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Abstract

Epigenetic reprogramming is a critical event in the generation of induced pluripotent stem cells (iPSCs). Here, we
determined the DNA methylation profiles of 22 human iPSC lines derived from five different cell types (human
endometrium, placental artery endothelium, amnion, fetal lung fibroblast, and menstrual blood cell) and five human
embryonic stem cell (ESC) lines, and we followed the aberrant methylation sites in iPSCs for up to 42 weeks. The iPSCs
exhibited distinct epigenetic differences from ESCs, which were caused by aberrant methylation at early passages. Multiple
appearances and then disappearances of random aberrant methylation were detected throughout iPSC reprogramming.
Continuous passaging of the iPSCs diminished the differences between iPSCs and ESCs, implying that iPSCs lose the
characteristics inherited from the parent cells and adapt to very closely resemble ESCs over time. Human iPSCs were
gradually reprogrammed through the ‘‘convergence’’ of aberrant hyper-methylation events that continuously appeared in a
de novo manner. This iPS reprogramming consisted of stochastic de novo methylation and selection/fixation of methylation
in an environment suitable for ESCs. Taken together, random methylation and convergence are driving forces for long-term
reprogramming of iPSCs to ESCs.
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Introduction

DNA methylation is an important epigenetic modification and is a

key component in normal differentiation, development and disease

[1–3]. Expression of tissue-specific genes, such as Oct-4 [4], Nanog [5],

Sry (sex determining region on Y chromosome) [6] and MyoD [7], are

induced by spatio-temporal demethylation during development.

DNA methylation therefore specifically varies depending on tissue

types and cell linage [2], indicating that information regarding cell

type-specific DNA methylation profiles can enable the identification

and validation of cell types. Transformation of iPSCs from somatic

cells requires a process of epigenetic reprogramming promoted by

transient ectopic expression of defined transcription factors expressed

in ESCs [8–11]. Human iPSCs are considered to be powerful

resources in regenerative medicine because of their potential of

pluripotency and avoidance of rejection of their derivatives by the

immune system, and for ethical issues as well [12]. Although iPSCs

show pluripotency, they have different propensities for differentiation

in mouse models [13]. Human iPSCs also exhibit donor cell-specific

gene expression [14,15]. Moreover, iPSCs possess inherited DNA

methylation states as epigenetic memories from parent cells [15–17],

suggesting that these memories influence different propensities of the

iPSCs. On the other hand, continuous passaging of mouse iPSCs

reduces differences from each other in gene expression profiles [15].

Epigenome-wide analysis started to be used in this field [18,19], and

differentially methylated regions have been identified among human

iPSCs, their parent cells and ESCs [17,20]. Aberrant epigenetic

reprogramming has recently been reported in human iPSCs [21,22].

However, these analyses were limited to the use of a small number of

cells as a source for generation of iPS cells. Moreover, human iPSCs

have only been analyzed at a single point of passage. Therefore, it has

not been clarified whether human iPSCs generated from various

types of cells are dissimilar from each other at different points during

passage; how continuous passaging of human iPSCs influences the

differences between iPSCs and ESCs; and how aberrant methylation

in human iPSCs during passaging. To address these issues, we

compared the epigenetic and transcriptional states of human iPSCs

derived from five cell types of different origins during passage, and

found random aberrant hyper-methylation at different points of

adaptation into ESCs.

Results

Establishment of human iPSCs
Human iPSCs derived from fetal lung fibroblasts (MRC5),

amnion (AM), endometrium (UtE), placental artery endothelium

(PAE) and menstrual blood cells (Edom) were independently

established in our laboratory by retroviral infection of 4 genes
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(OCT-3/4, SOX2, c-MYC, and KLF4) (Figure 1A, 1B and Table

S1). These cells clearly showed human ES-like characters in terms

of morphology; cell-surface antigens; gene expression of stem cell

markers; teratoma formation in which these cells differentiated to

various tissues including neural tissues (ectoderm), cartilage

(mesoderm), and epithelial tissues (endoderm); growth (more than

20 passages); and DNA methylation patterns at OCT-3/4 and

NANOG promoter regions (Figures S1, S2, S3). Short tandem

repeat (STR) analysis showed clonality between the respective

iPSC lines and their parent cells (Table S2). Silencing of transgenes

and normal karyotypes of iPSCs were also confirmed (Figure S4

and Table S3).

