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Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the
Treg phenotype can also be induced in peripheral lymphoid organs
or in vitro by stimulation of conventional CD4+ T cells with IL-2 and
TGF-β. There have been divergent reports on the suppressive ca-
pacity of these TGF-Treg cells. We find that TGF-Tregs derived from
diabetes-prone NOD mice, although expressing normal Foxp3 lev-
els, are uniquely defective in suppressive activity, whereas TGF-
Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice
all function normally. Most Treg-typical transcripts were shared by
NOD or B6g7 TGF-Tregs, except for a small group of differentially
expressed genes, including genes relevant for suppressive activity
(Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregu-
lated cluster in a broader analysis of T-cell differentiation. The de-
fect does not map to idd3 or idd5 regions. Whereas Treg cells from
NODmice are normal in spleen and lymph nodes, the NOD defect is
observed in locations that have been tied to pathogenesis of di-
abetes (small intestine lamina propria and pancreatic lymph node).
Thus, a genetic defect uniquely affects a specific Treg subpopula-
tion in NOD mice, in a manner consistent with a role in determining
diabetes susceptibility.

Foxp3+regulatory T cells (Tregs) are crucial for themaintenance
of lymphoid homeostasis and self-tolerance. Several lines of

evidence indicate that Tregs play an important role in controlling
the development of type-1 diabetes (T1D). In the NOD mouse
model, transfer of Tregs can protect from diabetes, whether in
NODmice or in T-cell receptor (TCR) transgenic systems derived
therefrom (1–4). Conversely, genetic deficiencies that reduce Treg
numbers result in accelerated autoimmune diabetes (1, 5).
It is now commonly recognized that there is no intrinsic defect

in number or frequency of Tregs in the lymphoid organs of NOD
mice (6–8). From a functional standpoint, several groups repor-
ted a slight defect in the performance of NOD Tregs in standard
in vitro suppression assays (9, 10), although this was not univer-
sally observed (6, 11). In a recent report, we also found a slight
defect in this assay when performed with T cells from NOD mice,
but showed that the defect lies in an overactivity of NOD con-
ventional CD4+ T cells (Tconv), rather than in the Tregs (12);
similar findings were reported in human patients with T1D (13).
Most Foxp3+ Treg cells found in secondary lymphoid organs

originate in the thymus, but a Foxp3+ phenotype can also result
from “conversion” of mature Foxp3− CD4+ cells (Tconv) in a
variety of conditions in vivo: chronic suboptimal stimulation by
agonist peptide, exposure to agonist administered orally, during
lymphopenia-driven homeostatic expansion, or in response to
infection with helminths (14–18). These Tregs induced in vivo
(iTreg) cells were as effective as ex vivo Tregs in several func-
tional assays. They were also quite similar to, although distin-
guishable from, bulk Tregs from lymphoid organs in regard to
their transcriptional signatures (17). The gut-associated lym-
phoid tissue may be a privileged site for peripheral induction of
Foxp3+ Tregs, perhaps promoted by TGF-β and retinoic acid
produced by gut-associated dendridic cells (DCs) (19–21), al-
though this preferential conversion in the gut is not necessarily
the rule (15, 22). Recent observations indicate that gut microbes
may also elicit particular populations of Foxp3+ Tregs (23).

Besides in vivo-generated iTregs, Foxp3+ Tregs can be induced
in vitro by TCR-mediated activation of naive T cells in the pres-
ence of TGF-β and IL-2 (24) (hereafter “TGF-Tregs”). There has
been some debate as to the functionality and relevance of these in
vitro-generated Foxp3+ cells. Although they show robust Foxp3
expression, it is very unstable because of, or reflected by, in-
complete CpG demethylation at the Foxp3 locus (25). In addition,
TGF-Tregs lack a fraction of the signature genes that distinguish
Treg cells (26). From a functional standpoint, radically different
results have been reported for TGF-Tregs, ranging from highly
efficacious (24, 27–29) to largely ineffective (25, 26). In our hands,
very little suppressive activity could be found with TGF-Tregs
derived from our diabetes-related experimental mice (whether
transgenic or nontransgenic) (26).
However, quite serendipitously, we found that these results

could be ascribed to the genetic background: Whereas TGF-
Tregs derived from NOD mice were functionally very inefficient,
parallel cultures from other genetic backgrounds yielded very
effective TGF-Tregs. Follow-up functional and genetic analyses
revealed a defect in NOD Treg function that was not apparent
from the analysis of bulk lymphoid Tregs, but that may be im-
portant in a Treg subpopulation functionally relevant for con-
trolling the autoimmune response.

