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Abstract
In many organisms the expression levels of each gene are controlled by the activation levels of
known “Transcription Factors” (TF). A problem of considerable interest is that of estimating the
“Transcription Regulation Networks” (TRN) relating the TFs and genes. While the expression
levels of genes can be observed, the activation levels of the corresponding TFs are usually
unknown, greatly increasing the difficulty of the problem. Based on previous experimental work,
it is often the case that partial information about the TRN is available. For example, certain TFs
may be known to regulate a given gene or in other cases a connection may be predicted with a
certain probability. In general, the biology of the problem indicates there will be very few
connections between TFs and genes. Several methods have been proposed for estimating TRNs.
However, they all suffer from problems such as unrealistic assumptions about prior knowledge of
the network structure or computational limitations. We propose a new approach that can directly
utilize prior information about the network structure in conjunction with observed gene expression
data to estimate the TRN. Our approach uses L1 penalties on the network to ensure a sparse
structure. This has the advantage of being computationally efficient as well as making many fewer
assumptions about the network structure. We use our methodology to construct the TRN for E.
coli and show that the estimate is biologically sensible and compares favorably with previous
estimates.
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1. Introduction
Recent progress in genomic technology allows scientists to gather vast and detailed
information on DNA sequences, their variability, the timing and modality of their translation
into proteins, and their abundance and interacting partners. The fields of system and
computational biology have been redefined by the scale and resolution of these data sets and
the necessity to interpret this data deluge. One theme that has clearly emerged is the
importance of discovering, modeling and exploiting interactions among different biological
molecules. In some cases, these interactions can be measured directly, in others they can be
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inferred from data on the interacting partners. In this context, reconstructing networks,
analyzing their behavior and modeling their characteristics have become fundamental
problems in computational biology.

Depending on the type of biological process considered, and the type of data available,
different network structures and graph properties are relevant. In this work we focus on one
type of bipartite network that has been used to model transcription regulation, among other
processes, and is illustrated in Figure 1. One distinguishes input nodes (p1, p2, p3 in Figure
1) and output nodes (e1, …, e7 in Figure 1); directed edges connect input nodes to one or
more output nodes and indicate control. Furthermore, we can associate a numerical value
with each edge, which indicates the nature and strength of the control.

Bipartite networks such as the one illustrated in Figure 1 have been successfully used to
describe and analyze transcription regulation [see, e.g., Liao et al. (2003)]. Transcription is
the initial step of the process whereby the information stored in genes is used by the cell to
assemble proteins. To adapt to different cell functions and different environmental
conditions, only a small number of the genes in the DNA are transcribed at any given time.
Understanding this selective process is the first step toward understanding how the
information statically coded in DNA dynamically governs all the cell life. One critical role
in the regulation of this process is played by transcription factors. These molecules bind in
the promoter region of the genes, facilitating or making it impossible for the transcription
machinery to access the relevant portion of the DNA. To respond to different environments,
transcription factors have multiple chemical configurations, typically existing both in
“active” and “inactive” forms. Their binding affinity to the DNA regulatory regions varies
depending on the particular chemical configuration, allowing for a dynamic regulation of
transcription. Depending on the complexity of the organism at hand, the total number of
Transcription Factors (TF) varies, as well as the number of TF participating in the regulation
of each gene. In bipartite networks such as the one in Figure 1, input nodes can be taken to
represent the variable concentrations in active form of transcription factors, and output
nodes as the transcript amounts of different genes. An edge connecting a TF to a gene
indicates that the TF participates in the control of the gene transcription. As usual,
mathematical stylization only captures a simplified version of reality. Bipartite graphs
overlook some specific mechanisms of transcription regulation, such as self-regulation of TF
expression or feed-back loops connecting genes to transcription factors. Despite these
limitations, networks such as the one in Figure 1 provide a useful representation of a
substantial share of the biological process.

Researchers interested in reconstructing transcription regulation have at their disposal a
variety of measurement types, which in turn motivate diverse estimation strategies. The data
set that motivated the development of our methodology consisted of measurements of gene
transcription levels for E. coli, obtained from a collection of 35 gene expression arrays.
These experiments, relatively cheap and fairly common, allow one to quantify transcription
amounts for all the genes in the E. coli genome, under diverse cell conditions. While our
data consists of measurements on the output nodes, that is, the gene expression levels, we
also have access to some information on the topology of the network: DNA sequence
analysis or ChIP–chip experiments can be used to evaluate the likelihood of each possible
edge. However, we have no direct measurements of the input nodes, that is, the
concentrations of active form of the TFs. While, in theory, it is possible to obtain these
measurements, they are extremely expensive and are typically unavailable. Changes in
transcription of TF are measured with gene expression arrays, but mRNA levels of
transcription factors seldom correlate with changes in the concentration of their active form.
The latter, in fact, are most often driven by changes in TF expression level only in response
to the cell inner clock (i.e., in development, or in different phases of the cell cycle). We are
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interested in studying the cellular response to external stimuli and this is most frequently
mediated by post-translational modifications of the TF. For these reasons, we are going to
consider the concentrations of active forms of the TF as unobserved.