Analysis of DNA methylation profiles
To investigate the dynamics of DNA methylation in pluripotent

stem cells, we examined 5 ESC lines (HUESCs) [23,24], 22 iPSC

lines, their parent cells and 201B7, using Illumina’s Infinium

HumanMethylation27 BeadChip. In total, 24,273 CpG sites in

13,728 genes were analyzed, along with 33 human cell lines (Table

S1). The iPSC line ‘‘201B7’’ was generated from human skin

fibroblasts [8]. Quantitative scores of DNA methylation levels

were obtained as b-values determined from the Illumina analysis,

ranging from ‘‘0’’, for completely unmethylated, to ‘‘1’’, for

completely methylated. We also performed genome-wide gene

expression analysis using the Agilent Whole Human Genome

Microarray chips. As assessed by unsupervised hierarchical

clustering analysis and scatter plot of DNA methylation and gene

expression data, human iPSCs could be clearly discriminated from

their parent cells and were similar to ESCs (Figure 1C and Figure

Author Summary

iPSCs change to resemble ESCs via two phases: the
transgene-dependent phase, in which the transcription
factors act to transform somatic cells into pluripotent stem
cells, and the transgene-independent phase, in which the
transcription factors are silenced. In this study, we
established human iPSCs derived from 5 different cell
types by retroviral infection of the Yamanaka 4 factors, and
we identified 8 novel epigenetic markers (SALL4, EPHA1,
PTPN6, RAB25, GBP4, LYST, SP100, and UBE1L) by compre-
hensive DNA methylation analysis. The aberrant hyper-
methylation in iPSCs occurred stochastically throughout
the genome and decreased during the long-term iPSC
reprogramming, suggesting that the aberrant stochastic
hyper-methylation and their convergence are a direct
cause of the transgene-independent phase of iPS repro-
gramming. These results favor the stochastic model of the
Yamanaka model rather than the elite model. In addition,
the stem cell–specific methylation states and the epige-
netic difference between iPSCs and ESCs are useful indices
for evaluating human iPSCs in therapeutic applications.

Figure 1. Pluripotent stem cells are significantly more hyper-methylated than their parent cells. (A) The human cell origins used for
generation of iPSCs. (B) Morphology of the parent cells (upper panels) and iPSCs (lower panels). (C) Unsupervised hierarchical clustering analysis
based on DNA methylation. (D) Distribution of 24,273 CpG sites with their methylation scores in the parent cells, iPSCs and ESCs. (E) The average
number of high (.0.6) methylated CpG sites. The iPSCs have more highly methylated sites than the parent cells.
doi:10.1371/journal.pgen.1002085.g001

Aberrant DNA Hyper-Methylation in Human iPSCs
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S5). The distribution of DNA methylation levels shows that the

degree of global methylation in pluripotent stem cells was

higher compared to the parent cells (Figure 1D, 1E), suggest-

ing that a global gain of DNA methylation occurs during

reprogramming.

Identification of stem cell-specific differentially
methylated regions (DMRs)

For further analysis, we defined DMR as representing a CpG

site whose score differed 0.3 points or more from the b-value

between the two groups. By comparison among ESCs (average

from 5 lines), iPSCs (average from 22 lines), and parent cells

(average from 5 lines), about 90% of the CpG sites (17,572 sites)

examined did not show differential methylation among ESCs,

iPSCs and parent cells (Figure 2A), suggesting that only a small

number of the CpG sites is affected during reprogramming. The

number of the CpG sites has been reported to be larger by

genome-wide analysis [21].

We then identified 220 sites that are pluripotent stem cell-

specific DMRs (Figure 2A). The 174 sites (79.5%) of the stem cell-

specific DMRs had significantly higher methylation levels in

iPSCs/ESCs when compared to the parent cells (Figure 2B).

Approximately 80% of the DMRs between the iPSCs and their

parent cells changed to a ‘‘hyper-methylated’’ state from a ‘‘hypo-

methylated’’ state in iPSCs. In contrast, 45 sites of the stem cell-

specific DMRs are hypo-methylated in iPSCs/ESCs, compared

with the parent cells. Gene ontology analysis indicates that the

hypo-methylated stem cell-specific DMRs especially included

genes related to mRNA transcription regulation (Figure 2B).

