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ABSTRACT

Motivation: Identification of somatic DNA copy number alterations
(CNAs) and significant consensus events (SCEs) in cancer genomes
is a main task in discovering potential cancer-driving genes such
as oncogenes and tumor suppressors. The recent development
of SNP array technology has facilitated studies on copy number
changes at a genome-wide scale with high resolution. However,
existing copy number analysis methods are oblivious to normal
cell contamination and cannot distinguish between contributions
of cancerous and normal cells to the measured copy number
signals. This contamination could significantly confound downstream
analysis of CNAs and affect the power to detect SCEs in clinical
samples.
Results: We report here a statistically principled in silico approach,
Bayesian Analysis of COpy number Mixtures (BACOM), to accurately
estimate genomic deletion type and normal tissue contamination,
and accordingly recover the true copy number profile in cancer
cells. We tested the proposed method on two simulated datasets,
two prostate cancer datasets and The Cancer Genome Atlas
high-grade ovarian dataset, and obtained very promising results
supported by the ground truth and biological plausibility. Moreover,
based on a large number of comparative simulation studies, the
proposed method gives significantly improved power to detect SCEs
after in silico correction of normal tissue contamination. We develop
a cross-platform open-source Java application that implements the
whole pipeline of copy number analysis of heterogeneous cancer
tissues including relevant processing steps. We also provide an R
interface, bacomR, for running BACOM within the R environment,
making it straightforward to include in existing data pipelines.
Availability: The cross-platform, stand-alone Java application,
BACOM, the R interface, bacomR, all source code and the simulation
data used in this article are freely available at authors’ web site:
http://www.cbil.ece.vt.edu/software.htm.
Contact: yuewang@vt.edu
Supplementary Information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
DNA copy number change is an important form of structural
variation in the human genome. Somatic copy number alterations
(CNAs) are key genetic events in the development and progression
of human cancers, and frequently contribute to tumorigenesis
(Pollack et al., 2002). The coverage of copy number changes varies
from a few hundred to several million nucleotide bases, and somatic
CNAs in tumors exhibit highly complex patterns. The advance of
oligonucleotide-based single nucleotide polymorphism (SNP) arrays
provides a high-density and allelic-specific genomic profile and
enables researchers to study copy number changes on a genome-
wide scale. For instance, Affymetrix offers several DNA analysis
arrays for SNP genotyping and copy number variation (CNV)
analysis, and the newest Affymetrix Genome-Wide Human SNP
Array 6.0 features 1.8 million genetic markers, including more than
906 600 SNPs and more than 946 000 probes for detecting CNVs or
CNAs.

Quantitative analysis of somatic CNAs has found broad
application in cancer research. Although molecular analysis of
tumors in their native tissue environment provides the most accurate
picture of their in vivo state, tissue samples often consist of mixed
cancer and normal cells, and accordingly, the observed SNP intensity
signals are the weighted sum of the copy numbers contributed
from both cancer and normal cells. This tissue heterogeneity
inherited in the measured copy number signals could significantly
confound subsequent marker identification and molecular diagnosis
rooted in cancer cells, e.g. true copy number estimation, consensus
region detection, CNA association studies and detection of loss of
heterozygosity and homozygous deletion. Experimental methods for
minimizing normal cell contamination, such as cell enrichment or
purification, are prohibitively expensive, inconvenient and prone to
errors (Clarke et al., 2008).

Here we ask whether it is possible to computationally correct
normal tissue contamination by estimating the proportions of normal
and cancer cells and recovering the true copy number profiles of
cancer cells, based on the observed SNP intensity signals from
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cell mixtures. Albeit with limited success, some initial efforts
have been recently made to address the impact of normal tissue
contamination in copy number analysis (Assie et al., 2008; Lamy
et al., 2007; Nancarrow et al., 2007; Peiffer et al., 2006) or to
estimate the fraction of normal cells in tumor samples (Goransson
et al., 2009; Yamamoto et al., 2007). Nancarrow et al. (2007)
developed a visual inspection toolkit that allows users to determine
the presence of stromal contamination. Yamamoto et al. (2007) and
Goransson et al. (2009) proposed computational methods to estimate
the proportion of normal cells by matching to the experimental or
simulated histograms of different mixtures. However, given the fact
that the noise level in the raw copy number data is often quite high
and varies from sample to sample, neither visual inspection nor
simulated histogram matching will be able to produce an accurate
and stable estimate of the fraction of normal cells in the tumor
sample. An additional limitation associated with these methods
is the lack of rigorous statistical principles in driving algorithm
development.