Our E. coli data consist of spotted array experiments with two dyes, which measure the
changes in expression from a baseline level for the queried genes (taking the logarithm of
the ratio of intensities, typically reported as raw data). These percentage changes can be
related linearly to variations in the concentrations of active form of transcription factors, as
documented in Liao et al. (2003). Coupling this linearity assumption, with the bipartite
network structure, we model the log-transformed expressions of gene i in experiment t, eit,
as

where n, L and T respectively denote the number of genes, TFs and experiments, aij
represents the control strength of transcription factor j on gene i, pjt the concentration of the
active form of transcription factor j in experiment t, and εit captures i.i.d. measurement
errors and biological variability. A value of aij = 0 indicates that there is no network
connection or, equivalently, no relationship, between gene i and TF j, while nonzero values
imply that changes in the TF affect the gene's expression level. It is convenient to formulate
the model in matrix notation,

(1)

where E is an n × T matrix of eit's, A is an n × L matrix of aij's and P is an L × T matrix of
pjt's. A and P are both unknown quantities.

Model (1), derived from the bipartite regulatory network and linearity assumption, is a very
familiar one to statisticians and a number of its variants have been applied to the study of
gene expression and other data. The first attempts utilized dimension reduction techniques
such as principal component analysis (PCA) or singular value decomposition [Alter, Brown
and Botstein (2000)]. Using this approach, a unique solution to simultaneously estimate the
pj 's and the strength of the network connections is obtained by assuming orthogonality of
the pj's—an assumption that does not have biological motivations. Some variants of PCA,
that aim to produce more interpretable results, have also been studied. For example, Lee and
Seung (1999, 2001) developed nonnegative matrix factorization (NNMF) where the
elements of A and P are all constrained to be positive. However, for our data we would
expect both positive and negative control strengths, so it does not seem reasonable to
enforce the elements of A to be positive. An interesting development is the use of
Independent Component Analysis [Lee and Batzoglou (2003)], where the orthogonality
assumption is substituted by stochastic independence. These models can be quite effective in
providing a dimensionality reduction, but the resulting p's often lack interpretability.

West (2003) treats (1) as a factor model and uses a Bayesian approach to reduce the
dimension of expression data, paying particular attention to the development of sparse
models, in order to achieve a biologically realistic representation. When the gene expression
data refers to a series of experiments in a meaningful order (temporal, by degree of
exposure, etc.), model (1) can be considered as the emission component of a state space
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model, where hidden states can be meaningfully connected to transcription factors [Beal et
al. (2005), Li et al. (2006), Sanguinetti et al. (2006)]. Depending on the amount of
knowledge assumed on the A matrix, state space models can deal with networks of different
size and complexity.

Values of the factors, P, that are clearly interpretable as changes in concentration of the
active form of transcription factors together with the identifiability of model (1) can be
achieved by imposing restrictions on A that reflect available knowledge on the topology of
the network. Liao et al. (2003) assumes the entire network structure known a priori and
gives conditions for identifiability of A and P based on the pattern of zeros in A, reflecting
the natural sparsity of the system. A simple iterative least squares procedure is proposed for
estimation, and the bootstrap used to asses variability. This approach has two substantial
limitations. First, it assumes that the entire network structure is known, while, in practice, it
is most common for only parts of the structure to have been thoroughly studied. Second, not
all known transcription networks satisfy the identifiability conditions. A number of
subsequent contributions have addressed some of these limitations. Tran et al. (2005)
introduces other, more general, identifiability conditions; Yu and Li (2005) proposes an
alternative estimation procedure for the factor model; Brynildsen, Tran and Liao (2006)
explores the effect of inaccurate specification of the network structure; Chang et al. (2008)
proposes a faster algorithm. Pournara and Wernisch (2007) provides an informed review of
the use of factor models for regulatory networks, surveying both different identifiability
strategies and computational approaches.

Particularly relevant to the present paper is the work of Sabatti and James (2006), which
removes both limitations of the Liao et al. (2003) method by using a Bayesian approach. The
authors obtain a prior probability on the network structure using sequence analysis, and then
use a Gibbs sampler to produce posterior estimates of the TRN. In theory, this approach can
be applied to any network structure, even when only part of the structure is known.
However, a significant limitation is that the computational effort required to implement the
Gibbs sampler grows exponentially with the number of potential connections between a
particular gene and the transcription factors. As a result, one is forced to choose a prior on
the network where the probability of most edges is set to zero, thereby fixing a priori a large
portion of the topology. While sparsity in the connections is biologically reasonable, it
would obviously be more desirable to allow the gene expression data to directly identify the
connections.

To overcome these limitations, in this paper we take a somewhat different approach that
builds in the same advantages as the Bayesian method in terms of utilizing partial network
information and working for any structure. However, our approach is more computationally
efficient, which allows increased flexibility in determining the final network topology. We
treat the estimation of both the connection strengths, A, and the transcription factors
concentrations, P, as a variable selection problem. In this context, our data has an extremely
large number of variables, that is, potential connections, but is sparse in terms of the number
of “true” variables, that is, connections that actually exist. There have recently been
important methodological innovations for this type of variable selection problem. A number
of these methods involve the use of an L1 penalty on the regression coefficients which has
the effect of performing automatic variable selection. A few examples include the Lasso
[Tibshirani (1996)], SCAD [Fan and Li (2001)], the Elastic Net [Zou and Hastie (2005)], the
adaptive Lasso [Zou (2006)], the Dantzig selector [Candes and Tao (2007)], the Relaxed
Lasso [Meinshausen (2007)], VISA [Radchenko and James (2008)] and the Double Dantzig
[James and Radchenko (2009)]. The most well known of these approaches is the Lasso,
which performs variable selection by imposing an L1 penalty on the regression coefficients.
In analogy with the Lasso, our method also utilizes L1 penalties on the connection strengths,
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A, as well as the transcription factor concentrations, P. This allows us to automatically
produce a sparse network structure, which incorporates the prior information. We show that,
given the same prior network, our approach produces similar results to the Bayesian
formulation, but is considerably more computationally efficient. This in turn allows us to
reconstruct regulatory networks using less precise prior information.