Results
NOD-Derived TGF-Tregs Are Functionally Impaired. As introduced
above, contradictory findings regarding the functionality of in
vitro-induced TGF-Tregs have been reported. While continuing
to investigate putative defects in NOD Tregs, we made an ob-
servation that may account for certain of these discrepancies. As
our studies focus on T1D, we always used T cells derived from
mice of the NOD genetic background. However, comparing
donors of two genetic backgrounds in the same experiment yiel-
ded the surprising result depicted in Fig. 1. Carefully sorted
CD25− naive Tconv cells from NOD and B6.H2g7 (B6g7) mice
were activated in parallel with anti-CD3/28 beads, IL-2, and
TGF-β, under standard conditions for Foxp3 induction (24).
Foxp3 expression was induced by TGF-β with very similar effi-
cacy, measured as either the fraction of Foxp3+ cells or the mean
Foxp3 expression level (Fig. 1A). These TGF-Tregs were then
tested in a standard in vitro suppression assay for their ability to
inhibit the proliferation of naive CD4+ T cells activated with anti-
CD3 monoclonal antibody (mAb), uncovering a strong disparity
in functional activity. TGF-Tregs from B6g7 mice were quite ef-
fective in this suppression assay, but analogous cells from NOD
mice were not; ex vivo Tregs from both origins were equally ef-
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fective in our and others’ previous results (Fig. 1B). The TGF-
Tregs derived from the NOD.Eα16 strain, genetically identical to
NOD mice but protected from insulitis by an MHC class II Eα
transgene, were also inefficient suppressors (Fig. 1C), indicating
that the functional defect in NOD TGF-Tregs does not reflect
a secondary effect of autoimmunity. The defect was observed
irrespective of the source of T-cell targets (Fig. S1).
Because Foxp3 expression is usually unstable in TGF-Tregs, we

asked whether a differential Foxp3 stability might account for the
functional difference observed. This was not the case as Foxp3
expression was, if anything, more stable in NOD than in B6g7
TGF-Tregs when assayed in cocultures with target cells 72 h after
removal of TGF-β (Fig. 1D).
TGF-Tregs, just like ex vivo Tregs, are usually anergic in vitro,

most likely because of their inability to produce the IL-2 they
require. Interestingly, this was not the case for TGF-Tregs de-
rived from NOD mice. Whereas ex vivo NOD Tregs were largely
unresponsive to stimulation with anti-CD3/28 beads and IL-2, as
were both ex vivo Tregs and TGF-Tregs from B6g7 donors,
NOD TGF-Tregs proliferated vigorously in response to TCR
restimulation (Fig. 1E).
Thus, whereas Tregs from lymphoid organs of NOD mice are

indistinguishable from their counterparts from other strains, NOD
TGF-Treg cells could be distinguished by their poor suppressor
activity and by an absence of in vitro anergy (the two likely being
connected, as it stands to reason that a cell population that actively
proliferates is unlikely to be a good suppressor). This trait was
peculiar to NODmice, as TGF-Tregs from BALB/c mice behaved
like B6g7 in this respect (Fig. S2).

Gene-Expression Abnormalities Underlying Defective NOD TGF-Treg
Function. Given the striking difference in the suppressive capa-
bilities of TGF-Tregs derived from NOD vs. B6g7 mice, we
compared their transcriptomes, asking whether a discernable
difference in transcript representation might explain the func-
tional defect of NOD TGF-Tregs. Naive CD4+ Tconv cells from
6- to 8-wk-old NOD and B6g7 mice were converted to Foxp3
positivity with IL-2, anti-CD3/28, and TGF-β; after 4 d of culture,
Foxp3+ cells were sorted and RNA was extracted and amplified
for hybridization to Affymetrix ST1.0 microarrays (three in-
dependent replicates). The transcription profiles of cells from two
inbred strains can differ quite considerably but, because ex vivo
Tregs from the two strains showed similar functional competence,