In this study, we report a statistically principled in silico
approach to accurately detect genomic deletion type, estimate
normal tissue contamination and accordingly recover the true copy
number profile in cancer cells. By exploiting the allele-specific
information provided by SNP arrays, we introduce a series of
definitions and theorems to illustrate the detectability and its
conditions, and propose a Bayesian Analysis of COpy number
Mixtures (BACOM) method. The BACOM algorithm is based on
a statistical mixture model for copy number deletion segments
in heterogeneous tumor samples, whose parameters are estimated
using Bayesian differentiation between hemizygous deletion (hemi-
deletion, where one allele is absent) and homozygous deletion
(homo-deletion, where both alleles are absent) and plug-in sample
averaging. Subsequently, the weighted average of estimated normal
tissue fraction coefficients across multiple segments is used to
estimate the true copy numbers rooted in cancer cells across all
loci on the genome. As shown in the Section 4, this method not only
produces cancer-specific copy number profiles but also substantially
improves significant consensus events (SCEs) detection power.

To better serve the research community, we have developed
a cross-platform Java application, which implements the whole
pipeline of copy number analysis of heterogeneous cancer tissues.
The BACOM software instantiates the algorithms described in this
report and other necessary processing steps. To take advantage of
many widely used packages in R to perform DNA copy number
analysis and R’s powerful and versatile visualization capabilities, we
also provide an R interface, bacomR, that enables users to smoothly
incorporate BACOM into their specific copy number analysis or
to integrate BACOM with other R or Bioconductor packages. We
expect this newly developed software to be a useful tool in routine
copy number analysis of heterogeneous tissues.

2 THEORY AND METHOD
We first discuss a deletion-focused latent variable model for the copy
number signal in heterogeneous tumor samples. Then, we propose a Bayesian
approach to statistically characterize distinctive copy number signals due
to homo-deletion or hemi-deletion, supported by a novel summary statistic
derived from allele-specific information. Next, we estimate the fraction of
normal cells in the sample based on the deletion type-specific segments,
and subsequently recover the cancer-specific DNA copy number profile.

Fig. 1. The flow chart of BACOM.

Figure 1 gives the flowchart of BACOM consisting of three major steps:
(i) inference of deletion types, (ii) estimation of the normal tissue fraction
and (iii) recovery of the copy number profile in cancer cells.

2.1 Copy number signal model
Supplementary Figure S17 shows SNP array intensity signals that serve as
the raw data to study copy number changes, where observed non-integer
copy numbers suggest the presence of normal cells in the tumor sample.
In heterogeneous tumor samples, the measured array intensity is a mixture
of DNA copy number signals from both normal and cancer cells, given
mathematically by

Xi =α×Xnormal,i +(1−α)×Xcancer,i. (1)

where Xi is the observed DNAcopy number signal at locus i, α is the unknown
fraction of normal cell subpopulation in the sample and Xnormal,i and Xcancer,i

are the unknown latent DNA copy number signals in normal and cancer cells
at locus i, respectively. It should be noted that, in model (1), we have chosen
not to consider CNVs in normal cells, because these are much rarer than
CNAs in cancer cells.
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Since human somatic cells are diploid, the expected DNA copy number
at locus i in normal cells is two, i.e. E[Xnormal,i]=2. In contrast, if there
is a homo-deletion or hemi-deletion at locus i in cancer cells, then the
expected DNA copy number becomes zero or one, i.e. E[Xcancer,i]=0 or 1.
By focusing on deletion-only CNA loci and taking the expectations on both
sides of Equation (1), we have

{
E[Xi]=α×2+(1−α)×0=2α, if homo-deletion,
E[Xi]=α×2+(1−α)×1=1+α, if hemi-deletion.