Figure 2 gives a schematic illustration of our approach. First, we identify a group of
transcription factors that are believed to regulate the gene expression levels. Second, we
compute an initial topology for the network using both documented experimental evidence,
as well as an analysis of the DNA sequence upstream of a given gene. Finally, we use the
initial topology, as well as the gene expression levels from multiple experiments, as inputs
to our L1 penalized regression approach to produce an updated final network topology, a
quantification of the connection strengths and an estimation of the transcription factor levels.

The paper is structured as follows. In Section 2 we provide a detailed description of the data
that we are analyzing and the available prior information. Section 3 develops the
methodological approach we use to fit the transcription regulation network. Our analysis of
the E. coli data is presented in Section 4. We also include a comparison with the results
using the Bayesian approach in Sabatti and James (2006). A simulation study where we
compare our approach with two other possible methods is provided in Section 5, followed
by a discussion in Section 6.

2. Data and prior information on network structure
The data set that motivated the development of our methodology included 35 microarray
experiments of Escherichia coli that were either publicly available or were carried out in the
laboratory of Professor James C. Liao at UCLA. The experiments consisted of Tryptophan
timecourse data (1–12) [Khodursky et al. (2000)], glucose acetate transition data (13–19)
[Oh and Liao (2000b), Oh, Rohlin and Liao (2002)], UV exposure data (20–24) [Courcelle
et al. (2001)] and a protein overexpression timecourse data set (25–35) [Oh and Liao
(2000a)]. In all cases, gene expression arrays allow us to monitor the cellular response to
external stimuli: as noted in the introduction, this is mediated by changes in concentration of
active forms of the transcription factors. Current knowledge alerts us that the TrpR regulon
should be activated in the Tryptophan timecourse data, the LexA regulon should be
activated in the UV experiments, and the RpoH regulon in the protein overexpression data.
To provide the reader with a clearer picture of the underlying biology, we detail the case of
Tryptophan starvation and UV exposure. The Trp operon encodes enzymes necessary for
synthesis of the amino acid tryptophan; it is suppressed by TrpR, which can bind to the
DNA only in the presence of Tryptophan. When Tryptophan is depleted, TrpR stops acting
as a suppressor, and the Trp operon is transcribed. Treating Escherichia coli with radiation
produces some damage, which, in turn, induces a number of cellular responses, aiming at
counteracting it. One well-known response is called SOS and is controlled by the RecA and
LexA proteins. Typically, LexA represses SOS genes. When single-stranded DNA,
produced as a result of radiation damage, is present in the cell, it binds to the RecA protein,
activating its protease function; the activated RecA cuts the LexA protein, which can no
longer act as a repressor, and the SOS genes are induced. Note that both TrpR and LexA
auto-regulate, but post-translational modifications play a dominant role in changing their
concentration of active form in response to external stimuli.

To reduce spurious effects due to the inhomogeneity of the data collection, we standardized
the values of each experiment, so that the mean across all genes in each experiment was zero
and the variance one. Merging these different data sets resulted in expression measurements
on 1433 genes across 35 experiments.
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We also were able to identify partial information about the network structure connecting the
transcription factors and genes. We first identified a set of transcription factors that previous
literature suggested were important in this system: this resulted in 37 transcription factors.
Our bipartite network structure can be represented using the n × L matrix A of control
strengths where n = 1433 is the number of genes under consideration and L = 37 is the
number of transcription factors. Note that the fact that we consider more transcription
factors (37) than experiments (35) makes it impossible to analyze this network structure
using the NCA framework presented by Liao et al. (2003).

The element aij is nonzero if TF j regulates gene i, and zero otherwise. For a number of
well-studied TF, experimental data is available that clearly indicates their binding in the
upstream region of regulated genes (in other words, aij ≠ 0). However, for many of the
elements of A, only partial information is available. To summarize the prior evidence on the
network structure, we introduce πij = P(aij ≠ 0). If there is documented experimental
evidence of a binding site for transcription factor j in the promoter region of gene i, we set
πij = 1. We assign values to the remaining elements of π using an analysis of the DNA
sequence upstream of the studied genes. We use available information on the characteristics
of the DNA sequence motif recognized by the TF to inform the sequence analysis, carried
out with Vocabulon [Sabatti and Lange (2002)]. Vocabulon produces an estimated
probability that TF j controls gene i which we used as an initial value for πij. This algorithm
is particularly well suited for this genomewide investigation, but other methodologies could
also be applied. We hence identify all the putative binding sites for these transcription
factors in the portion of the genome sequence that is likely to have a regulatory function.

Two qualifications are in order. First, resorting to Vocabulon and sequence analysis is only
but one venue to gather knowledge on the network structure. In particular, it is worth noting
that results from ChIP–Chip experiments are an important source of information that could
be used for this purpose (see Boulesteix and Strimmer (2005) and Sun, Carroll and Zhao
(2006) for a detailed study of these data). Second, the degree of sparsity of the initial
network can be substantially varied, as documented in Section 4.3. Indeed, one can use
different thresholds to decide when a binding site is detected; moreover, putative sites may
have a varying degree of certainty that could be reflected in the choice of πij. However, we
have found that the most important issue is assuring that π does not play an excessive part in
the fitting procedure so that the expression data can make a significant contribution to the
final estimated TRN. In Section 3.3 we discuss a shrinkage approach that ensures the prior is
not overly informative.