we could focus our search on transcripts that differed between
TGF-Tregs but not between ex vivo Tregs. Fig. 2A plots the ratios
of expression in NOD vs. B6g7 regulatory cells, for TGF-Tregs
(x axis) vs. ex vivo Tregs (y axis). As expected, the profiles were
similar overall, most transcripts lining up along the diagonal, in-
dicative of differences present in both cell types. On the other
hand, several transcripts did stand out as uniquely differential in
NOD vs. B6g7 TGF-Tregs, including transcripts overrepresented
in B6 TGF-Tregs such as Lgals3, Art2b, or Lrrc32 or, conversely,
overrepresented in NOD TGF-Tregs (Ly6a, Aim2). Most of the
differentially expressed transcripts also stood out in a second
analysis, comparing of NOD/B6g7 ratios in TGF-Treg and in
control cells (activated with anti-CD3/28 beads and IL-2 but
without TGF-β; Fig. 2A, Lower). Of the highlighted transcripts, the
most intriguing were Lrrc32, Cd73, and Ctla4, given their contri-
bution to Treg function (30–32). As might be expected, a number
of these genes belong to the “Treg signature,” a set of transcripts
that distinguishes Tregs from Tconvs (26).
These differences might be due to genetic variation acting in-

dependently in cis on each locus. Alternatively, the differences
might reflect the differential activity in NOD of an upstream
regulator(s) that would control the transcription of a defined gene
cluster in TGF-Tregs. If the latter, one might expect that this
cluster of coregulated genes would show correlated expression in
other contexts as well. To test this notion, we performed a com-
putational cluster analysis of Treg signature genes, using as data
a large compilation of 178 microarray datasets from T lympho-
cytes at different stages of differentiation. This data group was
compiled by assembling gene-expression profiles from T cells
in several unrelated projects in our laboratory (Foxp3+ and
Foxp3−), together with the αβ T-cell datasets from the ImmGen
consortium (33) (see Table S1 for a listing of these datasets).
Genes belonging to the Treg signature (305 up-regulated genes)
were clustered using a k-means clustering algorithm, where re-
peated probes for genes were removed. Because the results of
partitioning clustering such as k-means are dependent on the
arbitrary choice of a k-factor and on the initial cluster centroids,
we used a strategy based on 100 iterations of the algorithm, with
random starting points for cluster centroids and k ranging from
5 to 30. For each resulting cluster, we computed the proportion of
genes with B6g7 > NOD expression in TGF-Tregs and in control
cells. The results are depicted in Fig. 2B, where each cluster is
shown as a dot, and red dots denote the clusters that include
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Lrrc32, taken as an indicator. This strategy clearly identified a
dominant gene cluster that included Lrrc32, which had biased
expression in TGF-Tregs (Fig. 2B, Left) but not in control cultures
for clusters of size 10–40 (Fig. 2B,Right). Fig. 2C andD represents
one such typical cluster solution, and the identities of the tran-
scripts most often associated with the Lrrc32 cluster and whose
B6g7/NOD ratio of expression in TGF-Tregs is >1.5 are listed in
Fig. 2E. In this representation, the cluster’s average B6g7/NOD
ratio for TGF-Tregs was 1.54 (P< 0.0001, one-sample t test). None
of the other clusters in either this clustering run or the runs in Fig.
2B showed a significantly biased distribution in this respect. Cluster
9 contains the main genes of interest with known ties to Treg
physiology: Lrrc32, Cd73, Ctla4, and Il2rb (Fig. 2D). Thus, this
analysis revealed the existence of a cluster of genes that tend to be
coregulated throughout T-cell differentiation and whose expres-
sion was specifically defective in TGF-Tregs from NOD mice.

Validation of the Differentially Expressed Cluster.We then turned to
validate the functional relevance of the members of the coregu-
lated cluster. One of the transcripts most differentially expressed
by TGF-Tregs was Lrrc32, which encodes GARP, a membrane
protein expressed by human Tregs but not Tconvs (30, 34, 35).
GARP associates with the latent TGF-β (LAP) complex and
functions as a LAP-presenting molecule. It may be involved in the
delivery of TGF-β during immunoregulation, and RNAi knock-
down has demonstrated partaking in the suppressive activity of ex
vivo Tregs (30). Close examination of Lrrc32 expression across
a wide set of microarray profiles from diverse populations of
Foxp3+ cells showed that the deficit in Lrrc32 was exclusive to
NOD TGF-Tregs (Fig. 3A; see Table S2 for a listing of these
datasets; all those cells showed comparable levels of Foxp3). We
confirmed by quantitative real-time PCR (qPCR) the lower ex-
pression of Lrrc32 in NOD relative to B6 TGF-Tregs; a much
more modest reduction was observed in ex vivo Tregs from spleen
(Fig. 3B). We also confirmed by qPCR and flow cytometry the
lower expression of other members of the Lrrc32 cluster such as
Cd73, Ctla4, and Il2rb in NOD vs. B6 TGF-Tregs in cells that
expressed the same amount of Foxp3 (Fig. 3 C and D).
The lower expression of GARP by NOD TGF-Tregs could be