(2)

Equation (2) indicates that, as a function of normal cell fraction α, the
expected copy number at a deletion locus depends on the deletion type and
is distinctive except when α=1. Inspired by this observation, we propose
to explore a statistically principled solution (detectability): if a Bayesian
hypothesis test can be constructed to differentiate between homo-deletion
and hemi-deletion segments based on allele-specific signals, we could, in
principle, estimate α by the sample average over the deletion segments.

2.2 Inference of deletion type
Affymetrix SNP chips provide both allele-specific signals (A allele and B
allele) and their summed intensity (observed DNA copy number signal).
If we denote the signals of alleles A and B at locus i by XA,i and XB,i,
respectively, then the observed DNA copy number signal Xi in model (1)
can be rewritten as

Xi =XA,i +XB,i. (3)

To fully exploit allele-specific information readily provided by the SNP
arrays and associated genotype calling algorithms, our method will focus
solely on AB genotype (not considering AA or BB genotypes). For a length-
L homo/hemi-deletion segment {Xi|i=1,2,··· ,L}, we make the following
realistic assumption on the allele-specific signals.

Assumption 1. For a length-L homo/hemi-deletion segment {Xi|i=
1,2,··· ,L}, each of the allele-specific signals XA,i and XB,i are independently
distributed Gaussian random variables with distinct means but common
variance, σ2, for i=1,2,··· ,L.

It should be noted that XA,i and XB,i are not statistically independent
but, rather often correlated, referred to as the cross-talk between alleles A
and B (Bengtsson et al., 2008). Thus, under Assumption 1, the observed
copy number signals Xi are independent and identically distributed random
variables following a normal distribution N(µA+B,σ2

A+B) whose mean µA+B

and variance σ2
A+B can be readily estimated by using the observed signals Xi

for i=1,2,...,L.
To statistically differentiate between hemi-deletion and homo-deletion,

we define a novel summary statistic, given mathematically by the following
newly defined random variable

Y =σ−2
A−B

L∑
i=1

(XA,i −XB,i)
2, (4)

where σ2
A−B is the variance of XA,i −XB,i. Under Assumption 1, it can be

shown that Y follows either a non-central or a standard χ2 distribution,
depending upon the deletion type. We, therefore, present the following two
lemmas with proofs to show that the key parameter associated with these χ2

distributions can be estimated using signals Xi, XA,i and XB,i.

Lemma 1. Suppose that, within a length-L hemi-deletion segment, each
of the allele-specific signals XA,i and XB,i are independently distributed
Gaussian random variables with distinct means and common variance.
Then, the summary statistic random variable Y defined in (4) follows an L
degrees of freedom non-central χ2 distribution with non-centrality parameter
λ=L(2−µA+B)2σ−2

A+B(1+ρ)/(1−ρ), where ρ is the correlation coefficient
between XA,i and XB,i .

Proof. Applying Equation (1) to the loci within a hemi-deletion segment,
where one of the alleles (but not both) is deleted, we have, for i=1,2,...,L

µA−B =E[XA,i −XB,i]
=E[α×(Xnormal,A,i −Xnormal,B,i)

+(1−α)×(Xcancer,A,i −Xcancer,B,i)]
=α×E[Xnormal,A,i −Xnormal,B,i]

+(1−α)×E[Xcancer,A,i −Xcancer,B,i]
=α×(1−1)±(1−α)×(1−0)

=±(1−α), i=1,2,··· ,L.

While from Equation (2), we have µA+B =E[Xi]=1+α which implies
α=µA+B −1.

Thus, µA−B can be expressed in terms of µA+B as

µA−B =±(1−α)=±[1−(µA+B −1)]=±(2−µA+B).

Furthermore, Assumption 1 implies that

σ2
A+B =2σ2(1+ρ) and σ2

A−B =2σ2(1−ρ).

Although direct estimation of σ2
A−B is a non-trivial task, simple

mathematical manipulation shows that σ2
A−B can be expressed in terms of

σ2
A+B as

σ2
A−B =σ2

A+B(1−ρ)/(1+ρ).

By the definition of the non-centrality parameter λ and Equation (4), we
conclude

λ=
L∑

i=1

(
µA−B,i

σA−B,i

)2

=
L∑

i=1

[±(2−µA+B)]2(1+ρ)

σA+B(1−ρ)

=L(2−µA+B)2σ−2
A+B(1+ρ)/(1−ρ).

