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A pervasive issue in social and environmental research has been
how to improve the quality of socioeconomic data in developing
countries. Given the shortcomings of standard sources, the present
study examines luminosity (measures of nighttime lights visible
from space) as a proxy for standard measures of output (gross
domestic product). We compare output and luminosity at the
country level and at the 1° latitude × 1° longitude grid-cell level
for the period 1992–2008. We find that luminosity has informa-
tional value for countries with low-quality statistical systems, par-
ticularly for those countries with no recent population or economic
censuses.
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One of the central issues in social and environmental research
has been how to improve the quality of socioeconomic data

in developing countries. Many countries of tropical Africa, par-
ticularly those war-torn countries, have no reliable censuses of
population and only rudimentary economic statistics. The poor
quality of the data has hindered attempts to understand economic
growth, poverty, health status, and environmental quality in these
countries. The lack of good regional data has been even more
daunting for researchers working at the subnational level, for
example in the geographically based economic data (G-Econ)
project at Yale University, which has undertaken the construction
of geophysically based data on gross output for grid cells mea-
suring 1° latitude × 1° longitude (1).
Because of the shortcomings of standard statistical sources, we

undertook to examine approaches that could supplement or
substitute for existing measures of regional output, income, and
other economic and demographic variables. The obvious place to
look was nighttime luminosity. There is a large literature on lu-
minosity and its use as a proxy for population, output, and pov-
erty. The intuitive notion is that luminosity might serve as a useful
proxy because it is objectively measured, is highly correlated with
output, and is available since 1992 for all world land areas except
for high latitudes. Fig. 1 shows a striking image of nighttime stable
lights for North America, and it is immediately obvious that high-
income regions have higher luminosity. The question is whether
these data can be usefully exploited for measuring output.
The distinct advantage of nighttime lights is that they are

a unique dataset related to human activities that is available for
most of the globe at a very high resolution. We find that with
careful processing it may provide useful information on economic
activity for countries or regions with poor-quality data systems or
no data. This conclusion is based on comparing standard output
and luminosity measures in a statistical framework for both time-
series and cross-sectional approaches for the period 1992–2008.

Use of Luminosity as a Proxy for Socioeconomic Indicators
Data on nighttime lights have been used to study regional so-
cioeconomic systems in developing countries. Previous studies
have used nighttime image data as a proxy for socioeconomic
development of particular geographic areas (2–8). Elvidge et al.
(ref. 2, p. 51) concluded, “Nighttime lights provide a useful proxy
for development and have great potential for recording human-
ity’s presence on the earth’s surface and for measuring important

variables such as annual growth for development.” In the past
decade, researchers have undertaken a series of studies to support
this conclusion. An earlier study by Elvidge et al. focused on the
correlation between luminosity and gross domestic product
(GDP) at the country level and found a strong correlation (R2 =
0.97) between illuminated area and GDP (both expressed in
logarithms) for 21 countries (3). Sutton and Costanza (4) found
a high correlation between luminosity and GDP per square ki-
lometer at the national level.
More recently, studies have used nighttime lights to predict in-

come per capita at the subnational level. Ebener et al. show that lit
area and percentage of frequency of lighting can predict GDP per
capita at the national and subnational levels. They write that, when
climate and agriculture are considered, the model yields better
results in predicting GDP (5). Later Sutton et al. (6) improved
Ebener’s model by adding estimated urban population at the state
level to solve the problem of saturation in traditional luminosity
image and applied the new model to four countries: China, India,
Turkey, and theUnited States. The variable “urban population” of
each state of a country was estimated by using a log-log linear
relationship between the size of urban areas and population. Then
they used the estimated urban population as a predictor for GDP
values for subnational administrative units and concluded that
“spatial disaggregation of estimates dramatically improves ag-
gregate national estimates” of GDP (ref. 6, p. 12).
One of the advantages of the nighttime lights data is that they

are available at a very high spatial resolution. For instance, they
have been used to construct the Human Footprint and Human
Influence Index (9) for a 30 arc-second grid (∼1 km × 1 km at the
equator). An important question is whether lights data can be
used to improve measures of economic activity at national or
subnational levels. In our application, we examine the proxy value
added of nighttime lights for 1° latitude × 1° longitude grid cells,
where the output data come from the geographically based eco-
nomic data (G-Econ) dataset. The advantage of using the G-Econ
data is that they are available for the period 1990–2005 and pro-
vide output estimates globally at a much smaller scale than stan-
dard economic accounts. For example, G-Econ data generate the
grid cell output for 3,500 observations for Russia, 1,100 for China,
and 800 for Brazil. We can therefore use the gridded data as a test
to determine the relative merits of disaggregated economic data
(based on population and business censuses) and luminosity data.
To date, virtually all studies have used the nighttime lumi-

