f ,L,bi,ej), we must also
have Dist(B,E,f ,L,bi,ej)≤Dist(B,E,f +1,L,bi,ej). Given
ej −bi ≤e′

j −b′
i, we have f ×(e′

j −b′
i)+(em −b1)≥ f ×(ej −

bi)+(em −b1)≥L. Therefore, Dist(B,E,f +1,L,b′
i,e

′
j)≥

Dist(B,E,f +1,L,bi,ej)≥Dist(B,E,f ,L,bi,ej). Now assume
f ′ > f , namely f ′ ≥ f +1, we have Dist(B,E,f ′,L,b′

i,e
′
j)≥

Dist(B,E,f +1,L,b′
i,e

′
j)≥Dist(B,E,f ,L,bi,ej) which is contradicted

with Dist(B,E,f ′,L,b′
i,e

′
j)≤Dist(B,E,f ,L,bi,ej). Therefore, we can

only have f ′ ≤ f .

The above lemma suggests that we can first identify a minimum
overlapping region, which is the region that does not contain any subregion.
For example, for b1 <e1 <b2 <e2, the minimum overlapping regions are
[b1,e1] and [b2,e2]. [b1,e2] is not a minimum overlapping region since it
contains a subregion [b1,e1]. Since the region is actually a 1D interval,
this can be done easily by finding the biggest bi for each ej such that
bi <ej and the minimum overlapping regions are all such (bi,ej)’s for each
ej . Then we can expand the regions in both directions to bigger regions.
During the expansion process, the best copy-counts for each region can only
remain the same or decrease. Once the copy-counts drop to below 2, we can
stop the expansion. Since there are multiple minimum overlapping regions,
we can start with the shortest one and we repeat the expansion process
from each minimum overlapping region until we have checked all O(n×m)
regions.

Once we find a pair (bi,ej) and a copy-count f such that
Dist(B,E,f ,L,bi,ej) is minimized, we can apply the branch and bound
algorithm discussed in the previous section to identify all the internal
junctions.

2.4 Reconstruction of CNVs
As shown in Lemma 1, the order of junctions does not affect the length
of the donor CNV. Therefore, for a given set of junctions minimizing
Length(F,b,e), we cannot determine their true orders in the donor CNV
since all these orders are equally likely given the reads generated from the
donor CNV. To reconstruct the donor CNV, we can simply select a random
order of these junctions which leads to a corresponding reconstructed donor
CNV.

3 EXPERIMENTAL RESULTS

3.1 Experiments on mouse genome
In this part of the article, we will illustrate the power of our method
on real data. We used the data published by Sudbery et al. (2008)
where they sequenced the chromosome 17 of A/J mouse strain
(95 Mb), using the Illumina technology (Sudbery et al., 2008).
Chromosome 17 is biologically interesting for two main reasons.
First, mouse major compatibility complex (MHC) resides on this
chromosome (Ohtsuka et al., 2008). Second, murine t-complex also
resides in chromosome 17 which in some wild-derived strains is
responsible for transmission ration disorder (Bauer et al., 2005).
There are totally 56 019 759 paired-end reads sequenced and each
segment of the paired-end read is 36 bp long which makes the
data has 22× coverage. The average insert length of the paired-
end reads is around 120 bp. Due to the fact, we need all possible
mapping locations [as indicated in previous studies (Alkan et al.,
2009; Hormozdiari et al., 2009; Lee et al., 2009; Medvedev et al.,
2009, 2010) for detecting CNV and SV, it is essential to use all the
possible mapping positions] for each read, we map the reads using
mrFAST (Alkan et al., 2009; Hach et al., 2010). In the mapping,
we used the C57BL/6J (NCBI m37) as the reference to map the
reads. The threshold of read mapping was set to e≤2 edit distance
(allowing reads mapped with up to two mismatches and indels) in
which reads will map to locations with sequence similarity higher
than 94% (in all previous studies dealing with 36 bp Illumina short
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Region 1 Region 2 Region 3 Region 4 Region 5
No.of unmapped reads 19.5 23 31 22 12

Copy-counts 3 2 4 2 2

Fig. 2. Averaged number of unmapped reads supporting the breakpoints in
each of the five regions and their corresponding copy-counts.

reads, threshold of two mismatches is used). Lots of reads have
multiple mapping positions and there are totally more than 8 billion
mapping positions for these reads.