directly relevant to their impaired suppressive activity, given the
reported function of GARP as a TGF-β–carrier/presenting pro-
tein (34, 35). Thus, we asked whether provision of GARP might
revert the functional deficit in NOD TGF-Tregs. Treg/Teffector
test cultures were supplemented with soluble GARP-Fc chimeric
protein or with control Fc protein. Addition of GARP-Fc during
the suppression assay markedly increased the functionality of

NOD TGF-Tregs, which became almost as effective as B6 TGF-
Tregs (Fig. 4A). This dose-dependent effect of GARP-Fc was
more marked in NOD than in B6 TGF-Tregs, whose activity
tended to plateau (Fig. 4B). Thus, GARP-Fc partially comple-
ments the functional deficit of NOD TGF-Tregs, an effect we
attribute to increased TGF-β presentation.

Origin of the Lrrc32 Cluster Defect in NOD TGF-Tregs. We next
attempted to track the root of Lrrc32 cluster deficiency in TGF-
Tregs from NOD mice. Immediate candidates were the diabetes-
susceptibility regions idd3 and idd5. Idd5 includes Ikzf2 (Helios,
a transcription factor that has been associated with Treg) (36) and
Ctla4, which itself shows differential B6g7 vs. NOD expression in
TGF-Tregs. Idd3 encodes Il2 and Il21 and has been strongly
implicated in Treg function (37). The levels of Lrrc32, Cd73, and
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Ctla4 were quantitated by qPCR in TGF-Tregs derived from
NOD, B6g7, and congenic mice (NOD.idd3 and two different
NOD.idd5s) that carry the idd3 or the idd5 allele from B6g7 mice
on the NOD background (38, 39). TGF-Tregs from all congenic
mice exhibited the same low levels of Lrrc32 and Cd73 as NOD
TGF-Tregs, indicating that the trans-control elements do not map
to either idd3 or idd5 (Fig. 5). A more complex picture emerged
for Ctla4. NOD-like low levels were detected in NOD.idd3 TGF-
Tregs, consistent with Cd73 and Lrrc32 profiles. On the other
hand, NOD.idd5 congenic mice showed a higher level of Ctla4
mRNA, similar to that of B6g7. Thus, whereas the Ctla4 locus is
influenced by the same transregulator(s) as other members of the
Lrrc32 cluster, this influence is also mitigated by cis-acting genetic
interactions that overcome the trans-regulatory control. There
have been discordant reports of cis control of Ctla4 levels (40–43),
and it is quite possible that the balancing influences mapped here
may account for some of the previous observations.

Underexpression of the Lrrc32 Cluster in NOD Cells: In Vivo Relevance.
It was then important to determine whether any NOD Treg
populations in vivo, defined by subphenotype or anatomical lo-
cation, might have a functional defect similar to what we found
for NOD TGF-Tregs. It is not clear which cell population, if any,
is the in vivo counterpart of in vitro-generated TGF-Tregs. It has
been argued that TGF-Tregs may represent Foxp3+ cells gener-
ated in the gut, under conditions of high levels of TGF-β and
retinoic acid, reasoning that such conversion may be important to
control the inflammatory response at a site that is continuously
exposed to microbial stimuli (19–21). Direct support for this
notion came from observations that mutation of a conserved
noncoding DNA sequence in the Foxp3 promoter that dampened
Foxp3 induction by TGF-β mainly affected the proportion of
Foxp3+ Tregs in gut-associated lymphoid tissues (44). Because
direct functional analysis of lamina propria (LP) Tregs was es-
sentially impossible because of limitations in cell numbers, we
tested the expression of the Lrrc32 cluster as a surrogate. Flow
cytometric analysis revealed a clear deficit in CD73 expression in
NOD LP CD4+Foxp3+ cells (Fig. 6A). These differences were
independent of Foxp3 expression levels, which were similar for
NOD and B6g7 LP cells. In contrast, CD73 was equivalently
expressed in the spleen of both strains. Similarly, we found a re-
duced expression of GARP by CD4+Foxp3+ cells (after short
activation) for the LP of NOD mice; in this case, a more modest
deficit in GARP expression was also apparent for splenic Tregs
(Fig. 6B). To attempt to generalize these observations, we ana-
lyzed the expression of the set of genes from the Lrrc32 cluster in
LP CD4+ T cells (in total CD4+ cells because it is essentially