nosity data without comparing them with other measures. A
recent National Research Council report emphasized the need
to use statistical approaches to proxy construction (10). How-
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ever, few studies have undertaken a formal statistical analysis
comparing luminosity with traditional output measures; the
pioneering study by Henderson, Storeygard, and Weil (7) using
an error-measurement approach is an important exception. We
first describe the construction of the data, then describe the
statistical model, and then present our results.

Description of the Luminosity Data
The primary nighttime image data used in the literature were
gathered by US Department of Defense satellites starting in
the mid-1960s to determine the extent of worldwide cloud cover.
The data were later declassified and made publicly available as the
Defense Meteorological Satellite Program Operational Linescan
System (DMSP-OLS). The raw data can be acquired in two spatial
resolutionmodes.The full resolutiondata, also referred to as “fine”
data, have nominal spatial resolution of 0.5 km. The “smoothed”
data are an average of 5 × 5 blocks of fine data and have a nominal
spatial resolution of 2.7 km (11). The data that we obtained from
the National Oceanic and Atmospheric Administration–National
Geophysical Data Center are constructed using the smoothed
spatial resolution mode, at a resolution of 30 arc-seconds, covering
180° W to 180° E longitude and 75° N to 65° S latitude (12).
Creation of a nighttime luminosity dataset is an undertaking

of monumental difficulty. The raw data are processed on an em-
pirical basis to correct for various optical and atmospheric dis-
tortions (see ref. 13 for a comprehensive description and ref. 14
for a description of the most recent version). Examination of the
data indicates the presence of atmospheric disturbances such as
water vapor, scanning errors, errors in mapping of the earth’s
topography, and blooming or overglow across pixels.
There are different versions of the data; three of particular im-

portance are the “raw,” the “stable lights,” and the “calibrated”
versions. The stable lights version removes ephemeral events such
as fires and background noise. The calibrated version is currently
available only for 2006 and has the advantage of not being saturated
(top-coded) at the highest intensities. We performed the analyses
here primarily with the stable lights version, but did sensitivity
checks using other measures and found only small quantitative
differences (we report on these below). This paper, therefore,
reports primarily the results based on the stable lights data.
The annual stable lights data are presented as digital numbers

(DN) from 0 to 63. The current datasets are DN proportional to
radiance. To calculate aggregate luminosity for a 1° longitude × 1°
latitude grid cell, we summed the DN values over all pixels in the
grid cell. A complete grid cell thus contains 120 × 120 pixels. This
procedure yielded 40,570 grid cells with data for 17 years, with

overlaps of 12 satellite years. The current version of stable lights
is not intercalibrated across time or satellites. We have corrected
for differences across satellites and years by using panel re-
gression estimation with fixed effects for time and satellites.
We then merged our grid cell luminosity data with G-Econ 3.4

data (available at gecon.yale.edu). Because the G-Econ data do
not cross country borders, we divided luminosity values for cells
containing a national border according to the shares of total cell
population in each subcell.
We used all available cells from merging the G-Econ 3.4 data

and DMSP-OLS time-series (version 4) data in the time-series
analysis. At the country level, we used GDP purchasing power
parity (PPP) values at constant 2005 international US dollars
from the World Bank from 1992 to 2008. We aggregated lumi-
nosities for all grid cells in a country to obtain that country’s
luminosity for the corresponding year.
Although luminosity may additionally serve as a proxy at more

disaggregated scales where no socioeconomic data are available,
the main concern with such a high-resolution proxy is reliability.
We can use estimates of the errors within and across satellites
to provide a lower-bound estimate of the measurement error in
using luminosity as an output proxy (SI Appendix, discussion in
part V and Tables S2a and S2b). Regressions using data for 1° × 1°
grid cells of the logarithm of luminosity in the same cell and year
across different satellites have SEs in the range of 0.28–0.59 (SI
Appendix, Table S2a). Similar errors are found for year-to-year
variations of individual satellites and the same grid cell. If we use
0.5° × 0.5° grid cells, we find that the logarithmic SEs are slightly
larger than those at the 1° × 1° scale. For both 1° × 1°and 0.5° ×
0.5° grid cells, the current data on luminosity are likely to produce
estimates of an output-luminosity proxy with an error of mea-
surement of output of at least 25% (SI Appendix). This mea-
surement error for lights is at present the minimum possible error
when using luminosity data as a proxy variable.
Fig. 2 is a scatter plot of log luminosity density and log output

density for all grid cells for 2006 (n = 12,393). “Log” always
refers to natural logarithms. A positive correlation is evident at

Fig. 1. Nighttime lights of North America. Nighttime stable lights for year
2006 in arc 30-s resolution are shown. The projected coordinate system of US
contiguous Albers equal area conic projection is used and the image is
generated with ArcGIS 9.3.