By using the discordant reads, we identify candidate regions for
CNVs of category two and three. In this work, for simplicity, we
limit the length of the region within the range of (1–10 kb). When
we cluster the discordant reads, we require two adjacent reads in
the same cluster overlap with each other. We also require the insert
length for a paired-end read after being mapped to the reference
sequence be greater than 500 bp to be considered as discordant such
that each copy is long enough. We only use clusters of reads with
size greater than 7 to identify the candidate CNV regions. There
381 candidate regions for CNVs of category two, where the left
most and the right most boundaries are determined by clusters of
reads with unique mapping positions. We estimate the copy-counts
of these regions using the modified Poisson likelihood function and
we identify a total of five regions with copy-counts not less than
2. One of these regions overlaps with the CNV regions reported by
Sudbery et al. (2008), and four of them are new regions.

To further validate the four new regions, we apply our algorithm
to reconstruct the CNVs. To our knowledge, there is no annotation
of existing CNVs in repeat-rich regions, and we are not able to
evaluate the accuracy of the reconstruction directly from any known
literature. Therefore, we validate our reconstruction using unmapped
reads, which are reads that do not map to the reference sequence,
mainly due to two reasons: (i) the reads contain sequencing errors;
(ii) the reads span the breakpoints of some structural variations.
We say an unmapped read supports a breakpoint if it spans the
breakpoint. To check if an unmapped read spans a breakpoint, similar
to the work in He et al. (2010), we split the unmapped read into
two substrings, and map both substrings to the two sides of the
breakpoints. If both substrings match the corresponding side of
the breakpoint, we say the unmapped read supports the breakpoint.
However, the reconstructed breakpoints may be a little bit off from
the true breakpoint due to the effects of reads mapping, clustering
of the discordant reads, etc. Therefore, we also check a 200 bp
neighborhood of the breakpoints. If the two split substrings of an
unmapped read maps to the neighborhood, we still consider the read
supports the breakpoint. Then for each reconstructed breakpoint,
we check the number of unmapped reads supporting it. Given the
coverage as 22 times, the expected number of reads spanning any
position in the genome, including breakpoints, is 22. In Figure 2,
we show the averaged number of unmapped reads supporting the
breakpoints in each of the five regions and their corresponding
copy-counts. As we can see, for most of the regions, the number
of unmapped reads supporting the breakpoints is very close to the
expected number 22, indicating that these regions and breakpoints
are highly possible to be true. To further evaluate the performance
of our reconstruction algorithms, we next conducted experiments on
simulated sequences.

10000bp 5000bp 2500bp
Total mapping positions 1307 267 77

BB run time (s) 19 1.48 0.07
BB searched orders 69260 22083 6120
Full searched orders 371259885 3136805 73150

BB/full (%) 0.019 0.7 8.4

Fig. 3. The efficiency evaluation of the branch and bound algorithm (BB)
versus the full enumeration of all possible orders for reference CNV of
different length. All the results are averaged on 10 experiments.