3. Methodology
3.1. A preliminary approach

A natural way to extend the Lasso procedure to fit our model (1) is to minimize, over A and
P, the penalized squared loss function:

(2)

where λ1 and λ2 are two tuning parameters and ‖·‖1 is the sum of the absolute values of the
given matrix. Note that  corresponds to the sum of squares of all components of the
corresponding matrix with any missing values ignored. While this objective function
appears to require the selection of two tuning parameters, (2) can be reformulated as
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where A* = A/λ2 and P* = λ2P. Hence, it is clear that a single tuning parameter suffices and
A and P can be computed as the minimizers of

(3)

Optimizing (3) for different values of λ controls the level of sparsity of the estimates for A
and P.

A simple iterative algorithm can be used to solve (3), namely:

• Step 1: Choose initial values for A and P denoted by A(0) and P(0). Let k = 1.

• Step2: Fix A = A(k−1), find the P = P(k) minimizing .

• Step 3: Fix P = P(k), find the A = A(k) minimizing .

• Step 4: If ‖ P(k) − P(k−1) ‖ or ‖ A(k) − A(k−1) ‖ are large, let k ← k + 1 and return to
Step 2.

Steps 2 and 3 in this algorithm can be easily achieved using a standard application of the
LARS algorithm [Efron et al. (2004)] used for fitting the Lasso.

3.2. Incorporating the prior information
The fitting procedure outlined in the previous section is simple to implement and often quite
effective. It can be utilized in situations where no prior information is available about the
network structure because minimizing (3) is, a priori, equally likely to cause any particular
element of A to be zero, or not to be zero.

However, in practice, for our data, we know that many elements of A must be zero, that is,
where πij = 0, and others cannot be zero, that is, where πij = 1. Of the remaining elements,
some are highly likely to be zero, while others are most likely nonzero, depending on their
πij. Hence, it is important that our fitting procedure directly takes the prior information into
account. This limitation is removed by minimizing (4),

(4)

The key changes between (3) and (4) are the addition of − log(πij) and a square of L2 norm
penalty on A. The incorporation of the prior information has several effects on the fit. First,
aij is automatically set to zero if πij = 0. Second, aij cannot be set to zero if πij = 1. Finally,
aij 's for which the corresponding πij is small are likely to be set to zero, while those for
which πij is large are unlikely to be set to zero. Optimizing (4) is achieved using a similar
iterative approach to that used for (3):

• Step 1: Choose initial values for A and P denoted by A(0) and P(0). Let k = 1.

• Step2: Fix A = A(k−1), find the P = P(k) minimizing .
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• Step 3: Fix P = P(k), find the A = A(k) minimizing

.

• Step 4: If ‖ P(k) − P(k−1) ‖ or ‖ A(k) − A(k−1)‖ are large, let k ← k + 1 and return to
Step 2.

Step 2 can be again be implemented using the LARS algorithm. Step 3 utilizes the shooting
algorithm [Fu (1998), Friedman et al. (2007)].

Equation (4) treats all elements of P equally. However, in practice, there is often a grouping
structure in the experiments or, correspondingly, the columns of P. For example, in the E.
coli data columns 1 through 12 of P correspond to the Tryptophan timecourse experiments,
while columns 13 through 19 represent the glucose acetate transition experiments. To
examine any possible advantages from modeling these natural groupings, we implemented a
second fitting procedure. Let [G]k be the index of the experiments in the kth group assuming
all the experiments are divided into K groups. Then our second approach involved
minimizing,

(5)

where . Replacing ‖P‖1 with ‖P‖2 has the effect of forcing the
pjt 's within the same group to either all be zero or all nonzero. In other words, either all of
the experiments or none of the experiments within a group are selected. Minimizing (5) uses
the same algorithm as for (4) except that in Step 2 the shooting algorithm is used rather than
LARS. We show results from both methods. To differentiate between the two approaches,
we call (4) the “ungrouped” method and (5) the “grouped” approach.

Both equations (4) and (5) bare some resemblance to the penalized matrix decomposition
(PMD) approach [Witten, Tibshirani and Hastie (2009)]. PMD is a general method for
decomposing a matrix, E, into matrices, A and P. As with our method, PMD imposes
various penalties on the components of A and P to ensure a sparse, and hence more
interpretable, structure. However, the decomposition it produces is more similar to standard
PCA because it does not attempt to incorporate any prior information, instead imposing
orthogonality constraints on A and P.

Our methodology does not make any explicit assumptions about the distribution of the error
terms, εit. However, it is worth noting that if we model the error terms as i.i.d. Gaussian
random variables, then, with the variance term fixed, the likelihood function associated with
this model is inversely proportional to . Hence, equations (3), (4) and (5) can all be
viewed as approaches to maximize the penalized likelihood; the only difference between
methods being in the form of the penalty function.

3.3. Adjusting the prior
The grouped and ungrouped methods both assume a known prior, πij. In reality, the prior
must itself be estimated. In some situations this can be done with a reasonable level of
accuracy. However, in other instances the estimated prior may suggest a much higher level
of certainty than it is reasonable to assume. For instance, sequence analysis algorithms, such
as Vocabulon, tend to produce many probability estimates that are very close to either 0 or
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1. In reality, a sequence analysis can usually only provide an indication as to whether a
connection exists between a particular TF and gene, so a probability closer to 0.5 may be
more appropriate.