Fig. 2. Gross cell product (GCP) and luminosity data, all cells. Shown are the
scatter plot of log calibrated luminosity for 2006 and log of gross cell
product for all 1° × 1° grid cells. Output density is gross cell product (PPP in
billions in 2005 international dollars) per square kilometer. Luminosity
density per square kilometer is the radiance calibrated luminosity for 2006.
All grid cells (n = 12,393) are included. The solid line is the kernel estimator
using an Epanechnikov kernel and 100 grid points per kernel.
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high output densities, but the correlation is low at low output
densities. Additionally, the relationship is extremely noisy. (Plots
for the United States and Africa are shown in SI Appendix, Figs.
S1 and S2.)

Model
Analytical Background. Our ultimate purpose is to determine
whether luminosity contains useful information for constructing
economic data at either the national or the subnational level. The
most natural place to hope for value added is in countries with
poor conventional data and those with few or no data at a sub-
national scale.
We can describe the issue intuitively. Suppose you are hiking

and want to determine your exact location. You have a contour
map from which you make one estimate. Additionally, you have a
GPS device that provides another estimate. You know that each of
the estimates is measured with error. The question is how to
combine the two estimates to determine the best-guess location.
From a statistical point of view, the issue is straightforward if
you know the measurement error for each estimate as well as the
distance scales.
The problem examined here is similar in that we have two

different techniques for estimating country or grid-cell output. If
we can determine the measurement error for each technique and
the measurement scales, we can determine the best-combined
estimate. The specific parameter we are testing for is the relative
weights on the conventional output measure and on luminosity.
The basic assumption is that we have measures on luminosity

and standard output for each grid cell and country and that these
are measured with error. The variable y is the log of true output,
m is the log of nighttime luminosity, an asterisk denotes the true
value, and ε and ξ are the measurement errors for standard output
and luminosity, respectively. In addition, we assume a structural
relationship between luminosity and true output, with a co-
efficient of β and error u. We measure each variable in country or
grid cell i averaged over year t. For this exposition, we remove
means from all variables:

yi ¼ y∗i þ εi [1]

mi ¼ m∗
i þ ξi [2]

mi ¼ βy∗i þ ui: [3]

Eqs. 1 and 2 are the error processes for output and luminosity,
respectively. Eq. 3 is the data-generating process for luminosity as
a function of true output. We want to construct a luminosity-
output proxy from these relationships. Following some statistical
derivations described in SI Appendix to deal with biases from
errors in measurement of luminosity and output, we then estimate
a luminosity-output proxy as follows by inverting Eq. 3,

bzi ¼
�
1=~β

�
mi; [4]

where bzi is the log of our luminosity-output proxy and ~β is the
consistently estimated coefficient in Eq. 3, taking into account
measurement error (see SIAppendix for amore detailed discussion).
We classified countries into five “grades” (k = A, B, C, D, E)

according to the quality of their statistical systems, as described
in ref. 15 and below. Next, we construct a synthetic measure of
output by taking weighted averages of conventional measures of
output and our luminosity-output proxy,

bxi ¼
�
1− θ

�
yi þ θ bzi; [5]

where

bXi ¼ new synthetic measure of output

bxi ¼ ln
�bXi

�

θ ¼ weighting fraction on luminosity:

Our purpose is to find the optimal weights on luminosity (θ*) and
standard output (1 − θ*), where the optimal weights are ones
that minimize the mean squared error for the difference between
the synthetic measure and true output, ðbxi − yi∗Þ. SI Appendix

shows that a consistent estimator for ~θk
∗

is

~θk
∗

¼
~β2ðσkεÞ2

~β2ðσkεÞ2þ~σ2u
; [6]

where ~σ2u and ~β are the consistent estimates of σ2u and β:
The expression for the optimal weight makes intuitive sense

as we can see for each of the three terms: The weight on the
luminosity-output proxy is 0 (θ* = 0), and that on measured
output is 1, when ~β ¼ 0 (that is, when luminosity is unrelated to
true output), or when ðσkεÞ2 ¼ 0 (when there is no measurement
error in output), or when ~σ2u is indefinitely large (when the re-
lationship between luminosity and output is extremely noisy).
The present study provides consistent estimates of these

weights. It is well established that weighting estimates for proxies
need to be treated in a statistical manner (10). Estimating the
errors of the weights through bootstrap and Monte Carlo
methods is an important further project to determine the error
bounds on the estimates.

