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Abstract
Pharmacogenetics aims to elucidate how genetic variation affects the efficacy and side effects of
drugs, with the ultimate goal of personalizing medicine. Clinical studies of the genetic variation in
the uridine 5′-diphosphoglucuronosyltransferase gene have demonstrated how reduced-function
allele variants can predict the risk of severe toxicity and help identify cancer patients who could
benefit from reduced-dose schedules or alternative chemotherapy. Candidate polymorphisms have
also been identified in vitro, although the functional consequences of these variants still need to be
tested in the clinical setting. Future approaches in uridine 5′-diphosphoglucuronosyltransferase
pharmacogenetics include genetic testing prior to drug treatment, genotype-directed dose-
escalation studies, study of genetic variation at the haplotype level and genome-wide studies.

Keywords
epirubicin; flavopiridol; glucuronidation; irinotecan; neutropenia; raloxifene; tamoxifen;
TAS-103; uridine 5′-diphosphoglucuronosyltransferase; vorinostat

Cancer constitutes one of the main leading causes of death worldwide. One of the principal
modalities of cancer treatment is chemotherapy. There is high interindividual variability in
response to anticancer agents, some of which is caused by inherited variation in drug
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metabolizing enzymes. Pharmacogenetics investigates how genetic variation affects drug
efficacy and side effects, with the goal of individualizing medical treatment to improve
patient care.

Many anticancer agents are metabolized by glucuronidation, a metabolic reaction that
increases drug solubility in water and facilitates their biliary or urinary excretion from the
human body [1-3]. The glucuronidation reaction involves conjugation of uridine 5′-
diphosphoglucuronic acid to aglycones that contain oxygen, carboxyl, nitrogen or sulfur
functional groups via uridine 5′-diphosphoglucuronosyltransferase (UGT) enzymes. UGTs
are differentially expressed throughout the human body. Most human UGTs are found in the
liver (e.g., UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A9, UGT2B4,
UGT2B7, UGT2B10, UGT2B15 and UGT2B17), the main organ responsible for drug
metabolism. However, other UGTs (e.g., UGT1A7, UGT1A8, UGT1A10, UGT2B11 and
UGT2B28) are expressed exclusively in extrahepatic tissues [4-7]. The UGT genes are
classified into families, UGT1 and UGT2, and, based on their sequence similarity, are
further organized into subfamilies, UGT1A, UGT2A and UGT2B. Extensive genetic
variation exists in the UGT1A and UGT2B genes [8,9]. Table 1 provides an overview of the
many anticancer drugs that are glucuronidated in humans. Specific allele frequencies and a
description of the in vitro effects of the UGT variants investigated in pharmacogenetic
studies of anticancer agents are listed in Table 2.

This article will focus on how genetic variation in the UGT genes affects anticancer drug
response, including both toxicity and efficacy. We report on anticancer drugs for which
there is considerable glucuronidation and for which the UGTs responsible for the reaction
have been identified. We will discuss pharmacogenetic studies of irinotecan, tamoxifen,
raloxifene, epirubicin, vorinostat, flavopiridol and TAS-103 in detail. In this article, we use
the nomenclature described in the UGT nomenclature webpage [301].

Irinotecan
The best example of how UGT genetic variation alters drug response is provided by
irinotecan. This anticancer drug is used in many different schedules and disease settings,
including colorectal cancer, small-cell lung cancer, breast cancer and gastric cancer [10-12].
It has also been approved by the US FDA for use in combination with 5-fluorouracil and
leucovorin (folinic acid, fluorouracil and irinotecan [FOLFIRI]) for first-line treatment of
patients with metastatic colorectal cancer and as second-line therapy for metastatic
colorectal cancer refractory to 5-fluorouracil and leucovorin treatment [302].

Irinotecan is a prodrug of SN-38, a topoisomerase I inhibitor [13]. The cytotoxic activity of
SN-38 is 100- to 1000-times greater than that of irinotecan [14]. SN-38 is further
metabolized and deactivated in the liver to SN-38G [15], primarily by UGT1A1 [16-18] and
to a lower extent also by UGT1A3, UGT1A6 and UGT1A9 [17-21]. UGT1A7 metabolizes
SN-38 in vitro to a very high extent [18-20,22], but, since it is exclusively found in
extrahepatic tissues [23] (reviewed in [4,24,25]), it does not contribute to SN-38
glucuronidation in the liver, where most SN-38G is formed.

Patients receiving irinotecan commonly experience severe myelosuppression (resulting in
neutropenia) and delayed-onset diarrhea. Severe neutropenia and diarrhea seem to be caused
by SN-38-induced damage to the bone marrow and gastrointestinal mucosa, respectively.
Both myelosuppression and diarrhea need to be closely monitored. When experienced as
grade 3 or 4 toxicities, they require treatment delay to allow for recovery and a decrease in
dosing before the next irinotecan treatment.
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More than 35 pharmacogenetic studies have evaluated whether there is a genetic
predisposition to the risk of severe toxicity from irinotecan. Most studies have focused on
investigating how genetic variation in the UGT1A1 gene affects the drug pharmacodynamics
owing to its primary role in the elimination of SN-38. An association between irinotecan
toxicity and impaired UGT1A1 activity was initially observed in cancer patients suffering
from Gilbert’s syndrome [26,27], a common and mild inherited liver disorder that causes
mild hyperbilirubinemia owing to a deficiency in UGT1A1 activity [28]. Case reports
indicated that these patients developed severe diarrhea, neutropenia and transient increases
in unconjugated bilirubin following irinotecan treatment [26,27]. The patients had high
biliary SN-38 concentrations, suggesting reduced glucuronidation. Around the same time, in
vitro studies showed that SN-38 is metabolized by UGT1A1, and there is an inverse
correlation between the number of thymineadenine (TA) repeats in the promoter region of
UGT1A1 and glucuronidation of SN-38 and bilirubin [16,29]. Since then, many clinical
studies have investigated whether genetic polymorphisms in the UGT1A genes involved in
SN-38 disposition, particularly UGT1A1, predispose patients to severe irinotecan toxicity.
These studies have been summarized in Table 3.