Accordingly, the conditional L degrees of freedom non-central χ2

distribution of Y under hemi-deletion is given by

χ2(y;L,λ)=

⎧⎪⎨
⎪⎩

e−(y+λ)/2

2L/2

∞∑
k=0

yL/2+k−1λk

�(k+L/2)22kk! for y>0,

0 for y≤0.

(5)

where � denotes the Gamma function.
Q.E.D.

Lemma 2. Suppose that, within a length-L homo-deletion segment, each
of the allele-specific signals XA,i and XB,i are independently distributed
Gaussian random variables with distinct means and common variance. Then,
the summary statistic random variable Y defined in (4) follows an L degrees
of freedom standard χ2 distribution.

Proof. Applying Equation (1) to the loci within a homo-deletion segment,
where both alleles are deleted, we have, for i=1,2,...,L

µA−B =E[XA,i −XB,i]
=E[α×(Xnormal,A,i −Xnormal,B,i)

+(1−α)×(Xcancer,A,i −Xcancer,B,i)]
=α×E[Xnormal,A,i −Xnormal,B,i]

+(1−α)×E[Xcancer,A,i −Xcancer,B,i]
=α×(1−1)+(1−α)×(0−0)

=0.
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Thus, Equation (4) implies that, under homo-deletion, the summary
statistic random variable Y defined in (4) follows an L degrees of freedom
standard χ2 distribution, given by

χ2(y;L)=
⎧⎨
⎩

1

2L/2�(L/2)
y(L/2)−1e−y/2 for y>0,

0 for y≤0,

(6)

where � denotes the Gamma function.
Q.E.D.

Lemmas 1 and 2 suggest the possibility of constructing a Bayesian
hypothesis testing strategy to differentiate between the two deletion types
(i.e. hemi-deletion and homo-deletion). The novel and powerful feature of
this approach is that the parameter value of the underlying deletion type-
conditioned probability density function can be readily estimated using the
available signals Xi, XA,i and XB,i without the knowledge of the deletion
type associated with Xi, XA,i and XB,i. Furthermore, having determined the
deletion type-conditioned probability density functions, we can then identify
the deletion type of the segment using Bayesian hypothesis testing. The
conclusion is summarized in the following theorem.

Theorem 1 (deletion-type identifiability). Suppose that, within a length-
L deletion segment, each of the allele-specific signals XA,i and XB,i are
independently distributed Gaussian random variables with distinct means
and common variance. Then, the summary statistic random variable Y =
σ−2

A−B

∑L
i=1 (XA,i −XB,i)2 follows an L degrees of freedom χ2 distribution

under homo-deletion, and a non-central L degrees of freedom χ2 distribution
under hemi-deletion, with a parameter that can be estimated based on
signals XA,i and XB,i . Accordingly, the segment deletion type can be optimally
determined by Bayesian hypothesis testing.

Proof. From Lemma 1, the summary statistic random variable Y under
hemi-deletion follows an L degrees of freedom non-central χ2 distribution.
From Lemma 2, the summary statistic random variable Y under homo-
deletion follows an L degrees of freedom standard χ2 distribution. Again,
from Lemma 1, we have

λ=L(2−µA+B)2σ−2
A+B(1+ρ)/(1−ρ)

which can be estimated using readily available signals.
Then, a straightforward application of Bayesian hypothesis testing implies

that the deletion type of the segment can be optimally determined by{
hemi-deletion, if P(hemi-deletion|y)≥P(homo-deletion|y),

homo-deletion, if P(hemi-deletion|y)<P(homo-deletion|y),
(7)

where P(·|·) denotes the posterior probability of the segment deletion type
given the observed segment signals.

Q.E.D.