To account for this potential bias in the prior estimates, we adjust the initial prior using the
following equation:

(6)

where π̃ij represents the adjusted prior. The shrinkage parameter, α, represents the level of
confidence in the initial prior. A value of α = 0 corresponds to a high level of confidence in
the estimated prior. In this situation no shrinkage is performed and the prior is left
unchanged. However, values of α close to 1 indicate much lower confidence. Here the
estimated probabilities that are strictly between 0 and 1 are shrunk toward 0.5,
corresponding to an uninformative prior. As documented in Section 4, we experimented
with various different values for α.

3.4. Normalizing the estimators
The use of penalties on A and P will generally allow us to produce unique estimates for the
parameters up to an indeterminacy in the signs of A and P, that is, one can obtain identical
results by flipping the sign on the jth column of A and the jth row of P. There are a number
of potential approaches to deal with the sign. Sabatti and James (2006) defined two new
quantities that are independent from rescaling and changes of signs and have interesting
biological interpretations:

p̃jt is the average effect of each transcription factor on the genes it regulates (regulon
expression), and ãij is the average control strength over all experiments. These quantities are
directly related to the expression values of genes in a regulon. We have opted to use p̃jt and
ãij to report our results. This also has the advantage of allowing easy comparison with the
analysis of Sabatti and James (2006).

Providing general conditions on the prior for identifiability is complex and beyond the scope
of this paper. In general, the more zero, or close to zero, elements there are in π, the more
likely the model is to be identifiable. Alternatively, it is easy to show that as minπij → 1 the
model will become unidentifiable. The results in Liao et al. (2003) and Tran et al. (2005) can
be used to provide sufficient conditions for identifiability when the prior has enough
elements close to zero. These conditions, which we provide in the Appendix, are similar to
those given in Anderson (1984) for identifiability of factor models. The Appendix also
contains details of an empirical study we conducted using multiple randomized starting
points for our algorithm. The results suggested that there were no identifiability problems
for the E. coli data.
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4. Case study
In this section we give a detailed examination of the results from applying the grouped and
ungrouped methods to the E. coli data. Section 4.1 outlines the construction of our initial
network structure, while Section 4.2 discusses our procedure for choosing the tuning
parameters. The main results are provided in Section 4.3. Finally, Section 4.4 gives the
results from a sensitivity analysis performed by adjusting the sparsity level on the initial
network structure. All the results reported in Section 4 represent the optimal fit, in terms of
the final objective values, based on ten randomized initial values of A and P.

4.1. The initial network structure
The first step in constructing the transcription regulation network is to develop an initial
guess for π, that is, the probability distribution of the network structure. As discussed in
Section 2, π was computed using various sources. Where there was experimental evidence of
a link between transcription factor j and gene i we set πij = 1. For the remaining elements we
used the Vocabulon [Sabatti and Lange (2002)] algorithm to estimate πij. We then adjusted
the prior estimates using the shrinkage approach, Equation (6), which required selecting a
value for the shrinkage parameter, α. We experimented with four different values for α; 0,
0.3, 0.65 and 1. In most instances it did not have a significant effect on the final results,
suggesting our method is robust to changes in the nonzero values of the prior. For our final
analysis we opted to use α = 1 because this produced the weakest prior which gave the gene
expression data the best opportunity to determine the final network structure. Note, our
initial prior estimates contained a number of values corresponding to exactly 0 or 1, so even
after performing the shrinkage step our new prior still contained enough information to
ensure an identifiable solution. In addition, this approach produced similar priors to those
used in Sabatti and James (2006) which allowed us to directly compare the two sets of
results. With the Bayesian approach of Sabatti and James (2006), this high level of sparsity
in the network structure was necessary for computational reasons. However, using our Lasso
based methodology, this level of sparsity is not required. Hence, in Section 4.4 we examine
how our results change as we reduce the level of sparsity in the initial structure.

By merging the potential binding sites with the known sites from the literature, and with the
expression data, we obtained a set of 1433 genes, potentially regulated by at least one of 37
transcription factors and on which expression measurements were available (missing values
in the array data were allowed). Our estimate for π suggested a great deal of sparsity with
only 2073 nonzero entries, 291 of which corresponded to πij = 1 and the remaining 1782 to
πij = 0 5. In addition, 14 of the transcription factors were expected to regulate 20 or fewer
genes and 34 of the 37 TFs were expected to regulate at most 120 genes. The notable
exception was CRP, which potentially regulated over 500 genes. It is worth noting that
without adopting our penalized regression framework, we would not be able to study this
transcription network, simply because the number of experiments (35) is smaller than the
number of TF considered (37): the use of penalty terms regularizes the problem.

4.2. Selecting the tuning parameters
The first step in estimating A and P requires the selection of the tuning parameters, λ1 and
λ2. These could be chosen subjectively but we experimented with several more objective
automated approaches. We first attempted to select the tuning parameters corresponding to
the lowest values of BIC or AIC. However, BIC produced models that were biologically too
sparse, that is, the number of zero entries in A was too large. It appears that the log(n) factor
used by BIC is too large if one uses the number of nonmissing values in the E matrix as “n”
(n = 40,000) because they are not really independent. Conversely, AIC resulted in networks
being selected that had too many connections.
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Instead we opted to use a two stage approach. We first computed the “relaxed” cross
validated error over a grid of λ1's and λ2's and selected the tuning parameters corresponding
to the minimum. It is well known that cross validation can perform poorly on model
selection problems involving L1 penalties [Meinshausen and Buehlmann (2008)]. This is
mainly a result of shrinkage in the coefficient estimates. A common approach to reduce the
shrinkage problem in the Lasso involves replacing the nonzero coefficients with their
corresponding least squares estimates. Our relaxed cross validation approach works in a
similar way. For each combination of λ1 and λ2, we first use equations (4) and (5) to identify
initial estimates for A and P. We then fix P and the zero elements of A and use “least
squares” to estimate the nonzero elements of A. The cross validated errors are then
computed based on these “un-shrunk” estimates for A. We have found that this approach
allows us to select sparser network structures than those from using standard cross
validation. Figure 3 shows the cross validated error rates for different values of λ2 with λ1 =
64. For the grouped method the minimum was achieved with λ1 = λ2 = 64, while the
ungrouped minimum was achieved with λ1 = 64 and λ2 = 16.