UGT1A variation & irinotecan toxicity
Many irinotecan pharmacogenetic studies have investigated whether the UGT1A1*28 allele
is associated with the risk of developing severe drug-related toxicity. UGT1A1*28 has an
additional TA repeat [A(TA)7TAA] in the TATA box of the promoter region, which in most
individuals contains the A(TA)6TAA allele known as UGT1A1*1. Transcriptional activity is
inversely related to the number of TA repeats, and as the number of TA repeat increases,
UGT1A1 glucuronidation activity is significantly reduced [28-32]. UGT1A1*28 is also
associated with reduced UGT1A1 mRNA expression [33]. The first prospective irinotecan
pharmacogenetic study investigated whether the incidence of toxicity correlated with
variability in the UGT1A1 promoter. The trial enrolled predominantly Caucasian patients
with refractory disease to be treated with 300–350 mg/m2 irinotecan once every 3 weeks. At
300 mg/m2, patients with one or two UGT1A1*28 alleles had a trend toward lower absolute
neutrophil counts (n = 20) [30]. In 65 patients enrolled in the same trial and treated with 350
mg/m2 irinotecan (the current dosage of irinotecan, after a change in FDA
recommendations), 50% of UGT1A1*28 homozygotes experienced grade 4 neutropenia as
the most common toxicity compared with 13% of heterozygotes and 0% of the UGT1A1*1/
*1 patients [32]. Having a UGT1A1*28/*28 genotype conferred a 9.3-fold risk (95% CI:
2.4–36.4) of suffering neutropenia when compared with UGT1A1*28/*1 and UGT1A1*1/*1.
Multiple subsequent irinotecan studies have also reported increased risk in carriers of
UGT1A1*28/*28 for developing neutropenia [34-38]. The largest study group was trial
N9741, comprised of 520 advanced colorectal cancer patients treated with combination
therapy (irinotecan/5-fluorouracil/leucovorin: n = 114; oxaliplatin/5-fluorouracil/leucovorin:
n = 299; and irinotecan/oxaliplatin: n = 107) [35]. Preliminary reports found a statistically
significant association between UGT1A1*28/*28 and higher incidence of severe neutropenia
in all patients combined and in patients on the irinotecan/oxaliplatin arm. Irinotecan/
oxaliplatin patients homozygous for UGT1A1*28 had a 15.3-fold (95% CI: 3.0–77.9) and
35.0-fold (95% CI: 3.6–40.9) increased risk of developing grade 4 neutropenia and grade 3
febrile neutropenia, respectively. Japanese carriers of UGT1A1*28 are also at higher risk for
developing severe leukopenia and neutropenia [39-42]. For example, in a Japanese cohort of
118 patients in different regimens containing irinotecan, the UGT1A1*28 allele distribution
in patients who experienced grade 4 leukopenia was significantly different from that of
patients without toxicity [39]. Multivariate analysis also showed that patients with one or
two UGT1A1*28 alleles had a significant risk for severe toxicity.
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An association between the incidence of diarrhea and UGT1A1*28 has also been observed
by some investigators. In a study of Caucasians receiving irinotecan-containing regimes,
70% of the carriers of UGT1A1*28/*28 developed diarrhea versus 33% of UGT1A1*28/*1
versus 17% of UGT1A1*1/*1 [43]. Metastatic colorectal patients on FOLFIRI who were
homozygous for UGT1A1*28 were also at higher risk of severe diarrhea [38]. The presence
of the UGT1A1*28 allele also correlated with severe diarrhea and was a significant risk
factor for toxicity in additional studies in Caucasian and Japanese populations
[39-40,44-46]. However, other studies have not provided evidence of an association between
severe irinotecan-induced diarrhea and UGT1A1*28, possibly owing to insufficient sample
size, low allele frequency in Asian studies, lower irinotecan doses and heterogeneity in
treatment schedules [42,47-54].

To investigate the reason for the inconsistencies observed in the relationship between
UGT1A1*28 and severe irinotecan-induced toxicity, a meta-analysis was conducted
integrating the results of nine clinical trials including 821 patients in total and encompassing
different dose schedules (weekly, biweekly and every 3 weeks) [55]. The study found that
the risk for severe hematologic toxicity in patients with UGT1A1*28/*28 was dose
dependent. The risk of developing grade 3–4 neutropenia in patients with UGT1A1*28/*28
genotype is significantly higher than for carriers of UGT1A1*1/*28 or UGT1A1*1/*1 at
high (dose: >250 mg/m2; odds ratio [OR]: 3.22; 95% CI: 1.52–6.81; p = 0.008) and medium
doses (dose: 150–250 mg/m2; OR: 27.8; 95% CI: 4.00–195; p = 0.005) but not at lower
doses (dose: <150 mg/m2; OR: 1.80; 95% CI: 0.37–8.84; p = 0.41) [55]. The authors
concluded that the UGT1A1*28/*28 genotype may be useful as a predictive marker of
toxicity only at intermediate or high irinotecan doses (150–250 mg/m2) administered every 2
or 3 weeks, but treatment decisions at lower doses do not need to be made based on
genotype. No associations were found between UGT1A1*28 and diarrhea, and for incidence
of diarrhea in UGT1A1*28/*28 patients and dose (p = 0.8).

UGT1A1*6 (211G>A, G71R), a missense mutation found in Asians [9,56], is associated
with reduced enzyme activity [18,57,58]. It has been shown to predict for toxicity in Asian
patients receiving irinotecan for the treatment of non-small-cell lung cancer. A clinical trial
of 81 Koreans given irinotecan and cisplatin found an association between homozygosity for
UGT1A1*6 and the incidence of grade 4 neutropenia (OR: 6.11) [48,49]. Additional studies
conducted in Japanese and Chinese have confirmed the association between UGT1A1*6 and
incidence of severe leukopenia and neutropenia [41,42,59,60]. Coexistence of UGT1A1*28
and UGT1A1*6 has been shown to decrease glucuronidation activity in an additive manner
[39,41,61-64] and genotyping both alleles would be important to predict toxicity in Asians
(reviewed in [65,66]) Genotyping UGT1A1*6 in Caucasians, however, has no practical
value due to its rarity [32,34].