impossible to rigorously purify sufficient LP Foxp3+ cells for
expression profiling, even with our optimized protocols). NOD
LP CD4+ T cells had a lower expression of many of the Lrrc32
cluster genes relative to their B6 counterpart cells, most notable
for Lrrc32 itself but also for others such as the suppressor of
cytokine signaling, Cish (Fig. 6C).
Finally, we asked whether the expression deficit of the Lrrc32

cluster in LP Tregs might also extend to locations key to the
pancreatic autoimmunity characteristic of the NOD strain, the
pancreatic lymph node (PLN) and the islet infiltrate. Indeed,
several studies have suggested a link between the gut immune
system and islet-infiltrating lymphocytes (45). For instance, islet-
infiltrating lymphocytes in the NOD pancreas express the α4β7
integrin, a gut homing receptor. In addition, a preferential traf-
ficking route from the peritoneal cavity and gut to the PLN has
been demonstrated (46). To compare insulitis on both genetic
backgrounds, we used BDC2.5 transgenic mice, which have a T-
cell repertoire skewed for a TCR reactive against a pancreatic
autoantigen, which results in profound autoimmune infiltration of
the pancreas of both the NOD and the B6g7 backgrounds.
BDC2.5/NOD and BDC2.5/B6g7 male mice were analyzed be-
tween 21 and 25 d of age. Interestingly, NOD Foxp3+ Tregs
showed a reduced level of CD73 and GARP especially in the
PLN, a key site for the presentation of islet cell antigen (Fig. 7).

Discussion
In exploring reports of the varying functional efficacy of TGF-β–
induced Foxp3+ cells, this study arrived at two important con-
clusions. First, genetic variation can markedly influence the
functional activity of TGF-Tregs through the differential acti-
vation of a coregulated cluster of suppressive genes, which likely
accounts for the contradictory results reported by certain groups.
Second, there is a focalized defect in a subphenotype of Tregs in
the autoimmune-prone NOD strain, one whose tissular distribu-
tion is consistent with a causative involvement in autoimmune
susceptibility.
It has still not been established what proportion of the gut Treg

pools is composed of locally generated iTregs, rather than reflect-
ing the local accumulation and phenotypic alteration of thymus-
derived cells. The gut is certainly the location where conversion is
likely to occur most effectively, due to supportive DC populations
and high TGF-β and retinoic acid concentrations. The present
observations, showing parallel genetic defects in TGF-Treg and
LPTreg pools fromNODmice, are consistent with the notion that
the proportion of iTregs in the gut may indeed be substantial.
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NODmice are susceptible not solely to type-1 diabetes, but also
to several other autoimmune conditions such as thyroiditis, sialitis,
or a particularly aggressive form of the disease elicited by Aire
deficiency including lethal exocrine pancreatitis (47). Although
there is evidence for a central tolerance defect in NOD mice (48),
such generic autoimmune susceptibility is also consistent with
lower efficacy of peripheral tolerance mechanisms, in particular
Foxp3+ Treg cells. It is now clear that there are no overall defects
in the thymic selection and total numbers of Tregs in the secondary
lymphoid organs of NOD mice and, like Tang et al. (8), we ob-
served no global changes over time related to progression toward
diabetes. The present results highlight a quite focal defect, not
visible in bulk Treg populations, but only after TGF-β–enhanced
conversion in vitro and in particular locales in vivo. This deficit is
not one of numbers, but rather rests in the expression of a set of
molecules important for immunoregulatory function. The loca-
tions where the defect is manifest (the PLN and the gut) are
suggestive of an association between this NOD-specific defect in
Treg function and susceptibility to autoimmunity, not only to di-
abetes but also to exocrine pancreatitis, given the aforementioned
connections between the gut and pancreatic immune systems. That
the defect is manifest only in these locations suggests that Treg
cells do not recirculate from there back to lymphoid organs, at
least not in sizeable numbers. However, it should be acknowledged
that this association is only a correlation at this stage. Un-
fortunately, none of the genetic manipulation tools in hand allow
us to experimentally test this connection (i.e., no factor has been
shown to be required by all iTreg cells and only by them).
At a practical level, these results imply that explorations of