Estimating Errors in Conventionally Measured Output and Luminosity.
The previous section showed that the statistical model for de-
riving the optimal weights on conventional GDP measures and
luminosity is underidentified and requires estimates of the two
error variances as well as of the coefficient in the luminosity
equation. We discuss each of these terms. The first two are rel-
atively simple, but the third is difficult to estimate.
Errors in measurement of nighttime lights. The error variance of the
luminosity equation Eq. 2 can be estimated using data both from
different satellites and from different years of the same satellite,
as well as directly from estimates of Eq. 3. The estimates are
straightforward, and we therefore describe them verbally. Sat-
ellites differ in their optical quality, which may also degrade over
time. In addition, there is sampling variation because of physical
factors. In our final estimates, we use the error variance obtained
from regression results of Eq. 3, assuming that the error terms in
the structural equation are primarily caused by errors in mea-
suring luminosity. (SI Appendix, Table S5 presents a suite of
equations used to estimate Eq. 3 for grid cells.)
Estimating the structural coefficient in the luminosity equation. Esti-
mates of the coefficient β in Eq. 3 are a second ingredient in the
estimation of the optimal weights on the two measures. Our
procedure used an errors-in-variables correction to calculate an
unbiased estimate of β (SI Appendix, Table S5).
Errors in output measurement. The most difficult parameters to
determine are the errors of standard GDP measures for different
countries. National statistical offices typically do not provide
error estimates on GDP. Depending on the country and the time
period, many errors arise in measuring national output because
of conceptual differences, data sources, index construction, and
sectoral definitions such as how to treat home production. For
our purposes, we define the “ideal” measure of output as one
corresponding to the concept outlined in the United Nations
System of National Accounts (16).
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We can distinguish two different kinds of errors. The first are
time-series errors. Statistical agencies generally keep the concep-
tual basis of their output estimates as well as the data sources
invariant over time (at least for short periods); errors arise pri-
marily from errors in the source data or errors in aggregation.
Moreover, because there are two or three alternative methods of
constructing national output (e.g., income and expenditure), we
can examine the statistical discrepancy between them to arrive at
a first estimate of the measurement error.
The second kinds of measurement error are cross-sectional

level or density errors. These would apply to comparisons of
output per unit area in a common currency across countries or
regions. Cross-sectional errors have a multitude of sources in-
cluding data errors, differences in concepts, and price measure-
ment errors, as well as errors in measuring appropriate exchange
rates across different currencies. Moreover, there are no iden-
tities that provide alternative estimates of the kind that produce
the statistical discrepancy in time-series measures. We therefore
expect the cross-sectional errors to be larger than the time-
series errors.
In addition, because we examine both country output data and

grid cell output data, we consider errors in both of these geo-
graphical levels as well as in time-series and density estimates
(Table 1). In our estimates of measurement errors, we rely on the
country grading system defined by the Penn World Table (PWT)
and other authors (15, 17). The authors of the PWT assigned
countries subjective quality grades from A to D on the basis of
several criteria. We add grade E for those countries with es-
sentially no statistical systems or countries that are missing from
the PWT and other standard sources. Table 2 reports the num-
ber of countries and cells by grade, and SI Appendix, Table S4
provides a complete grade sheet for all countries. A full de-
scription of the technique used to estimate measurement errors
is available in SI Appendix and in documents cited therein.
Table 1 shows our estimates of the output-measurement errors

for different countries and concepts that we use in our empirical
estimates in the next section. The estimates for country time-

series and cross-sectional (density) errors are based on a variety
of studies. For countries, the cross-sectional error estimates are
largely consistent with the PWT grades, and the growth error
estimates are largely drawn from results reported by Johnson
et al. (17). The assumption for grid cells is based on the change
for the G-Econ data between revisions. We also note that the
errors for the E countries are particularly uncertain, because they
are not found in other studies.