Irinotecan pharmacogenetic studies have also investigated the impact of UGT1A1*27,
UGT1A1*93 and UGT1A1*60 on toxicity. The effect of the UGT1A1*27 (686C>A, P229Q)
allele, which reduces glucuronidation activity, has not been evaluated in Caucasians due to
its rarity [32,34]. It has been found to be associated with severe neutropenia and diarrhea in
Japanese but as it co-occurs with UGT1A1*28, it is hard to assess its effect [39,62,67].
UGT1A1*93 (−3156G>A) and UGT1A1*60 (−3279T>G) occur in Caucasians, Asians and
Africans [30,56,68]. UGT1A1*93 was strongly correlated with severe neutropenia in
irinotecan patients with advanced disease refractory to other agents and seemed to
distinguish between different phenotypes of total bilirubin (an established marker of
UGT1A1 status) better than UGT1A1*28 [32]. Consistent with this hypothesis, a study of
colorectal cancer patients treated with FOLFIRI demonstrated a significant trend of
increased incidence of severe neutropenia among −3156 genotypes [37]. Severe
hematologic toxicity was more frequent in individuals with −3156A regardless of whether
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they carried the UGT1A1*1 or UGT1A1*28 alleles. A hazard ratio for severe hematological
toxicity of 8.4 was found for patients with −3156A/A genotype compared with −3156G/G.
Homozygosity for −3156G>A was also related to the risk of neutropenia in irinotecan
patients with extensive-stage small-cell lung cancer [69]. However, as no functional studies
have been performed for UGT1A1*93, and since this allele is highly linked to UGT1A1*28
and UGT1A1*60 in Caucasians and Asians [32,62,67,70], further studies are needed.
UGT1A1*60 has decreased transcriptional activity [71]. In Caucasian metastatic patients
treated with FOLFIRI, UGT1A1*60/*60 was associated with severe hematologic toxicity in
the first treatment cycle when compared with −3279T/T carriers, although it was not a
significant predictor after multivariate analysis [70]. In Japanese patients, UGT1A1*60 has
been associated with severe leukopenia and/or diarrhea [40]. Homozygosity for UGT1A1*60
also increased the risk of severe toxicity. However, in multivariate analyses including
UGT1A1*28, this association did not hold, although the association with UGT1A1*28 did,
suggesting that UGT1A1*28 is a stronger predictive factor for toxicity than UGT1A1*60.
Another study investigating the role of UGT1A1*60 in the severe side effects experienced
by Korean patients could not demonstrate an association with toxicity [48]. Owing to the
high linkage between UGT1A1*28, UGT1A1*60 and UGT1A1*93, more evidence is needed
to assess whether genotyping UGT1A1*60 and UGT1A1*93 would add predictive power to
that provided by UGT1A1*28, especially in Caucasian populations where UGT1A1*28 is
common.

UGT1A9 and UGT1A7 also metabolize SN-38. UGT1A9 is expressed in the liver but
UGT1A7 is only expressed in extrahepatic sites. Common polymorphisms in UGT1A9
include UGT1A9*1b (−118(dT)9>10), generated by insertion of an extra thymidine in the
promoter region [72], and I399C>T [73]. The functional significance of both polymorphisms
is unclear. Although UGT1A9*1b has been associated with increased luciferase activity [72],
further studies have not shown a significant increase in reporter gene expression or
alterations in hepatic protein expression or activity when compared with the reference allele
UGT1A9*1a [73-75]. I399C>T was originally correlated with increased UGT1A9 protein
levels and activities and in low linkage disequilibrium with UGT1A9*1b in Caucasian livers
[73]. However, a second study did not find an association between I399C>T and UGT1A9
mRNA expression and activity, and found I399C>T and UGT1A9*1b to be in complete
linkage disequilibrium [75]. An in vivo study also could not find an association between
I399C>T and glucuronidation of mycophenolic acid, a probe UGT1A9 substrate [76].
UGT1A7 is also polymorphic; UGT1A7*2 (387T>G/391C>A/392G>A, N129K/R131K) and
UGT1A7*3 (387T>G/391C>A/392G>A/622T>C, N129K/R131K/W208R) are common
while UGT1A7*4 (622T>C, W208R) is very rare (reviewed in [9,77]). UGT1A7*2 has
similar glucuronidation activity to UGT1A7*1. Both UGT1A7*3 and UGT1A7*4 have
reduced activity [18,23].

Most studies of the effect of genetic variation in UGT1A9 and UGT1A7 on irinotecan
toxicity have shown an association between low-activity alleles and increased toxicity. In
Koreans, increased incidence of grade 3 diarrhea has correlated with both UGT1A9*1a/*1a
and UGT1A7*3/*3 [48]. In this study, increased incidence of severe toxicity was also found
in the presence of combined mutations with low activity (UGT1A1*28 and UGT1A7*4).
However, studies in Japanese and Caucasians found that severe hematologic toxicity was
more frequent in individuals with UGT1A9*1b [60,70], although the results did not hold in
multivariate analyses [70]. Two Caucasian clinical trials showed that carriers of the low-
activity allele UGT1A7*3 had increased severe hematologic toxicity and/or diarrhea [46,70].
UGT1A7 −57T>G, in linkage disequilibrium with UGT1A7*4, was associated with anemia,
and both leukopenia and thrombocytopenia were more prevalent in patients with the high-
risk alleles UGT1A1*28, UGT1A7*2 and UGT1A7 −57T>G [78]. Overall, these results do
not allow any firm conclusion to be drawn owing to the high linkage existing between
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UGT1A7*3 and UGT1A9*1a with both UGT1A1*28 and UGT1A1*6 [47,48,70,79-82].
Regarding UGT1A9 I399C>T, no association was found between this allele and severe
neutropenia in Japanese patients [83]. In this same study, this variant was in linkage with
UGT1A9*1b, UGT1A7*2 and UGT1A7*3, and 85% of the T alleles were linked with the
UGT1A1 wild-type haplotype.