2.3 Implementation of BACOM algorithm
We now complete the description of the BACOM algorithm by considering
the estimation of the model parameters µA+B, σA+B and ρ. Note that µA+B

and σA+B are segment specific. For each segment, they can be readily
estimated from the observed copy number signals by

µA+B = 1

L

L∑
i=1

Xi, (8)

σ2
A+B = 1

L−1

L∑
i=1

(Xi −µA+B)2. (9)

Moreover, we assume that ρ is identical across all the loci within one
subject profile, and hence we conveniently estimate its value based on only

the signals at the Nnormal loci within all normal segments, as given by

µA =
Nnormal∑

i=1

XA,i, µB =
Nnormal∑

i=1

XB,i, (10)

ρ=
∑Nnormal

i=1 (XA,i −µA)(XB,i −µB)√∑Nnormal
i=1 (XA,i −µA)2

∑Nnormal
i=1 (XB,i −µB)2

. (11)

Having determined the parameters of the deletion-type conditional
models, we can infer the type of each deletion segment by applying Bayesian
hypothesis testing based on (7). Subsequently, we can estimate the fraction of
normal cells in the sample specified by (2), i.e., αj =µj −1 for hemi-deletion
and αj =µj/2 for homo-deletion, where µj is the sample average of the copy
number signals of the j-th deletion segment. Moreover, assume that there are
K deletion segments, we can calculate the ensemble estimate of the normal
cell proportion via segment-length weighted average

α=
∑K

j=1αj ×Lj∑K
j=1 Lj

, (12)

where Lj is the length of the j-th deletion segment.
Finally, the estimated normal cell fraction can be used to recover the true

copy numbers in cancer cells in the sample. Since Xnormal,i =2 and based on
(1), it is straightforward to estimate the DNA copy number of pure cancer
cells by

X̂cancer,i = Xi −2α

1−α
. (13)

3 BACOM SOFTWARE

3.1 Stand-alone Java application
To better serve the research community, we developed a cross-
platform and open-source BACOM Java application, which
implements the entire pipeline of copy number change analysis
for heterogeneous cancer tissues (Supplementary Material). The
BACOM software instantiates not only the novel algorithms
described here but also other relevant processing steps, including
extraction of raw copy number signals from CEL files,
iterative data normalization, identification of AB loci, copy
number detection and segmentation, probe sets annotation,
differentiation of deletion types, estimation of the normal tissue
fraction and correction of normal tissue contamination. Interested
readers can freely download the software and source code at
http://www.cbil.ece.vt.edu/software.htm.

3.2 Running BACOM in R environment
To take advantage of many widely used packages in R and its
associated powerful and versatile visualization capabilities, we
also implemented an R interface, bacomR, that enables users to
smoothly incorporate BACOM into their routine copy number
analysis pipeline or integrate BACOM with other R or Bioconductor
packages. Users can use their preferred methods to perform
routine tasks such as array normalization and DNA copy number
segmentation and estimation, while using the newly added BACOM
to estimate the normal cell fraction and subsequently recover the true
copy number profiles in pure cancer cells.

4 RESULTS

4.1 Simulation studies
We first consider a realistic synthetic dataset from a mixture of
normal and simulated cancer copy number profiles, as shown in
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A B

Fig. 2. The DNA copy number profile and Bayesian analysis of the deletion segment of the simulation dataset 1 when α = 0.7. (A) Copy number profile and
correction results. (B) Bayesian analysis to determine the deletion type of the deletion segment.

Figure 2a. The cancer copy number profile is simulated based on the
real DNA copy number profile of a normal tissue sample assayed
on the Affymetrix Genome-Wide 6.0 SNP array, consisting of
two simulated four-copy amplification segments and one simulated
hemi-deletion segment. The normal and cancer copy number profiles
are numerically mixed based on known proportions to produce the
observed copy number signal. Since there is only one deletion
segment (loci 25k∼30k), it is theoretically impossible to tell the
deletion type by examining the observed copy number signal, given
the fact that the cancer copy number signal has been severely
contaminated by a normal copy number signal. The single deletion
inclusion in this dataset has been chosen in order to illustrate the
unsupervised learning ability of BACOM in determining deletion
types.

To determine the deletion type, we first estimate the posterior
probability models of the summary statistic using allele-specific
signals provided by SNP chips, and plot the observed value of the
summary statistic associated with the deletion segment, shown in
Figure 2b. The plot clearly suggests the hemi-deletion type of the
deletion segment. We then estimate the normal tissue fraction in
the sample based on the sample average of the deletion segment α=
µA+B −1. This leads to an estimate of α=0.692 and the accordingly
corrected cancer copy number profile shown in Figure 2a. The
results show the effectiveness of the BACOM approach in that
the deletion type is correctly determined, the estimated normal
tissue fraction is very close to the true value α=0.7 and the
recovered amplification signals indicate the two expected four-copy
segments.