Results
For formal tests of the optimal weights on luminosity and con-
ventionally measured output, we conducted two sets of esti-
mates. The first set is for the growth of output from 1992 to 2008,
and the second uses output density measured as constant-price
output per unit area. We look at both country data and grid
cell data. The sample sizes are large for all estimates except the
time-series country concepts, and the sample size for countries
is small for E countries (Table 2). For density estimates using
all grid cells in all countries in all years, the sample size is
353,843 observations.
Our ultimate goal is to see how much luminosity can con-

tribute in constructing the true GDP measures. We do this by
estimating the weight θk in Eq. 6. We report θk estimates for
countries and grid cells for both the 17-y growth rates and the
output density. We also run a separate analysis for observations
with low-density GDP, because many of the low-quality statistical
systems are also in low-output-density regions. For countries, we
defined low-density observations as those where log 2000 GDP
per unit area is <11.5 and belongs to C, D, or E country grades.
For grid cells, we defined low-density observations as those
where output density is <$8,100/km2 in 2000. Low-density cells
contributed in 2000 ∼2.7% of global output, 12.3% of global
population, and 73.5% of global land total.
Figs. 3 and 4 show the estimated weights on luminosity (θk)

for countries and grid cells, respectively. Detailed estimates are
presented in SI Appendix, Tables S6 and S7. The main results are
as follows. First, for the time-series estimates, the luminosity

Table 1. Estimates of errors of national and gridded GDP data used in estimates of combined
measures of output

Country grade

Estimates for country output Estimates for grid-cell output

1-y growth rate, % Output level, % 1-y growth rate, % Output level, %

A 0.6 10 1.2 20
B 0.8 15 1.6 30
C 3.0 20 4.0 40
D 5.0 30 5.0 60
E 6.0 50 8.0 100

Country grades are from the Penn World Table and ref. 17. Estimated errors by authors are described in SI
Appendix. Generally, A countries have highest-quality systems, C countries are middle-income countries, and
grade E countries have little or no operative statistical systems and often have not had population censuses for at
least a decade. A list of countries by grade is provided in SI Appendix.

Table 2. Distribution of countries and cells without missing values by grade

Grade level No. countries No. cells Representative country

A 16 2,839 Australia, Canada, United States
B 13 881 Argentina, South Korea, Spain
C 103 6,630 Bangladesh, Egypt, Mexico, Russia
D 29 924 Algeria, Cambodia, Democratic Republic of Congo, Libya
E 9 285 Iraq, Myanmar, North Korea, West Bank and Gaza
Total 170 11,559

The list of countries by grade is provided in SI Appendix. Cells are defined as the 1° × 1° grid cell. The sample of
cells (used in the growth rate analysis) includes all available observations after merging the G-Econ dataset (3.4)
and DMSP-OLS Nighttime Stable Lights Time Series (Version 4) and taking the logarithm of both variables.
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signal adds considerable information for D countries, with a
weight of ∼30%. However, the value added by luminosity is very
small, <3%, for A, B, and C countries. We do not report E
country results because the sample size is too small.
Second, the cross-sectional (output density) estimates, shown

in green and purple bars in Figs. 3 and 4, are consistent across
both countries and grid cells. For A through D countries, lumi-
nosity has a small value added: The weights on luminosity range
from 1.0% to 12.0%. By contrast, luminosity adds substantial
value in the E countries, with a weight of 25% for all cells.
A third result concerns the relative contribution of luminosity

for grid cells and countries. We originally expected that lumi-
nosity would be more useful for grid-cell output measures be-
cause of the low quality of regional economic data in most
countries. This turns out not to be the case. Generally, the in-
formation content of luminosity is approximately the same for
grid cell data and for country data.

A fourth result concerns low-output-density observations. We
had expected that luminosity would be most valuable for low-
density observations. This hypothesis was generally not con-
firmed. For the time series for countries, low-density regions
have slightly higher weights on the luminosity-output proxy than
all regions. However, for grid-cell time series, there was little
difference in the optimal weight between low-density and high-
density regions. Surprisingly, for cross-sectional estimates for
grid cells, the weights on luminosity are uniformly lower, and
often markedly lower, for the low-density cells than for the high-
density cells, except for D countries. Part of the reason is that
luminosity data derived from stable lights are zero for many low-
density cells. Of the 6,841 low-density cells with positive output,
36% have zero recorded stable lights luminosity. The difficulty is
that the low level of anthropogenic lights in these regions cannot
be distinguished from the background noise. Because improving
estimates of output in just these cells is one of the important

Fig. 3. Summary estimates of the value of θ or the weight on luminosity for countries of different grades. Shown is the estimated optimal weight (θ) for the
both 17-y growth rate (TS) and cross-sectional data (XS) for countries. Blue and green bars indicate the values of θ for all countries, and red and purple bars
indicate estimates for low-GDP density countries only. The sample size for the E countries is too small to be statistically reliable.