The most common UGT1A1 haplotype in Caucasians (frequency of 34.2%) harbors all
reference sequence alleles except for UGT1A9*1a: UGT1A1 −3279T, UGT1A1 −3156G,
UGT1A1 −53(TA)6, UGT1A7 +387T, UGT1A7 +622T and UGT1A9 −118(T)10. In a
clinical study, this haplotype together with sex had a protective effect on irinotecan-induced
severe hematologic toxicity during the entire course of therapy [70]. In Japanese patients,
haplotypes containing UGT1A1*28, UGT1A7*1 and UGT1A9*1b or UGT1A1*6,
UGT1A7*3 and UGT1A9*1a had a greater incidence of severe neutropenia when compared
with the reference sequence haplotype containing UGT1A1*1, UGT1A7*1 and UGT1A9*1a,
demonstrating the clinical impact of UGT1A1*28 and UGT1A1*6 [42].

UGT1A1 variation & irinotecan pharmacokinetics
Many studies have used the relative extent of SN-38 glucuronidation (area under curve
[AUC]SN-38G/AUCSN-38) as a marker for UGT1A1 activity. The majority of the studies
investigating the role of UGT1A1*28 on irinotecan pharmacokinetics have found a
significant reduction in the relative extent of glucuronidation in Caucasian
[31,32,36,52,54,62,84,85] and Japanese subjects [40-42] carrying this allele. A similar
relationship has been found between UGT1A1*6 and the extent of glucuronidation in
Japanese patients [41-42,62,63], Koreans [48,49], Chinese patients, Malays and Indians
[59]. An additive effect of UGT1A1*28 and UGT1A1*6 on the relative extent of SN-38
glucuronidation has been reported in Japanese [42]. Caucasian and Japanese carriers of
UGT1A1*60 have also shown decreased AUCSN-38G:AUCSN-38 ratios [40,42,70].

UGT1A7*3 and homozygosity for UGT1A9*1a/*1a have been reported to be associated
with reduced glucuronidation ratios in Koreans [48,49]. The same association with
UGT1A7*3 was observed in Caucasians [70]. As both UGT1A7*3 and UGT1A9*1a are
linked with UGT1A1*28 and UGT1A1*6 [42,47,81,82,86], and UGT1A7 is not expressed in
the liver, the effect of these variants on SN-38 glucuronidation requires further investigation.
UGT1A9 I399T carriers have shown increased glucuronidation ratios in Japanese
populations, but this is very likely to be due to the close association of I399C with
UGT1A1*28, UGT1A1*6 or UGT1A1*60, as after stratifying patients by UGT1A1*28,
UGT1A1*6 or UGT1A1*60 haplotypes associated with reduced glucuronidation activity, the
significant effect was no longer observed [83]. In another study, I399T alleles were
associated with higher glucuronidation activity and lower systemic exposure to SN-38 when
analysis was restricted to patients with UGT1A1*1/*1 genotype [87]. However, when
analyzing only UGT1A1*6/*6 patients, the effect was not observed. In this population, there
was very low degree of linkage between I399C>T and the rest of the UGT1A1 functional
variants (i.e., UGT1A1*28, UGT1A1*6, UGT1A1*93 and UGT1A1*60) and only a weak
linkage with UGT1A9*1b.

UGT1A1*28 has also been associated with increased SN-38 AUC in some studies [31,32],
but it does not have an effect on irinotecan AUC, as expected. In a trial of Asian cancer
patients (Chinese, Malays and Indians), UGT1A1*6 was associated with higher SN-38
exposure, but the same effect was not observed in UGT1A1*28 carriers [59]. In Koreans,
patients with UGT1A1*6/*6, UGT1A7*3/*3 and UGT1A9*1a/*1a genotypes had increased
SN-38 AUC [48]. Overall, these results suggest that the relative extent of glucuronidation of
SN-38 is a good marker of UGT1A1 status.
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A few studies in Japanese populations have analyzed the correlation between haplotypes and
glucuronidation activity. Japanese patients bearing haplotypes harboring either UGT1A1*6
or UGT1A1*28 exhibited lower glucuronidation ratios than those without these alleles
[42,62]. An additive effect of haplotypes containing UGT1A1*28 and UGT1A1*6 on
reduced AUC ratio was also observed [42]. Haplotypes with UGT1A1*60 had reduced
glucuronidation although the trend did not reach statistical significance. In another trial,
reduced glucuronidation was observed in patients homozygous for the haplotype UGT1A1*6
UGT1A7 −57G UGT1A7*3 UGT1A9*1a (present in 15% of the patients) due mainly to the
presence of UGT1A1*6 [82].

UGT1A variation & antitumor efficacy
Studies evaluating the role of UGT1A1*28 in antitumor response of Caucasian patients
treated with irinotecan have given contradictory results. UGT1A1*28/*28 was associated
with complete and partial response [70] and higher response rate [36] in FOLFIRI trials.
However, other studies have found homozygosity for UGT1A1*28 to be associated instead
with lower response [38] or to have no relationship with it [35,47,88]. Studies have reported
an association between homozygosity for UGT1A1*28 and both stable disease [70] and
decreased risk of tumor progression [36]. By contrast, another study found no significant
improvement in time to progression in carriers of UGT1A1*28 [35,51].

Most studies have found no correlation between UGT1A1*28 and median survival [51],
overall survival [35,70] or disease-free survival [88]. A marginally significant association
has been found between poorer overall survival and UGT1A1*28 [43], and between lower
median survival and UGT1A1*28/*28 [51]. However, another study observed a marginally
significant tendency for better disease-free survival for UGT1A1*28/*28 carriers [37].

UGT1A1*6/*6 has been correlated with lower tumor response, progression-free survival and
overall survival in non-small-cell lung cancer Asian patients [48,49] UGT1A1*93/*93,
which also reduces glucuronidating activity, has been associated with partial and complete
response in Caucasians, in agreement with the observations previously described with
UGT1A1*28/*28 carriers [70]. However, a similar association was not observed in
UGT1A1*60/*60 patients [70].

In metastatic Caucasian cancer patients, patients with UGT1A1*93/*93 genotype showed
significantly better responses than those with UGT1A1*1/*1 [70]. In the same study, no
associations with tumor response were observed with UGT1A1*60, UGT1A7*2, UGT1A7*3,
UGT1A7*4 and UGT1A9*1b variants. In other studies, UGT1A9*1b/*1b was predictive of
worse progression-free survival in Koreans [49], and UGT1A9*1a/*1a was associated with
increased response in Caucasians [47].