3.2 Experiments on simulated sequences
As mentioned earlier, to our knowledge, there is no annotation of
exact internal junctions of existing CNVs in repeat-rich regions, so
to illustrate the performance of the algorithms we proposed, we also
test our methods on simulated genome sequences. We conduct a set
of experiments for each of the three cases with respect to different
parameter. We first randomly generate a genome sequence which
does not contain any long repeats. Then we insert CNVs at random
positions in the simulated sequence. For case one, the reference
CNV regions, prefixes and suffixes of the donor CNV copies as
well as copy-counts are randomly generated. For case two, where
the middle area of the reference CNV region contains repeats, we
first randomly select the reference CNV region. Next, we randomly
sample pre-masked repeat sequences from the RepeatMasker web
site (RepeatMasker, 2010) and insert these repeat sequences multiple
times into the reference CNV region, avoiding the left most and
right most boundaries. Finally, the prefixes and suffixes of the donor
CNV copies are randomly generated. This process guarantees that
the left most and right most boundaries of the reference CNV can
be identified uniquely, while the internal junctions may fall within
the repeat region. For case three, the simulation process is almost
identical to the one for case two, with the only difference being
that we insert repeats first and then randomly generate CNVs within
repeat regions. For all experiments, we set the coverage ratio to 40
times, read length to 36 bp and insert length within the range of
90–100 bp. We do not compare our method with any other existing
CNV detection methods using HTS technologies since none of them
is able to handle CNVs in repeat-rich regions and also none of them
is publicly available.

Since for category one, we are always able to identify the internal
junctions uniquely, we do not show the experimental results here.

3.2.1 Middle area of the reference CNV is in the repeat region
For the category two experiments, we construct repeat-rich regions
by duplicating a repeat sequence, which is randomly sampled from
RepeatMasker, eight times, which is able to introduce enough
complexes on the repeat structures. We set the copy-counts to 4
so that the number of mapping positions for each internal junction
will be large. The above parameters are chosen just to make sure the
problem is hard enough to show the advantage of our algorithm
over the naive algorithm. Then we evaluate the performance of
our branch and bound algorithm with respect to the length of the
reference CNV region. The longer the reference CNV is, the more
mapping positions the CNV is expected to have and the harder the
reconstruction problem is. We vary the length of the reference CNV
region as 10 000, 5000 and 2500 bp. The experimental results are
shown in Figures 3 and 4. For each reference CNV length, we show
the averaged results of our algorithm on 10 experiments.

1518



[15:01 16/5/2011 Bioinformatics-btr169.tex] Page: 1519 1513–1520

Efficient algorithms for tandem CNV

10000bp 5000bp 2500bp
Accuracy (%) 62.5 94 100

Estimated average distance (starting position) 78 35 10
All-position average distance (starting position) 6179 3033 1569

Estimated average distance (ending position) 520 212 44
All-position average distance (ending position) 5489 2788 1318

Fig. 4. The accuracy evaluation of the branch and bound algorithm for
reference CNV of different length. All the results are averaged on 10
experiments.

In Figure 3, we illustrate the efficiency of our branch and bound
algorithm. We first show the total number of mapping positions for
the internal junctions. As we can see, as the size of the reference
CNV increases, the number of mapping positions increases and the
Problem 1 becomes more difficult. We also show the number of
orders searched by our branch and bound algorithm and by the full
enumeration and their ratio. The branch and bound algorithm has
significant advantages over the full enumeration, especially for the
length 10 000 bp case, where our branch and bound algorithm only
searches 0.019% of the orders of the full enumeration. Given this
dramatic advantage, our algorithm has very short run times for all
cases, while the run times of full enumeration are too long so we do
not show them here.

In Figure 4, we show our algorithm is not only efficient but also
accurate. We compare the estimated internal junctions with the true
internal junctions. If the difference is <100 bp, which is the maximal
insert length we use in our experiments, we consider the estimation
as accurate. As we can see, with relatively short reference CNVs,
our estimations are very accurate, especially for reference CNVs of
size 2500 bp. This is because the number of mapping positions is
small for short reference CNV regions, as shown in Figure 3, and
for short reference CNV regions, the mapping positions tend to be
close to each other. For cases where our algorithm makes incorrect
estimations, we show that these estimations are still much better than
random guesses. To illustrate this, we show the averaged distances
between our estimated internal junctions and the true internal
junctions, and the averaged distances between all possible mapping
positions and the true internal junctions, which can be considered as
the distance of random sampled positions. We measure the distance
between the starting positions and the ending position separately and
these distances are rounded into integers. As illustrated in Figure 4,
the distances of our estimated junctions are only 1% of the distances
of the random samples. Therefore, even though our algorithm may
fail to estimate the true internal junctions, the estimations are still
very close to the true junctions.