Second, we used a parametric bootstrap analysis to determine whether there was significant
evidence that an element in A was nonzero. We ran our method on 100 bootstrap samples,
each created by first computing the residuals ê = E − Â P̂, resampling ê, and then generating
the bootstrap sample E(b) = Â P̂ + ê(b). For each element of A, we computed a corresponding
p-value based on the 100 bootstrap results, thus, we had approximately 2000 p-values. Since
this constituted a significant multiple testing problem, we used False Discovery Rate (FDR)
methods to set a cutoff such that the FDR was no more than 0.05. Elements in A with p-
values smaller than the cutoff were left as is while the remainder were set to zero. All the
results that follow are based on this bootstrap analysis.

4.3. Results
The results from our analysis of the 35 experiments suggested that a significant portion of
the potential binding sites should be discarded. Now 18 TFs were expected to regulate 20 or
fewer genes and 26 of the 37 TFs were expected to regulate at most 50 genes. Even CRP
went from over 500 potential binding sites in the prior to fewer than 500 in the posterior.
The posterior estimate for A contained 1766 nonzero entries, approximately a 15% reduction
in the number of connections compared to our prior guess for the network. Figure 4 provides
graphical representations for the prior and posterior networks. Notice that in the posterior
estimate there are many fewer connections and, as a result, there are numerous genes and
one TF that are no longer connected to the rest of the network, suggesting there is no
evidence that these particular genes are regulated by any of the 37 TFs we examined. The
fact that one of the TFs is not connected to the network is likely due to it not being activated
in any of the experiments considered, so that there is no detectable correlation in expression
among the group of genes that it regulates.

Sabatti and James (2006) discuss several possible reasons for the changes between the initial
and final network structure. In brief, Vocabulon works entirely using the sequence
information. Hence, it is quite possible for a portion of the E. coli genome sequence to look
just like a binding site for a TF, resulting in a high probability as estimated by Vocabulon,
when in reality it is not used by the protein in question. In addition, Vocabulon searches for
binding sites in the regulatory region of each gene by inspecting 600 base pairs upstream of
the start codon which often causes Vocabulon to investigate the same region for multiple
genes. If a binding site is located in such a sequence portion, it will be recorded for all of the
genes whose “transcription region” covers it.

Figure 5 illustrates the estimated transcription factor activation levels using both the
ungrouped and grouped methods. We have several ways to validate these results. First, we
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note that the estimated activation levels show very strong similarities to the results of Sabatti
and James (2006). Both their results and ours show the following characteristics. First, there
are a number of transcription factors that are not activated in any of the experiments.
Focusing on the regulons that are activated in some of the experiments, we note that our
method produces results that correspond to the underlying biology. For example, the first 8
experiments [Khodursky et al. (2000)]—represented in the lower portion of the displays
from bottom up— are two 4-point time courses of tryptophan starvation. The absence of
tryptophan induces the de-repression of the genes regulated by trpR. Correspondingly, our
results indicate a clear increase in expression for trpR. In arrays 9–12, the cells were
provided with extra tryptophan. Hence, for these experiments we would expect lowered
expression. Our results show a negative effect, though the magnitude is small. Additionally,
the argR and fliA regulons can be seen to move in the opposite direction to trpR, which
corresponds to what has been documented in the literature [Khodursky et al. (2000)].

Experiments 20–24, which correspond to the results between the second and third horizontal
dashed lines, are a comparison of wild type E. coli cells with cells that were irradiated with
ultraviolet light, which results in DNA damage. Notice that lexA appears to be activated in
these experiments, as one would predict since many of the DNA damaged-genes are known
to be regularly repressed by lexA [Courcelle et al. (2001)]. Finally, ntrC, purR, rpoH2 and
rpoH3 all show activations in the protein overexpression data, the final 11 experiments. In
particular, notice that rpoH2 and rpoH3 present the same profile across all experiments. This
provides further validation of our procedure since these two really represent the same
protein, and are listed separately because they correspond to two different types of binding
sites of the TF. Overall, these results conform to the known biology, but also suggest some
additional areas for exploration.

The main differences between our results and those of Sabatti and James (2006) are that our
penalties on P tend to generate more exact zero estimates than the Bayesian approach,
providing somewhat easier interpretation. The grouped and ungrouped results are also
similar, but the grouped method tends to produce slightly more sparsity in P, for example, in
metJ and rpoS18.