Given the contradictory nature of some of these results, prospective and randomized studies
are needed to evaluate whether UGT1A variation can predict antitumor efficacy, also
considering additional factors, such as patient characteristics, the biological state of the
tumors and environmental factors.

Genetic testing for irinotecan treatment
The irinotecan label was amended in 2005, prompted by findings from clinical trials linking
UGT1A1*28 homozygosity to increased risk for neutropenia. The revised package insert
recommends that patients with UGT1A1*28/*28 genotype should receive a lower irinotecan
dose [302]. To facilitate the clinical integration of the genetic test, the FDA approved the
Invader® UGT1A1 Molecular Assay from Third Wave Technologies, Inc. (WI, USA) [303].
This genetic test helps identify cancer patients who might be at increased risk of severe
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toxicity and could benefit from either an irinotecan dose reduction or alternative
chemotherapy regimens [65].

Further evaluation of the relationship between genotype and severe toxicity has shown that
UGT1A1*28/*28 may be useful as a predictive marker of toxicity at only intermediate or
high irinotecan doses (150–250 mg/m2) administered every 2 or 3 weeks [55]. Patients with
UGT1A*28/*28 genotype do not tolerate standard doses of irinotecan owing to excessive
toxicity and should undergo dose reductions [32,34,43,89], the extent of which is still not
established. Patients of Asian origin would benefit from genetic testing for UGT1A1*6
because of its predictive value for toxicity [90,91].

Genotype-directed dose-escalation studies
It can be postulated that the dose of irinotecan is suboptimal in patients with both
UGT1A1*1/*28 and UGT1A1*1/*1 genotypes. These individuals may benefit from higher
doses.

A recent study performed in FOLFIRI patients of Caucasian origin demonstrated the
feasibility of optimization of irinotecan dosing according to UGT1A1*28 genotype [92]. By
performing dose-escalation studies in patients with UGT1A1*1/*1 and UGT1A1*1/*28
genotypes, the clinical trial demonstrated that UGT1A1*1/*1 and UGT1A1*1/*28 patients
could be safely treated every 2 weeks with irinotecan doses of 370 and 310 mg/m2,
respectively. These doses are considerably higher that the recommended irinotecan dose of
180 mg/m2 in FOLFIRI, and demonstrates that patients who are not homozygous for
UGT1A1*28 can tolerate higher doses of irinotecan. Additionally, a genotype-directed dose-
escalation study of a population consisting mainly of Caucasian patients is ongoing and aims
to determine the optimal doses of irinotecan administered as single agent and stratified by
UGT1A1 genotype [93]. So far, the study shows that UGT1A1*1/*1 patients can be treated
safely at higher doses and that dose escalation beyond the standard irinotecan dose is not
tolerated by UGT1A1*1/*28 patients. Genotype-directed dosing, including UGT1A1*6 in
addition to UGT1A*28, has also been studied. Korean patients treated with irinotecan and a
fixed dose of capecitabine every 3 weeks can tolerate 350 mg/m2 irinotecan if they have
UGT1A1*1/*1, UGT1A1*28/*1 or UGT1A1*1/*6 genotypes, and 200 mg/m2 if their
genotypes are UGT1A1*28/*28, UGT1A1*28/*6 or UGT1A1*6/*6 [94]. Japanese patients
harboring UGT1A1*28/*28, UGT1A1*28/*6 or UGT1A1*6/*6 genotypes tolerate lower
irinotecan doses administered every 2 weeks (maximum tolerated dose: 150 mg/m2) than
patients with one or two copies of the UGT1A1*1 allele [95].

Tamoxifen
Tamoxifen is an oral, nonsteroidal anti-estrogen for the prevention and treatment of steroid
hormone receptor-positive breast cancer and for lowering breast cancer incidence in high-
risk women [96-98]. The drug binds to the estrogen receptor and competitively inhibits the
binding of estrogen in breast tissue. Tamoxifen undergoes extensive hepatic metabolism by
cytochrome P (CYP) 450 [99-109], UGT [110-120] and sulfotransferase enzymes [116,121].

The most abundant tamoxifen metabolite is N-desmethyltamoxifen, produced by CYP3A4
and CYP3A5 [101-103,108,122]. Tamoxifen has two clinically active metabolites: trans-4-
hydroxytamoxifen [123,124] and trans-4-hydroxy-N-desmethyl-tamoxifen
[96,109,110,123-126], also known as endoxifen [127]. Trans-4-hydroxytamoxifen is a
primary metabolite formed mainly by CYP2D6 [99,101,103-107,109], while endoxifen is
formed by 4-hydroxylation of N-desmethyltamoxifen by CYP2D6 and by demethylation of
trans-4-hydroxytamoxifen by CYP3A4 and CYP3A5 [101,102]. Endoxifen has equivalent
potency to 4-hydroxytamoxifen [109,126], but as the patient plasma levels of endoxifen are
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higher than those of 4-hydroxytamoxifen [109,127], endoxifen may contribute more
significantly to the anti-estrogenic action of tamoxifen, especially in CYP2D6-extensive
metabolizers [109,123,126].

Tamoxifen and its two clinically active metabolites, trans-4-hydroxytamoxifen and trans-
endoxifen, undergo extensive glucuronidation in humans [110-117,119,120]. Both
tamoxifen and trans-4-hydroxytamoxifen undergo N-glucuronidation by UGT1A4 to form
trans-tamoxifen-N+-glucuronide, trans-4-hydroxytamoxifen-N+-glucuronide and the
geometrical isomer cis-4-hydroxytamoxifen-N+-glucuronide [113,115,116,120]. The
isomerization reaction favors trans-4-hydroxytamoxifen over the cis-isomer [117,128].
Trans-4-hydroxytamoxifen and trans-endoxifen are conjugated by O-glucuronidation to
form trans-4-hydroxytamoxifen-O-glucuronide by UGT2B7 [113,115], cis-4-
hydroxytamoxifen-O-glucuronide by UGT1A10, UGT1A1, UGT2B7 and UGT2B15
[113,115,116], trans-endoxifen-O-glucuronide by UGT1A10, UGT1A8 and UGT2B7 [113],
and cis-endoxifen-O-glucuronide by UGT1A10, UGT1A9 and UGT1A1 [113].