human Treg function must be evaluated with caution: The in vitro
suppression assay performed on bulk Tregs from lymphoid organs
or blood yields only a restricted window on the activity of the
entire Treg population and is likely to miss focal perturbations in
cell pools that may be more directly relevant to disease. Thus,
more specific analyses of human patients will be necessary. Sug-
gestively, Badami et al. observed a reduced frequency of Foxp3+
Tregs in duodenal biopsies from T1D patients (49). Whereas this
result is not exactly superimposable on our data (numbers rather

than function), they do support the notion that broad explora-
tions of Treg subphenotypes will be necessary and that the defect
in NOD iTregs may have a counterpart in human diabetes.
From a molecular standpoint, what accounts for the defective

function of TGF-Tregs? The comparative gene-expression profile
revealed not one but several highly valid candidates, and it seems
likely that the combined deficit, rather than any single one,
explains the deficiency. That NOD alleles of several genes would
all have cis-acting sequence variation resulting in reduced ex-
pression in the specific context of TGF-Tregs seemed rather im-
plausible, a view supported by the observation of a coregulated
gene cluster that includes many of the NOD/B6 differentially
expressed genes. Thus, NOD mice would have a defective con-
trolling factor or pathway particularly called upon during the in-
duction phase of the TGF-Tregs and in gut Treg subphenotypes.
It is quite striking that this cluster includes a veritable “bouquet”
of molecules directly relevant to Treg suppressive activity, each
representing different mechanisms of action (inhibitory cos-
timulation, TGF-β signaling, and purinergic inhibition). Cor-
egulation of genes that partake in a concerted pathway is a common
theme in biological regulation, and it is interesting that distinct im-
munoregulatory pathways would be coordinated in this manner in
the transcriptional control of T cells.
It will be important to identify the cause of the iTreg-specific

underexpression of the Lrrc32 cluster. Foxp3 itself is not a can-
didate, as it is equivalently expressed in NOD and B6g7 mice and
is not coregulated with the Lrrc32 cluster. Helios (encoded by
Ikzf2) was an attractive candidate because it actually maps to the
idd5 diabetes-susceptibility region. However, we excluded Ikzf2
(and idd5), as well the idd3 locus, which has also been implicated
in Treg function, because NOD.idd5 and NOD.idd3 congenic
mice exhibited defective TGF-Tregs and the same low level of
GARP as NOD mice.
One might also speculate that there is a molecular relationship

between this Treg phenotype and the overreactivity of mature
CD4+ Tconv cells, manifest as increased phosphorylation cas-
cades immediately downstream of TCR engagement and more
robust proliferation (12, 50). NOD Tconv cells might keep a
“molecular memory” of these robust responses, with an inefficient
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induction of the Lrrc32 cluster, even while Foxp3 is normally
induced. Indeed, NOD TGF-Tregs fail to establish the usual trait
of in vitro anergy. Thus, one might speculate that an altered
balance of signaling downstream of the TCR results in increased
proliferation on the one hand and in lower activation of the
pathway controlling the Lrrc32 cluster on the other. It is easy to
envisage that such a dual imbalance would lead to increased
susceptibility to autoimmunity.

Materials and Methods
Mice. NOD/LtDOI (NOD), NOD.Eα16, C57BL/6.H2g7 (B6g7), BDC2.5/NOD, and
BDC2.5/B6g7 TCR transgenic mice were maintained in specific pathogen-free
facilities at Harvard Medical School (Institutional Animal Care and Use Com-
mittee 99–20, 02954). NOD.idd3 and NOD.idd5 were purchased from Taconic.

Cell Sorting and Flow Cytometry. Flow cytometric analysis was performed as
previously described (26) and is discussed in SI Materials and Methods.

In Vitro Conversion Assay. In vitro Foxp3+ converted cells were generated as
described (26) and as detailed in SI Materials and Methods.

In Vitro Suppression Assay. In vitro suppression assay was performed as
previously described (12) and details are given in SI Materials and Methods.

Gene Expression Analysis. RNA was prepared as described (26). Details are
provided in SI Materials and Methods.
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