As an example of a more complex simulation, we consider
a dataset from a mixture of normal and simulated cancer copy
number profiles, as shown in Figure 3a. The cancer copy number
profile includes one homo-deletion, two hemi-deletions and three
different amplification (copy numbers 3, 4 and 5) segments. The
simulated cancer copy number signal, with a total of six altered
copy number segments, not only retains the statistical characteristics
of real SNP array intensity data, but also provides a more complete
picture of copy number alterations and genomic instability in cancer
cells. Once again, the normal and cancer copy number profiles
are numerically mixed based on known proportions to produce the
observed copy number signal. The multiple type-deletion inclusions

in this dataset have been chosen in order to illustrate the consistency
and applicability of BACOM in estimating normal tissue fraction
and cancer-associated copy number alterations.

We first estimate separately the individual normal tissue fractions
αj from one homo-deletion and two hemi-deletion segments,
where the posterior probability models and observed values of the
summary statistic associated with the deletion segments are shown
in Figure 3b. We then use the average value α to recover the
cancer-associated copy number profile, shown in Figure 3a, where
the solid line segments are the recovered cancer-associated copy
number changes. We tested BACOM on six simulation datasets
with different α values, as given in Table 1. The BACOM approach
again achieved very promising results in which the deletion types
are correctly determined, the estimated normal tissue fractions from
different deletion segments are highly consistent, with the average
value very close to the true value and the recovered signals of all six
deletion and amplification segments indicate the expected integer-
valued copy number changes. Table 1 summarizes the experimental
results from all 12 simulated copy number profiles.

4.2 Analysis of real DNA copy number data
To test the applicability of our proposed method, we consider a
real copy number profile for a prostate cancer sample assayed on
the Affymetrix SNP 500K array. We first applied the BACOM
algorithm to estimate the fraction of normal cell population in
the sample, resulting in α=0.784, which indicates significant
normal tissue contamination. We then used the estimated α value
to recover cancer-specific copy number signal by Equation (13).
The resulting corrected copy number profile for Chromosome 10
is shown in Figure 4, where dotted signals are the mixed copy
number signals arising from the tumor sample with blue-colored
regions being the detected deletion segments, green solid lines are
the normal copy number segments and blue solid lines are the
corrected cancer-specific deletion segments. In this experiment, our
analysis readily reveals and distinguishes both deletion types and
their occurred genomic locations. It is worth noting that BACOM
algorithm identified a homo-deletion segment around locus 18 500
in Chromosome 10, that contains the well-known tumor suppressor
gene PTEN.
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B

Fig. 3. The DNA copy number profile and Bayesian analysis of deletion segments of the simulation dataset 2 when α=0.7. (A) Copy number profile and
correction results. (B) Bayesian analysis to determine the deletion types of the three deletion segments.

Table 1. Estimation results on two simulation datasets

Dataset 1 Dataset 2

α α α1 α α1 α1 α3

0.3 0.291 0.291 0.293 0.285 0.286 0.293
0.4 0.391 0.391 0.393 0.385 0.386 0.393
0.5 0.491 0.491 0.493 0.485 0.486 0.493
0.6 0.591 0.591 0.592 0.585 0.585 0.593
0.7 0.693 0.693 0.692 0.691 0.685 0.685
0.8 0.793 0.793 0.792 0.785 0.785 0.793

As an example of a somewhat independent verification, we
applied the BACOM algorithm to the copy number profile of another
prostate cancer sample assayed on the Affymetrix Genome-Wide 6.0
platform (Liu et al., 2009). The estimated fraction of normal cells
in the sample is α=0.691 and the results of similar analyses are
given in Figure 5. Different from the previous example, this copy
number profile contains two amplification segments that are purple
colored. Denoted by red solid lines, the corrected copy numbers
of amplification segments are integer valued, consistent with our
theoretical expectation. This observation serves as a convincing
validation of the proposed method, since the normal cell fraction
α was independently estimated from only deletion segments.

Fig. 4. The DNA copy number profile of Chromosome 10 in a prostate
cancer sample assayed on Affymetrix SNP 500K platform.