We also test our algorithm for other parameter settings, such as
different copy-counts, different repeat sequence duplication times,
etc., and we obtain similar results. Due to space limit, we do not
show the results for other parameter settings.

3.2.2 The whole reference CNV is in the repeat region For the
experiments on category three, we evaluate the performance of our
pruning strategy with respect to the similar parameters as those for
case two. In this experiment, we set the reference CNV length as
10 000 bp, the copy-counts as 4, and we vary the times we duplicate
the repeat sequence sampled from RepeatMasker to create different
levels of repeat-richness. We vary the repeat sequence duplication
time as 1, 5, 10, 20, 30. The more times the sequence is duplicated,

1 5 10 20 30
No.of Searches with pruning 23 2302 2620 10054 14779
No.of Searches without pruning 23 54764 188674 2604390 3478259

No.of Searches w/ pruning

No.of Searches w/o pruning 100% 4.2% 1.4% 0.39% 0.42%
Run time w/ pruning (s) 0 0 0 0 0

Run time

w/o pruning (s) 0 1 2 48.5 83
Estimated average distance 573 4515 3676 4115 4665

Random sampled average distance 446 22394 30376 69908 103064
Estimated copy-counts 4 4 4 4 4

Randomly sampled

copy-counts 1 1.03 1.3 1.6 1.7

Fig. 5. The performance evaluation of the pruning algorithm for reference
CNV of length 10 000 bp, copy-counts 4 and the repeat sequence duplication
time as 1, 5, 10, 20, 30. All the results are averaged on 10 experiments. The
numbers are all rounded.

the more mapping positions the CNV is expected to have and thus
the harder the problem is. In order to avoid noise, we only search
for CNV regions above certain length threshold. This is because if
we allow searching for short CNV regions, the short CNV regions
tend to dominate the search since they are more likely to minimize
the function defined in Problem 2. The most extreme case is when
a CNV region is of length 1, the function will always be minimized
by this CNV. Therefore, we use a relatively large threshold 8000 bp.
This indicates that if we roughly know the length of the CNVs, our
algorithm has better chance to identify them. Also we only insert one
CNV for each repeat-rich region, which contains all duplications for
the same repeat sequence. The experimental results are shown in
Figure 5. All the results are averaged on 10 experiments.

We compare the number of searches by the pruning and non-
pruning algorithm. As we can see, as the repeat-richness increases,
the advantage of the pruning algorithm over the non-pruning
algorithm becomes more significant. When we duplicate the repeat
sequence 20 and 30 times, the pruning algorithm only makes
<0.5% of the searches made by the non-pruning algorithm. As a
consequence, the run time of the pruning algorithm is always <0.5
s while the run time of the non-pruning algorithm increases sharply
as the repeat-richness increases. Again, to evaluate the accuracy
of our method, we compare the distance between the estimated
pair of boundaries to the true pair of boundaries. We compare this
distance with the average distance of all pairs of positions satisfying
the length threshold, which can be considered as the distance of
randomly sampled pairs of boundaries. Our estimation is not very
accurate, compared to the internal junction estimation for category
two. But it is still a lot better than randomly sampled boundaries.
Also our method is able to estimate the copy-counts always correctly
while the copy-counts estimation from the randomly sampled pairs
is almost always wrong.

4 DISCUSSION AND FUTURE WORK
In this study, we proposed an efficient branch and bound algorithm
as well as a pruning strategy to identify and reconstruct tandem
CNVs in repeat-rich regions. To our knowledge, our method is
the first attempt to recover CNVs in repeat-rich regions. Our
experiments show that our method is not only efficient but also
accurate. However, there is still lots of room to improve, for example,
when there are multiple CNVs in the same repeat-rich region, the
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estimation of the CNV length becomes much more complicated,
especially when CNVs overlap with each other. It is not clear that
whether the CNVs can be identified and reconstructed for these more
complicated cases. But our article proposed a framework that shed
light on the possible solutions for the more complicated cases.
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