Next, we examine the estimates for A. Since a number of TF's showed no activation in these
experiments, we would not expect to be able to accurately estimate their control strengths on
the genes. Hence, we will concentrate our analysis here on trpR because this was the most
strongly activated TF. Figure 6 presents our estimates of ã for seven genes associated with
the trpR. Each boxplot illustrates the 100 bootstrap estimates of ã for a particular gene. The
first three boxplots correspond to genes b1264, b1265, b1266. The b-numbers, that identify
the genes, roughly correspond to their genomic location, so it is clear that the genes are
adjacent to each other. Gene b1264 is known to be regulated by trpR, so it's πij was set to 1.
The other two genes were chosen by Vocabulon as potential candidates because the binding
site for b1264 was also in the search regions for b1265 and b1266, that is, these were cases
of the overlapping regulatory regions described previously. While Vocabulon was unable to
determine whether a connection existed between b1265, b1266 and trpR, using our
approach, we can see that, while ã for b1264 is large, the estimates for b1265 and b1266 are
essentially zero. These results show that the expression levels of b1264 correlate well with
those of the other genes, but those for b1265 and b1266 do not. Thus, it is possible to use
our model to rule out the regulation of two genes by trpR that are within a reasonable
distance from a trpR real binding site. Among the remaining four genes, b1704, b3161 and
b4393 are all known to be regulated by trpR. Correspondingly, they all have moderate to
large estimated activation strengths. b4395 again has an overlapping regulatory region to
b4393. The results suggest this is not regulated by trpR.
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4.4. Relaxing zero coefficients
The results from Section 4.3 use the same relatively sparse initial network structure as that
of Sabatti and James (2006). Recall the structure we have assumed so far contained only
three possible values for π, that is, πij = 0, πij = 0.5 or πij = 1. All connections with πij = 0 are
forced to remain at zero whatever the gene expression data may suggest. However, as
discussed previously, our methodology is able to handle far less sparse structures. Hence, we
next investigated the sensitivity of our results to the initial structure by randomly adjusting
certain TF-gene connections. In particular, we randomly selected 200 of the connections
where πij = 0 and reset them to πij = 0.5. We also reset all connections where πij = 1 to πij =
0.5 so that all connections were treated equivalently. We then reran the ungrouped and
grouped methods using the new values for π.

Figure 7 provides plots of the resulting fractions of nonzero estimates for ãij, as a function of
λ2 with λ1 set to 64. A clear pattern emerges with the fraction of nonzeros where there was
documented evidence very high (black solid line). Somewhat lower is the fraction of
nonzeros for the connections suggested by Vocabulon (red dashed line). Finally, the lowest
level of nonzeros is exhibited where there was no significant evidence of a connection (blue
dash–dot line). These results are comforting because they suggest that our methodology is
able to differentiate between the clear, possible and unlikely connections even when πij is
equal for all three groups. In addition, there appears to be evidence that the Vocabulon
algorithm is doing a good job of separating potential from unlikely connections. Finally,
these results illustrate that, unlike the Bayesian approach, it is quite computationally feasible
for our methodology to work on relatively dense initial network structures.

5. Simulation study
After fitting the E. coli data we conducted a simulation study to assess how well our
methodology could be expected to reconstruct transcription regulation networks with
characteristics similar to those for our data set. We compared our method with two other
possible approaches: the penalized matrix decomposition (PMD) method of Witten,
Tibshirani and Hastie (2009) and the Bayesian factor analysis model (BFM) of West (2003).

The estimated matrices, Â and P̂, and the prior probability estimates, πij, from Section 4
were used as the starting point for generating the gene expression levels. In particular, we
first let Ã = Â + εA, P̃ = P̂ + εP, where εAij ∼ SA ×N(0, σ2 (Â)) and εPij ∼ SP × N (0, σ2(P̂i)) are
noise terms. Depending on the simulation run, SA was set to either 0.2 or 0.4, while SP was
set to either 0.1 or 0.3. Next, all elements of Ã corresponding to πij = 0 were set to zero. In
addition, among elements where πij = 0.5, we randomly set ρ of the Ã's to zero where ρ was
set to either 60% or 80%. The expression levels were then generated using

where Γ̃ is a matrix of error terms with Γ̃ij ∼ N(0,1) and SN was set to either 0.2 or 0.4. We
produced one simulation run for each combination of SA, SP, ρ, and SN, resulting in a total of
16 simulations.

For each simulation run we generated a new data set, implemented the grouped and
ungrouped methods, as well as the PMD method, using different possible tuning parameters
to estimate A and P, and computed the corresponding False Positive Rates (FPR) and the
True Positive Rates (TPR). The FPR is defined as the fraction of estimated nonzero
coefficients, aij, among all elements of Ã where ãij = 0 and πij = 0.5. The TPR is defined as
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the fraction of estimated nonzero coefficients, aij, among all elements of Ã where ãij ≠ 0 and
πij = 0.5. The BFM approach turned out to run extremely slowly, taking many hours for just
a single tuning parameter. Hence, it was only feasible to implement this method for one set
of tuning parameters. For our method, since we have prior information, we can match the
columns of the estimated A with the true A in order to compute the sensitivity and specificity
etc., but for both PMD and BFM, there is no automatic alignment. In order to ensure a fair
comparison, we used a sequential alignment approach to match the columns of the estimated
and true A. We first matched each column of the estimated A with each column of the true A
and linked the pair that matched best. Then we removed the pair and repeated the process
until all columns were aligned.