In vitro studies have investigated the effect of genetic variants in UGT1A1 (UGT1A1*28),
UGT1A4 (UGT1A4*2 and UGT1A4*3b), UGT1A8 (UGT1A8*2 and UGT1A8*3), UGT1A10
(UGT1A10*2a) and UGT2B7 (UGT2B7*2a) on the glucuronidation of tamoxifen and its
active metabolites (Table 4). UGT2B7*2a exhibited a decrease in glucuronidation activity
against trans-4-hydroxytamoxifen and trans-endoxifen in human liver microsomes and cell
homogenates [119]. Similar results were obtained for homozygotes compared with wild-type
in human liver microsomes. UGT1A8*3 completely abolished the glucuronidation activity of
both compounds, while UGT1A8*2 had a very minor effect (reduction) on endoxifen
glucuronidation. UGT1A4*3b, a low-activity allele, showed increased activity against N-
glucuronidation of tamoxifen and 4-hydroxytamoxifen in one study [129], and no effect in
another [119]. The other variants had no effect compared with the reference alleles. Future
studies should explore whether these polymorphisms can predict clinical response to
treatment with tamoxifen.

Raloxifene
Raloxifene is an oral selective estrogen receptor modulator (reviewed in [130]). It has been
approved by the FDA as adjuvant therapy for reducing the risk for invasive breast cancer in
postmenopausal women with either osteoporosis or at increased risk for invasive breast
cancer [131]. Raloxifene appears to be as effective as tamoxifen in reducing invasive breast
cancer risk and has a lower risk of adverse events [132]. The drug is also used for the
prevention and treatment of osteoporosis in postmenopausal women (reviewed in [133]).

Raloxifene undergoes extensive presystemic glucuronidation and enterohepatic circulation
[130,133,134]. The metabolites produced are raloxifene-4′-β-glucuronide and raloxifene-6-
β-glucuronide, both of which have low affinity for the estrogen receptor and are less potent
at inhibiting cell proliferation than raloxifene [135]. The main metabolite found in human
plasma and in jejunal and ileal microsomes is raloxifene-4′-β-glucuronide [134,136,137],
which is formed mainly by UGT1A10 followed by UGT1A8. Hepatic UGT1A9, UGT1A1,
UGT1A3 and UGT2B7 also contribute to the reaction to a lower extent [136,138]. Human
liver microsomes, on the other hand, favor glucuronidation at the 6-position [136]. The main
enzyme producing raloxifene-6-β-glucuronide is UGT1A1, but there is also some
contribution by extrahepatic UGT1A8 and hepatic UGT1A9 and UGT1A3 [136,138].

Only one study has evaluated the influence of polymorphic variation in UGT, in particular
UGT1A1*28, on raloxifene glucuronidation. This in vivo study of 57 postmenopausal
women treated for osteoporosis measured the concentrations of raloxifene and its two
glucuronides in serum samples, and the change in bone mineral density after 1 year of
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raloxifene therapy [139]. Patients with UGT1A1*28/*28 genotype had increased exposure to
raloxifene and its glucuronides, and a significant increase in hip bone mineral density
compared with UGT1A1*1/*28 and UGT1A1*1/*1 patients. A significant increase in
glucuronides in UGT1A1*28/*28 carriers was unexpected, and the authors hypothesized that
it may be due to impaired excretion. Additional studies are needed to clarify the relationship
between glucuronidation and UGT1A1*28, and to examine whether the variants have an
effect on breast cancer reduction in women undergoing raloxifene treatment.

Epirubicin
Epirubicin, the 4′-epi-isomer of doxorubicin [140], is used for the treatment of advanced
breast cancer (reviewed in [141,142]) and gynecological cancers [143,144]. Its primary
cellular target is topoisomerase II [140], and one of its main toxic effects is
myelosuppresssion [145]. Epirubicin is metabolized quickly in the human body to form
epirubicin-glucuronide, epirubicinol and epirubicinol-glucuronide [146,147]. Studies with
human liver microsomes expressing specific human UGTs and recombinant enzymes have
demonstrated that epirubicin glucuronide is formed by UGT2B7 [148]. No differences in
glucuronidation were observed in HEK-293 cells expressing UGT2B7*1a (reference
sequence) and the common UGT2B7*2a variant [148]. Subsequent studies in Caucasian
human liver microsomes showed that samples containing UGT2B7 haplotype 4 (−45597G;
−6682_−6683A; 372A; IVS1+9_IVS1+10A; IVS1+829T; IVS1+985G; IVS1+999C;
IVS1+1250G; 801T; IVS4+185C) had a statistically significant 27% average increase in
epirubicin glucuronidation compared with the diplotypes without haplotype 4 [149]. The
putative functional variants of haplotype 4 are IVS1 +985A>G, +735A>G and +1062C>T.
One of these variants, 735A>G (UGT2B7*1c), has recently been associated with higher in
vivo and in vitro zidovudine clearance and hepatic UGT2B7 expression [150]. The effect of
this allele and the other two putative functional variants in the in vivo glucuronidation of
epirubicin need to be tested in clinical studies.

The UGT2B7 promoter variant −161C/T has been associated with differences in morphine
glucuronidation in acute pain patients. In this study, −161C/T was in complete linkage
disequilibrium with UGT2B7*2a, and individuals with −161C/C and 802C/C genotypes had
reduced morphine glucuronidation [151]. However, other clinical studies have not found an
association between these two variants and either morphine glucuronidation to morphine
serum ratios or morphine analgesic effect [152-154]. A recent pharmacogenetic study of
epirubicin in breast cancer patients studied the impact of −161C/T on pharmacokinetics and
toxicity [155]. Patients with the CC genotype had a significant decrease in epirubicin
clearance (88.9 l/h) compared with CT and TT patients (129 l/h). Incidence rates of grade 3–
4 leukopenia during cycle 1 were also higher in CC carriers (78%) versus CT and TT (48%)
[155]. As the functional significance of −161C/T has not been proven, future studies are
needed to validate these findings and assess the impact of haplotype 4 on epirubicin
pharmacokinetics and pharmacodynamics.