Interestingly, the majority of the hypo-methylated stem cell-

specific DMRs were located on CpG islands, whereas the majority

of the hyper-methylated stem cell-specific DMRs were located on

non-CpG islands (Figure 2C). No iPS-specific DMRs were

detected. We extracted 3,123 sites that are differentially methyl-

ated in one or more parent-specific iPSCs, compared to their

parent cells, because DMRs are dependent on parent cell types

(Figure S6). These DMRs are here designated as stem cell-

required DMRs. Distribution analysis of the stem cell-required

DMRs revealed a dispersed pattern rather than specific localiza-

tion on the genome (Figure S7A).

From the combined gene expression and DNA methylation

data, we chose 27 genes in the stem cell-specific DMRs showing

more than a 5-fold change in expression of human iPSCs/ESCs,

as compared with those in the parent cells (Table S4). Nine genes

with hypo-methylated stem cell-specific DMRs were found in the

group ‘‘genes significantly expressed in iPSCs/ESCs,’’ and

17 genes with hypo-methylated stem cell-specific DMRs belonged

to the category ‘‘low expression or silenced in iPSCs/ESCs’’. In

addition, the methylation state and gene expression in EPHA1,

PTPN6, RAB25, SALL4, GBP3, LYST, SP100 and UBE1L were

confirmed by quantitative combined bisulfite restriction analysis

(COBRA) [25] (Figure 2D), RT-PCR (Figure 2E) and bisulfite

sequencing (Figure 2F).

We also extracted genes with stem cell-required DMRs

exhibiting high expression or suppression in human iPSCs/ESCs

(Tables S5, S6). Interestingly, gene ontology analysis of the genes

with stem cell-required DMRs showed that genes in the

transcription factor category were detected only in the hypo-

methylated stem cell-required DMRs (Table S7). The top 20

transcription factor genes with hypo-methylated stem cell-required

DMRs exhibiting high expression in human iPSCs are summa-

rized in Table 1 and include OCT-4/3 (also known as POU5F1),

SALL4, SOX8, ZIC5, and FOXD1.

Aberrant and inherited methylation in iPSCs
Few changes in DNA methylation were detected between iPS

and ES cells and these were not consistent among the different iPS

lines (Figure 2A, Figures S6, S7). In further analyses, we compared

the DNA methylation states of each iPSC line or each parent cell

line with that of ESCs (averaged value) (Figure 3A). For the whole

genome, the number of DMRs between ESCs and iPSCs (ES-iPS-

DMRs) varied in the 22 iPSC lines (Figure 3B). A comprehensive

analysis of methylation in ESCs and iPSCs identified 1,459 ES-

iPS-DMRs covering 1,260 genes that were differentially methyl-

ated in one or more iPSC lines. ES-iPS-DMRs are composed of

aberrant (iPS-specific) methylation sites, in comparison with ESCs

and inherited methylation sites from the parent cells. The number

of inherited sites as well as aberrant sites varied among iPSCs.

Analysis of the ES-iPS-DMRs on each chromosome showed

a characteristic distribution of the ES-iPS-DMRs on the X

chromosome in XX-iPSCs (Figure 3B and Figure S8). Female

XX-iPSCs demonstrate a tendency to carry a large number of ES-

iPS-DMRs on the X chromosome, but male XY-iPSCs had few

ES-iPS-DMRs on the X chromosome (Figure 3B, lower panel).

While no ES-iPS-DMRs overlapped for all the iPSCs (Figure 2A),

20 ES-iPS-DMRs overlapped in more than 15 out of 22 lines

(Figure 3C, inset). These 20 ES-iPS-DMRs include the genes for

MPG (N-methylpurine-DNA glycosylase isoform b), FZD10

(frizzled 10), IREX2 (iroquois homeobox protein 2) and ZNF248

(zinc finger protein 248), which are highly associated with aberrant

methylation during reprogramming. Distribution analysis of the

ES-iPS-DMRs across the genome did not show any specific

localization (Figure S9). We further compared overlapping ES-

iPS-DMRs in reference to a genome-wide methylation analysis

[21], and found that 72 gene promoters overlapped between our

data and that of Lister et al..

More than 70% of the ES-iPS-DMRs were hyper-methylated in

each iPSC (Figure 3D), indicating that the iPSC genome is more

methylated than the ESC genome. In addition, the majority of the

ES-iPS-DMRs were located on CpG islands (Figure 3E), suggest-

ing that aberrant methylation is biased towards CpG islands.