Fig. 4. Summary estimates of the value of θ or the weight on luminosity for cells of different grades. See Fig. 3 for description. Note that the sample size for
cells is generally large (Table 2). There are no observations for high-density E countries.
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objectives of using luminosity as a proxy, this finding is a major
hurdle for this approach.
We examined several other sensitivity tests and specifications.

As an alternative to the global data, we examined output and lu-
minosity data for US states (SI Appendix, Table S9). This test is
useful becauseUS states provide themost accurate cross-sectional
data constructed with a uniform and high-quality methodology.
They are less accurate than the US national data but in our
judgment are better for comparative purposes than any other set
of regional data. We obtained real annual GDP by state from
the US Bureau of Economic Analysis and aggregated luminosity
to the state boundaries. We assumed that states are the equivalent
of grade B countries. Using the standard approach in Eq. 6, we
calculate that the optimal weight on luminosity is <1% for the
growth rate and <7% for the density measure. This result rein-
forces the finding that for countries with high-quality data systems,
luminosity has a small proxy value for estimating economic output.
Additionally, we examined three other measures of nighttime

lights. One set was the averaged raw light data. The raw light
data have the advantage of containing nonzero values for most
cells, but an analysis shows that the noise in the raw lights data
leads to less precise estimates than those for stable lights. Ad-
ditionally, we used the series with calibrated lights for 2006 for
the density analysis. The results were virtually identical to the
results based on stable lights (SI Appendix, Table S10).
A third alternative measure was the intercalibrated data.

Elvidge et al. (18) generated equations for intercalibrating the
annual nighttime light time series. However, these equations
apply to the “avg_lights_x_pct” products and not to stable lights,
and they generate many cells with negative values for lights. We
nevertheless tested the series applying the intercalibrations to
the stable lights series. We found the coefficients are generally
less precise, but the basic results for the weights on luminosity
are very close to our preferred estimates. Given these difficulties,
we did not pursue the intercalibrated data (see SI Appendix for
a further discussion).
We also we investigated an alternative statistical approach to

correct for errors in measurement of output. The present study
relies on classical errors in variable corrections to derive a con-
sistent estimate of β in Eq. 3. In addition, for the cell analysis, we
used an instrumental variables (IV) approach in adjusting gross
cell output error, using as instruments a suite of exogenous cell
variables such as climate, proximity to ports, and population
density. The results differ very little from the correction using
classical measurement error except in the case of the cross-sec-
tional output of grade E countries (SI Appendix, Table S8). Be-

cause the results of the IV approach are very similar to those of
the standard approach, we do not pursue this approach further.
We note additionally that these findings may overestimate the

value of luminosity for regions where stable lights are set at zero.
About 22% of cells with positive output (2,478/10,882) are re-
corded as having zero stable lights. These cells are therefore
omitted from the estimates. The luminosity-output proxies are
therefore available only for cells with positive stable lights. The
zero-lights cells are only a small fraction of global output, but they
are ones that tend to have the lowest-quality economic data. More
than half of the grade E grid cells are recorded as having a value of
zero for stable lights (in effect, truncating the lower tail of the lights
distribution). Because we use logarithmic regressions, we must
omit the zero-value observations. Therefore, the results based on
stable lights probably overestimate the potential contribution of
luminosity as a proxy for economic output.

Summary and Conclusions
This study proposed a method and then implemented it for the
question of whether nighttime luminosity measures could be
used to improve estimates of output at the regional level. The
tests are particularly aimed at countries and subnational regions
with low-quality data systems.
We find that luminosity is likely to add value as a proxy for

output for countries with the poorest statistical systems, those
that receive a D or an E grade, but has very limited value added
for A, B, and C countries. This is true at the national level and at
subnational levels where data are available. The reason for the
low value added of luminosity in high-grade countries is that the
luminosity data have high measurement error and the mea-
surement errors in the standard economic data are relatively
small. We further determined that luminosity data do not allow
reliable estimates of low-output-density regions largely because
the level of stable lights is too low to be distinguished from the
background lights and is set at zero. We conclude luminosity
data may be a useful supplement to current economic indicators
in countries and regions with very poor quality or missing data.
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