Figure 8 provides a summary of the results from running the ungrouped, PMD and BFM
approaches on the eight simulations corresponding to SP = 0.1. The results from the grouped
method and for SP = 0.3 were similar and hence are not repeated here. Each curve
corresponds to the FPR vs TPR for one simulation run using different tuning parameters.
The results suggest that our method achieves a reasonable level of accuracy for this data. For
example, with SN = 0.2 we produce an 80% TPR at the expense of a 20% FPR. To lower the
FPR to 10% decreases the TPR to approximately 60%. Even with SN = 0.4, a relatively high
noise level, we can achieve a 60% TPR at the expense of a 20% FPR. The PMD method
performs relatively worse, for example, producing only a 60% TPR at the expense of a 20%
FPR with SN = 0.2. Assessing BFM is more difficult, given that we were only able to
observe its performance at a few points. It appears to outperform PMD and produce results
close to our ungrouped method. However, BFM does not seem to be practical on large data
sets like our E. coli data given the time required to produce a single fit, without even
attempting to select tuning parameters. These results show that indeed there is an advantage
to including prior information when available.

6. Discussion
We have introduced a new methodology for estimating the parameters of model (1)
associated with a bipartite network, as illustrated in Figure 1. Our approach is based on
introducing L1 penalties to the regression framework, and using prior information about the
network structure.

We have focused on the application of this model to reconstruction of the E. coli
transcription network, as this allows easy comparison with previously proposed models. Our
approach has the advantage, over the work of Liao et al. (2003) and Sabatti and James
(2006), that it does not require assuming prior knowledge of a large fraction of the network.
When we utilize the same prior structure as used in Sabatti and James (2006), we get
similar, and biologically sensible, results. However, by relaxing the prior assumptions on the
sparsity of the network structure, we gain additional insights such as independent validation,
both of the experimentally derived network connections and also the connections suggested
by the Vocabulon algorithm.

While we tested our methodology on the E. coli data, our approach is potentially applicable
to many other organisms, allowing researchers to start to explore many other transcription
networks such as those of humans. In particular, there are many organisms for which far less
of the TRN structure is known a priori, making it impossible to use the algorithms in Liao et
al. (2003) and Sabatti and James (2006). In these cases our L1 -penalization approach could
still be applied provided an “adequate” prior could be generated. For example, in the case of
human data, one would probably rely on ChIP chip experiments to provide the back-bone
prior data on the possible location of binding sites. Finally, it is worth recalling that, while
we describe how to set the π values with specific reference to TRN, the L1 -penalized
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regression approach can be used to estimate parameters of bipartite networks arising in other
scientific contexts.
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Appendix: Identifiability
Liao et al. (2003) provide the following sufficient conditions for identifiability of the
transcription regulation network model (1):

1. The connectivity matrix, A, must have full-column rank.

2. When a node in the regulatory layer is removed along with all of the output nodes
connected to it, the resulting network must be characterized by a connectivity
matrix that still has full-column rank. This condition implies that each column of A
must have at least L − 1 zeros.

3. P must have full row rank. In other words, each regulatory signal cannot be
expressed as a linear combination of the other regulatory signals.

In our case these conditions were not satisfied because L > T so P was not of full rank.
However, the prior was very sparse with many zero elements and relatively few values close
to one, so it seemed reasonable to assume that the model was identifiable. To ensure this
was correct, we ran our fitting procedure 200 times on the E. coli data, using randomized
starting values, and examined the resulting estimates for P. Figure A.1 plots the best 20
(left) and worst 20 results (right), in terms of the final objective values. There are some
minor differences in the estimates, but overall the results are encouragingly similar. This
experiment provided two useful pieces of information. First, it strongly suggested that, at
least for our prior, there were no identifiability problems. Second, it also implied that the
fitting algorithm was not getting stuck in any local minima's and was reaching a global
optimum.
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Fig. 1.
A general network with L = 3 transcription factors and n = 7 genes.
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Fig. 2.
Transcription network reconstruction integrating DNA sequence and gene expression
information. Blue circles represent regulatory proteins and red squares genes. An arrow
connecting a circle to a square indicates that the transcription factor controls the expression
of the gene. When different colors are used in depicting these arrows, they signify a different
qualitative effect of the TF on genes (repressor or enhancer). Finally, varying arrow
thickness signifies different control strengths.
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Fig. 3.
Cross validated error rates as a function of λ2 for the ungrouped and grouped methods. The
blue vertical lines indicate variability in the cross validated error.
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Fig. 4.
Prior network (left) and posterior estimate produced using the ungrouped method (right).
The large blue circles correspond to the 37 transcription factors while the yellow circles
represent the 1433 genes. The lines joining blue and yellow circles indicate network
connections.
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Fig. 5.
(a) Ungrouped and (b) grouped methods. Each plot corresponds to the experiments for one
transcription factor. Experiments are organized along the vertical axis, from bottom to top,
with dashed lines separating the experiment groups. Green dots indicate the estimates for p̃jt
and the horizontal bars provide bootstrap confidence intervals.
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Fig. 6.
Boxplots of the bootstrap estimates for ã for seven different genes.
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Fig. 7.
Fraction of nonzero ãij 's as a function of λ2 for the ungrouped and grouped methods. The
black solid line corresponds to those connections where there was documented evidence of a
relationship, the red dashed line to where the Vocabulon algorithm suggested there was a
relationship and the blue dash–dot line to where there was no evidence of a relationship.

James et al. Page 24

Ann Appl Stat. Author manuscript; available in PMC 2011 May 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Simulation results. Solid lines correspond to the ungrouped approach, dashed lines to PMD
and triangles to BFM. Red: ρ = 0.6, SA = 0.2. Black: ρ = 0.8, SA = 0.2. Blue: ρ = 0.6, SA =
0.4. Green: ρ = 0.8, SA = 0.4. Left plot: low noise scenario, SN = 0.2. Right plot: high noise
scenario, SN = 0.4.
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Fig. A.1.
Left: Best 20 runs. Right: Worst 20 runs.
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