Vorinostat
Vorinostat, also known as suberoylanilide hydroxamic acid, is an oral inhibitor of histone
deacetylases. It was approved in 2006 by the FDA for the treatment of cutaneous T cell
lymphoma [156]. It is also being tested for the treatment of a number of solid malignancies
[157-159]. Toxicity includes thrombocytopenia, diarrhea, nausea and anorexia [158-160].

Vorinostat undergoes extensive metabolism to two inactive metabolites: an O-glucuronide
and 4-anilino-4-oxobutanoic acid [161-163]. In vitro experiments with UGT overexpressing
cell homogenates showed high levels of vorinostat glucuronidation metabolism by hepatic
UGT2B17 and UGT1A9, and extrahepatic UGT1A8 and UGT1A10 [164]. UGT1A3 and
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UGT1A7 also glucuronidated vorinostat but to a lower extent. Another study of recombinant
UGTs confirmed the major contribution of UGT2B17 to vorinostat glucuronidation and also
identified UGT1A1 and UGT2B7 as important hepatic isoforms [165]. In vitro experiments
investigated the effect of the copy-number variation in UGT2B17 (UGT2B17*2) and
missense polymorphisms in UGT1A7, UGT1A8 and UGT1A10 on vorinostat
glucuronidation (Table 4) [164]. Human liver microsomes with UGT2B17*2/*2 genotype
had significantly lower vorinostat glucuronidation activity and UGT2B17 mRNA levels
compared with livers with at least one UGT2B17*1 allele. Similar levels of glucuronidation
and gene expression were observed for individuals with one or two UGT2B17*1 alleles.
Homozygotes for UGT2B17*2 also had lower affinity (higher Michaelis constant value) for
vorinostat compared with homozygotes for UGT2B17*1. Regarding the polymorphisms in
extra hepatic tissues, UGT1A7*2, *3 and *4 did not have an impact on vorinostat
glucuronidation, while UGT1A8*2 had decreased glucuronidation capacity, and both
UGT1A8*3 and UGT1A10*2a exhibited no glucuronidation activity. Clinical studies are
needed to further explore the association of UGT polymorphic variation and response to
vorinostat.

Flavopiridol
Flavopiridol is a cyclin-dependent kinase inhibitor in clinical development for the treatment
of chronic lymphocytic leukemia [166]. It has a dose-limiting toxicity of secretory diarrhea
when administered as a 72-h continuous infusion [167-169] attributable to luminal exposure
to flavopiridol [167].

Studies in human liver microsomes have shown that flavopiridol forms two glucuronides.
The major metabolite is 7-O-β-glucopyranuronosyl-flavopiridol, formed mainly by
UGT1A9 and to a minor extent by UGT1A1, UGT1A4, UGT1A8 and UGT1A10 [170,171].
5-O-β-glucopyranuronosyl-flavopiridol, the minor glucuronide, is formed by UGT1A1,
UGT1A4 and to a lower extent by UGT1A9 [170,171]. In a study with Caucasian human
livers, no association was observed between flavopiridol glucuronidation, UGT1A9 mRNA
levels and UGT1A9*1b and I399C>T polymorphisms [171]. In vitro hepatic flavopiridol
glucuronidation also does not appear to be affected by the rare coding variants, UGT1A9*2
(C3Y) and UGT1A9*3 (M33T) [80].

Flavopiridol glucuronidation has correlated with toxicity. A clinical trial of 22 metastatic
renal cancer patients used the ratio of flavopiridol glucuronide to parent drug in plasma
(metabolic ratios) at the end of the infusion during cycle 1 as a marker for UGT activity
[167]. The metabolic ratios showed a bimodal distribution. Patients who experienced
diarrhea had significantly lower glucuronidation activity than those without toxicity.
Correlation between glucuronidation and response rates could not be examined, as the drug
was inactive in this patient cohort.

A pharmacogenetic study administered flavopiridol as an intravenous infusion for 1 h to 55
patients with refractory neoplasms [172]. The dose-limiting toxicities observed were
neutropenia, fatigue and diarrhea. The study investigated the effect of UGT1A1*28 and
found no association between the variant allele and either pharmacokinetics or the
occurrence and severity of diarrhea and neutropenia. This is consistent with in vitro
evidence showing that UGT1A1 plays a minor role in flavopiridol glucuronidation.

TAS-103
TAS-103 inhibits topoisomerases I and II and the function of the signal-recognition particle
in directing the delivery of secretory proteins [173]. Correlation studies with human liver
microsomes showed that TAS-103 is glucuronidated mainly by UGT1A1 [174]. A clinical
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trial of TAS-103 administered weekly at various doses investigated the influence of
UGT1A1*28 on pharmacokinetics and severe toxicity [175]. Drug-related toxicities included
neutropenia and mild thrombocytopenia. There was no relationship between TAS-103 and
TAS-103G concentrations and UGT1A1*28. At 130- and 160-mg/m2 doses, the majority of
the UGT1A1*28/*28 carriers experienced dose limiting toxicities (67%) compared with 40%
of the individuals with UGT1A1*28/*1 and 11% of those with UGT1A1*1/*1. The number
of patients in each dose group was small, however, and further studies are needed to
evaluate the effect of UGT1A1 genetic variation on response to TAS-103.