To further assess the applicability of BACOM, we report results
on additional 55 prostate samples and The Cancer Genome Atlas
high-grade ovarian cancer dataset, showing a considerable range of
variation in normal cell contamination (36–70%) and co-deletion of
two tumor suppressor genes—TP53 and BRCA1 (Supplementary
Table S2 and Figs S3–S10).

4.3 Impact on detecting significant consensus events
Somatic copy number alterations in genomes underlie almost all
human cancers. One of the systematic efforts to characterize cancer
genomes is to identify significant consensus events (SCEs) from
random background aberrations. To test the utility of our method
to address an important biological question, we applied BACOM
together with genomic identification of significant targets in cancer
(GISTIC) (Beroukhim et al., 2007) to specifically designed copy
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Fig. 5. The DNA copy number profile of Chromosome 17 in a prostate
cancer sample assayed on Affymetrix Genome-Wide 6.0.

A

B

Fig. 6. Acomparison of the power to detect significant consensus events with
and without correction of the normal tissue contamination, along (A) different
false discovery rates (FDRs) and (B) different degrees of contamination.

number simulation datasets. Each sample (3000 loci) contains both
normal copy number and various deletion/amplification segments
(150∼250 loci). The consensus events at certain loci are inserted
into the base profile according to a specified frequency, while random
background aberrations are simulated with randomly assigned length
and loci. Simulation parameters include sample size, consensus
frequency and normal cell fraction. We generated 1000 simulation
datasets for each combinatorial parameter setting, resulting in a total
of 20 000 simulation datasets, each containing 30∼90 samples.

Next, for each of the mixed copy number profiles, we recovered
cancer-specific copy numbers by BACOM. To detect SCEs from
both mixed and deconvolved copy number profiles, we applied
GISTIC, a statistical method that calculates a score that is based on
both the amplitude and frequency of copy number changes at each
position, using a semi-exact approach to determine the significance.
To analyze the impact of correcting normal tissue contamination on
detecting SCEs, we calculated power based on GISTIC outcomes
and ground truth. Comparative experimental results, given in
Figure 6, consistently show significantly improved power using

deconvolved cancer-specific profiles (see more discussion and
results in the Supplementary Material).

5 CONCLUSIONS AND DISCUSSIONS
In this article, we report a statistically principled in silico
approach to estimate copy number deletion types and normal tissue
contamination, and to extract the true copy number profile in cancer
cells. The BACOM algorithm utilizes the allele-specific information
provided by SNP chips to differentiate between hemi-deletion and
homo-deletion and subsequently estimates the fraction of normal
cells in tissues. We tested the proposed method on two simulated
datasets, two prostate cancer datasets and The Cancer Genome Atlas
high-grade ovarian dataset, and obtained highly promising results.
We expect the newly developed BACOM software to be a useful
tool in copy number analysis of heterogeneous tissues.

There are some questions worth further exploration. Specifically,
so far we have focused on normal tissue contamination by assuming
a homogeneous cancer cell population, while in reality, cancer cells
are often clonally heterogeneous leading to cancer subtypes. The
ability to further dissect genomic heterogeneity of cancer cells is
of great interest and will facilitate pathogenesis studies with far-
reaching clinical implications.

In addition to heterogeneity of copy number, more mutations in
cancer cells are expected and may have some unknown implications.
However, since the summary statistic was defined on the whole
deletion segment and the final normal tissue fraction was estimated
using segment-length weighted average over multiple deletion
segments, such mutations will only have negligible effects on the
estimation accuracy as long as the mutations are sporadic compared
with copy number alterations. In our experiments on real datasets,
we have not observed any major effects caused by such mutations.

In relation to earlier work, the use of allele-specific signals is
shared by Goransson et al. for developing a histogram match-
based CNNLOH method (Goransson et al., 2009). Besides high
computational complexity in histogram simulation and matching,
the mechanism for evaluating observed histogram is prone to high
estimation bias and variance as CNNLOH uses truncated, evenly
weighted and coarse histograms in winner-take-all selection among
chromosomes. We have conducted a comprehensive simulation
study to compare the performance of CNNLOH and BACOM.
Experimental results consistently show that BACOM outperforms
CNNLOH in terms of much lower estimation bias and variance,
as well as dramatically reduced computation time (see more
discussions and results in Supplementary Material).
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