Effect of long-term culture on DNA methylation status in
iPSCs

We investigated the effect of continuous passaging on the DNA

methylation profile of human iPSCs. To address the effect, we

subjected 7 iPSC lines to additional rounds of passaging under

identical culture conditions, and obtained genomic DNA and

RNA at passage 4 (P4) to P40 for DNA methylation and gene

expression. The number of the ES-iPS-DMRs ranged from 80 in

MRC-iPS-25 to 286 in UtE-iPS-11 at early passage (P10 to P20),

whereas the number of the ES-iPS-DMRs dramatically decreased

in all lines at late passage (P30 to P40) (Figure 4A, upper-left

panel). The number of inherited and aberrant sites decreased to

30 and 70, respectively, at P30 to P40 (Figure 4A, upper-center

and right panels). These decreases in the numbers of ES-iPS-

DMRs indicate that iPSCs have become closer to ESCs in their

DNA methylation profiles. In particular, XX-iPSC lines (AM-iPS-

8, UtE-iPS-4 and -11, and Edom-iPS-2) showed decreases in the

number of ES-iPS-DMRs with passaging. The XY-iPSC lines,

such as MRC-iPS-25 and PAE-iPS-1, had only a small number of

ES-iPS-DMRs. The number of ES-iPS-DMRs continued to

decrease to approximately 100 ES-iPS-DMRs containing

30 inherited sites. Intriguingly, few ES-iPS-DMRs on the

X chromosome were detected in XY-iPSCs throughout the

passaging. In contrast, the number of ES-iPS-DMRs in XX-

iPSCs ranged from 10 to 70 at the early passage (P4 to P20), and

decreased to zero after P30 (Figure 4A, lower panels). We also

Aberrant DNA Hyper-Methylation in Human iPSCs
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Figure 2. Defining stem cell-specific DMRs as novel epigenetic iPS markers. (A) Venn-like diagram showing overlapping CpG sites among
ESCs, iPSCs and their parent cells. The 220 overlapping sites are stem cell-specific differentially methylated regions (DMRs). Notably, neither
overlapping iPSCs-specific DMRs nor inherited regions in iPSCs from the parent cells were observed. (B) Proportion of the hyper- and hypo-
methylated stem cell-specific DMRs and GO analysis. Approximately 80% of the regions were hyper-methylated in iPSCs, compared with that of the
parent cells. (C) Proportion of the regions associated with CpG islands and non-CpG islands in the hypo-methylated stem cell-specific DMRs. The
hypo-methylated regions were biased to CpG islands, whereas the hyper-methylated regions were biased to non-CpG islands. (D) DNA methylation
levels in the 8 representative genes determined by Illumina Infinium HumanMethylation27 assay and Bio-COBRA. These 8 genes were defined as SS-
DMRs with significant changes of expression and were described in Table S6. The relative amount of methylated and unmethylated DNA ratio is
indicated as the black and white area, respectively, in the pie chart. (E) Expression of the 8 genes. Expression of the 8 genes had an inverse correlation
with DNA methylation level. (F) Bisulfite sequencing analysis of the 8 genes in endometrial cells (UtE1104), UtE-iPS-11 and HUES-8 cells. (Top)

Aberrant DNA Hyper-Methylation in Human iPSCs
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investigated the effect of continuous passaging on the DNA

methylation profile of the parent cells (UtE1104 and Edom22)

(Figure 4B). The number of the DMRs between ESCs and parent

cells (ES-parent-DMRs) increased with passaging. In addition, we

also confirmed that the transgenes were silenced at each passage

(Figure 4C and Figure S4), indicating that the decreasing number

of the ES-iPS-DMRs in iPSCs occurred in the transgene-

independent phase.

Comparative analysis of ES-iPS-DMRs dynamics
We then compared each ES-iPS-DMRs with passaging. The

UtE-iPS-11 had 286 ES-iPS-DMRs at P13, 194 sites at P18,

110 sites at P31, and 55 sites at P39. The ES-iPS-DMRs detected

at P13 decreased with passaging (blue bars in upper-left panel in

Figure 5A). Interestingly, 66 de novo ES-iPS-DMRs appeared at

P18, while at P13 these sites showed no differences between UtE-

iPS-11 and ESCs (orange bars in upper-left panel in Figure 5A).