Additional genetic variation to be investigated in future studies
This article focused on polymorphisms associated with response to anticancer agents.
Genetic variation also exists in other UGT genes and could be investigated in future studies
of drugs metabolized by these specific UGT isoforms. Among these additional candidate
polymorphisms is UGT2B15*2 (235G>T, D85Y) [176], a common allele (reviewed in [9])
that is associated with reduced in vitro and in vivo glucuronidation of oxazepam [177-179]
and diminished in vivo clearance of lorazepam [180]. Another important and common
polymorphism is UGT1A6*2 (S7A/T181A/R184S) [181], which appears to play an
important role in the glucuronidation of UGT1A6 substrates, although these effects are
substrate dependent in vitro [181-183]. In vivo, UGT1A6*2 has been associated with
reduced exposure to acetaminophen and salicylic acid [184,185]. Other UGT1A6 variants,
present at a lower frequency (1–2%), include UGT1A6*3 (R184S) and UGT1A6*4 (T181A),
but their functionality has not been studied (reviewed in [9]). Additional UGT1A9
polymorphisms to those discussed include UGT1A9*3 (M33T), which also shows a
substrate-dependent effect in vitro and is present at an allele frequency of 4% in Caucasians
[80,186].

Discussion
Many anticancer agents are metabolized by glucuronidation. Polymorphisms in the UGT
genes may affect how patients respond to these drugs. Irinotecan, a drug used for treating
metatastic colorectal cancer and other tumor types, has been studied in multiple
pharmacogenetic studies aiming to determine how genetic variation in UGT1A influences
drug-treatment response. Many studies have demonstrated how UGT1A1*28 and
UGT1A1*6 increase the risk for experiencing severe neutropenia
[32,34-38,41,42,46,48,49,59,60,64,88], the most frequent dose-limiting toxicity of
irinotecan treatment. Although some studies suggest genetic variation in UGT1A9 and
UGT1A7 may also influence response to irinotecan treatment [46,47,48,49,60,70], no firm
conclusion can be drawn as there is high linkage between allelic variation in these genes and
both UGT1A1*28 and UGT1A1*6 [42,47,48,70,79-82,86]. The latest studies are using
haplotype approaches to study the combined effects of UGT polymorphisms on irinotecan
pharmacodynamics and pharmacokinetics [42,62,70,82]. Genotype-directed studies are also
being conducted to individualize treatment and find optimal irinotecan doses in patients,
depending on their UGT1A1 genotypes [92-95]. Tamoxifen, used in the treatment of
estrogen-receptor-positive breast cancer, is metabolized extensively in the human body. In
vitro studies have investigated the effect of several UGT variants on glucuronidation of the
drug and its active metabolites. Candidate polymorphisms to be studied in vivo for their
capacity to predict clinical response include UGT2B7*2a, UGT1A8*3 and UGT1A4*3b
[119,129]. Epirubicin, used to treat advanced breast and gynecological cancers, causes
leukopenia. Incidence of severe toxicity in breast cancer patients taking epirubicin has been
associated with the UGT2B7 −161C/T variant [155]. Future studies are needed to validate
these findings and study the effect of UGT2B7 haplotype 4 on drug response [149]. In vitro
studies of vorinostat, used in the treatment of cutaneous T cell lymphoma and solid
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malignancies, suggest that UGT2B17*2 and UGT1A8*2 may influence how individuals
react to the drug [164]. In conclusion, candidate polymorphisms in the UGT genes have
been identified for a number of anticancer drugs. Future studies are needed to validate
findings and clinically test whether genotyping will help predict response to these drugs.

Conclusion
Genetic variation in the UGT gene is associated with response to anticancer agents. The best
example to demonstrate the clinical impact of UGT polymorphisms on anticancer treatment
is irinotecan, used in colorectal cancer therapy. The reduced-function alleles UGT1A1*28
and UGT1A1*6 predict for the risk of severe irinotecan toxicity and help identify cancer
patients who could benefit from reduced doses of irinotecan or alternative chemotherapy.
Functional variants in the UGT1A4, UGT1A8, UGT2B7 and UGT2B17 genes also predict
the in vitro or in vivo glucuronidation of tamoxifen, epirubicin and vorinostat, although the
functional consequences of these variants still need to be tested in the clinical setting.

Future perspective
The results from studies that have been conducted thus far are promising, and future studies
will continue to identify and investigate the functional consequences of individual
polymorphic variants and haplotypes to predict drug pharmacokinetics and
pharmacodynamics.

Prospective studies of the effect of genetic variation in candidate genes should be conducted,
ensuring that the study design has adequate statistical power and controls to account for the
effects of covariates. Genetic testing will be more widely used prior to treatment in order to
optimize dosage, predict risk for adverse effects and help identify patients who could benefit
from either reduced doses or other chemotherapy agents.

Although selecting genes associated with drug disposition has shown promising results for
irinotecan patients, new technological advances will allow researchers to adopt genome-
wide approaches involving single nucleotide polymorphisms arrays, microarrays and
proteomics to select new candidate genes and analyze extended haplotypes.
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Table 3
Polymorphic variation in UGT associated with irinotecan toxicity (p < 0.05).

UGT allele Clinical effect

UGT1A1*28 Increased severe neutropenia in Caucasians [32,34-38,46,88] and
Japanese populations [41,42]
Increased leukopenia in Japanese populations [39-41]
Decreased ANC nadir in Caucasians [31,32]
Increased severe diarrhea in Caucasians [38,43-46] and Japanese
populations [39,40]

UGT1A1*60 G/G genotype was associated with severe hematologic toxicity when
compared with T/T at frst cycle in Caucasians [70] but was not
confirmed in multivariate analysis

UGT1A1*93 Increased severe neutropenia in Caucasians [32,37,69]
Decreased ANC nadir in Caucasians [32]

UGT1A1*6 Increased severe neutropenia in Japanese populations [41,42,48,49,60,64],
Koreans [48,49] and Chinese populations [59]
Increased leukopenia in Japanese populations [41]

UGT1A7*2 Lack of severe neutropenia or diarrhea in Caucasians [47]

UGT1A7*3 Lack of severe neutropenia or diarrhea in Caucasians [47]
Increased severe hematologic toxicity in Caucasians [70]
Increased severe diarrhea in Koreans [48,49]

UGT1A7*4 Increased severe neutropenia and/or diarrhea in Caucasians [46]

UGT1A9*1b Increased severe neutropenia or diarrhea in Caucasians [47]
Increased severe neutropenia in Japanese populations [60]
Severe hematologic toxicity in Caucasians [70]
Decreased severe diarrhea in Koreans [48,49]

ANC: Absolute neutrophil count; UGT: Uridine 5′-diphosphoglucuronosyltransferase.
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