These 66 ES-iPS-DMRs also decreased with passaging (P31 and

P39). The 29 additional ES-iPS-DMRs at P31 also appeared and

decreased with passaging (P39) (green bars in upper-left panel in

Figure 5A) and 16 ES-iPS-DMRs at P39 (red bar in upper-left

panel in Figure 5A) appeared. Rapid appearance and gradual

disappearance of ES-iPS-DMRs was a recurring theme, but the

number of newly-appearing ES-iPS-DMRs decreased with

passaging (Figure 5A, upper-left panel). The same change in ES-

iPS-DMRs occurred on the X chromosome, but the number of the

ES-iPS-DMRs approached zero at early passages (Figure 5A,

upper-center panel). Intriguingly, this change also occurred at

inherited sites, which was contrary to our expectations. The

inherited sites also repeatedly appeared and disappeared, and the

number of newly-appearing inherited sites decreased with

passaging (Figure 5A, upper-right panel). The term ‘‘inherited’’

is here used to mean the same methylation state found in iPSCs

and their parent cells, but the ‘‘inherited’’ regions behaved like

‘‘aberrant’’ regions that had multiple appearances and disappear-

ances. These multiple appearances/disappearances of ES-iPS-

DMRs were observed in all iPSC lines regardless of parental cell

type. The ES-parent-DMRs were also analyzed. The de novo ES-

parent-DMRs appeared as well as the ES-iPS-DMRs, but did not

decrease with passaging (Figure 5B).

Most ES-iPS-DMRs were hyper-methylated in iPSCs
ES-iPS-DMRs can be categorized into two groups: a, hyper-

methylated and b, hypo-methylated sites in iPSCs, as compared

Table 1. List of the top 20 out of 82 transcription factor genes with hypo-methylated stem cell-required DMRs exhibiting ‘‘high’’
expression in human iPS cells.

DNA methylation

TargetID Gene name HUESCs iPSCs Expression level

cg13083810 POU5F1, POU domain; class 5; transcription factor 1 isoform 1 0.584 0.549 55543.9

cg06303238 SALL4, sal-like 4 0.032 0.026 29766.2

cg16990174 RYBP, RING1 and YY1 binding protein 0.076 0.119 10274.1

cg03589001 MORF4L1, MORF-related gene 15 isoform 2 0.176 0.173 7015.7

cg02204046 MYCN, v-myc myelocytomatosis viral related oncogene;
neuroblastoma derived

0.022 0.027 5826.8

cg10705800 CITED4, Cbp/p300-interacting transactivator;
with Glu/Asp-rich carboxy-terminal domain; 4

0.438 0.445 5342.2

cg21696393 SOX8, SRY (sex determining region Y)-box 8 0.074 0.061 1976.7

cg23131007 TCF12, transcription factor 12 isoform b 0.138 0.155 1930.7

cg18808261 SATB1, special AT-rich sequence binding protein 1 0.194 0.242 1634.4

cg15607672 OTX2, orthodenticle 2 isoform a 0.046 0.054 1227.5

cg05345286 MDFI, MyoD family inhibitor 0.023 0.040 1035.9

cg20909686 OVOL1, OVO-like 1 binding protein 0.215 0.204 991.0

cg26209676 ZNF581, zinc finger protein 581 0.113 0.196 916.1

cg05522383 PITX2, paired-like homeodomain transcription factor 2 isoform b 0.024 0.030 544.8

cg17675150 ZNF532, zinc finger protein 532 0.069 0.107 525.3

cg01510051 ZNF542, zinc finger protein 542 0.585 0.555 443.9

cg06154570 HEYL, hairy/enhancer-of-split related with YRPW motif-like 0.134 0.152 440.3

cg12556134 TGIF2, TGFB-induced factor 2 0.075 0.072 405.4

cg03663715 FOXD1, forkhead box D1 0.030 0.042 349.1

cg09721427 HHEX, hematopoietically expressed homeobox 0.077 0.101 206.9

‘‘Expression level’’ is an average of raw data values in iPSCs from Gene Chip data.
doi:10.1371/journal.pgen.1002085.t001

Schematic diagram of the genes. Arrows, open boxes and open circles represent transcription start site, first exon and position of CpG sites,
respectively. (Bottom) Open and closed circles indicate unmethylated and methylated sites, respectively. Red and blue arrowheads represent the
position of CpG sites in Infinium assay and COBRA assay, respectively.
doi:10.1371/journal.pgen.1002085.g002
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with ESCs. ES-iPS-DMRs that disappeared at the last passage

(P39) (blue bars in Figure 5) in both UtE-iPS-11 and Edom-iPS-2

were extracted, and each methylation score of the extracted ES-

iPS-DMRs is shown (Figure 6, upper and middle panels). To

compare methylation scores, a ‘‘difference value’’ was estimated by

subtracting the scores of ESCs from those of each cell (Figure 6,

lower panels). Positive and negative difference values indicate that

these sites are hyper- and hypo-methylated, respectively, when

compared with ESCs. Difference values of the ES-iPS-DMRs

showing aberrant methylation states in iPSCs at the early passage

approached zero with passaging. It should be noted that the

almost all difference values became largely positive in iPSCs at

Figure 3. Aberrant methylation in human iPSCs. (A) Comparison of DNA methylation states of each iPSC line or each parent cell line with that
of ESCs. The DMRs between ESCs and iPSCs are designated as ES-iPS-DMRs, and the DMRs between ESCs and parent cells are designated as ES-
parent-DMRs. (B) The number of ES-iPS-DMRs and ES-parent-DMRs on whole genome (top), autosomes (middle) and X chromosome (bottom). Ratios
of number of inherited regions in iPSCs from parent cells (blue) and aberrant regions in iPSCs that differ from ESCs and parent cells (red) in the ES-iPS-
DMRs are shown in bars. Female iPSCs were demonstrated to carry high number of EiP-DMRs on X chromosome. (C) Number of overlapped ES-iPS-
DMRs frequency in iPSCs. No overlapping ES-iPS-DMRs in all 22 iPSC lines. (Inlet) A small number of overlapping ES-iPS-DMRs of the frequency from
15 to 22. Overlapping frequency of each gene is indicated in parentheses. (D) Proportion of the hyper- and hypo-methylated ES-iPS-DMRs. More than
75% of the ES-iPS-DMRs were hyper-methylated in iPSCs. (E) Proportion of the ES-iPS-DMRs associated with CpG islands and non-CpG islands in ach
iPSC line. ES-iPS-DMRs were biased to CpG islands.
doi:10.1371/journal.pgen.1002085.g003

Aberrant DNA Hyper-Methylation in Human iPSCs

PLoS Genetics | www.plosgenetics.org 6 May 2011 | Volume 7 | Issue 5 | e1002085



Aberrant DNA Hyper-Methylation in Human iPSCs

PLoS Genetics | www.plosgenetics.org 7 May 2011 | Volume 7 | Issue 5 | e1002085



early passage (P13 or P22), even though they were negative in the

parent cells, and then approached zero upon further passaging. This

transiently-induced hyper-methylation was observed at each passage

in all iPSC lines examined. The observed transient hypermethylation

patterns during iPS reprogramming did not correspond to methy-

flated CpGs in the parental cells. However, this observation does not

rule out that transient aberrant methylation could also be observed

in some cases on sites that were methylated in the parental cells.

Discussion

Identification of novel epigenetic iPS markers
OCT-4/3 and NANOG have been used as epigenetic markers for

iPSCs [8–10,26,27]. We previously showed candidate epigenetic

markers by analyzing 6 iPS lines [17]. Here we identified 8 novel

epigenetic markers more closely by defining 9 genes with the hypo-

methylated stem cell-specific DMRs and significantly higher

expression, and 17 genes with the hyper-methylated stem cell-

specific DMRs and significantly lower expression in iPSCs/ESCs

from 22 iPS lines. DNA methylation and expression of these genes,

especially the 8 genes, SALL4, EPHA1, PTPN6, RAB25, GBP4,

LYST, SP100 and UBE1L, can now be used as epigenetic markers

for pluripotent stem cells. Among these 8 genes, SALL4 has been

used as an expression marker, and is revealed for the first time as

an epigenetic marker. These epigenetic changes during reprogram-

ming can be detected by 3 different methods (Illumina assay,

COBRA and bisulfite sequencing), and is evident, i.e. CpG sites are

methylated or unmethylated in an all-or-none fashion. The

identification of these novel epigenetic markers can be another tool

for the validation of pluripotent stem cells that are iPSCs and ESCs.

The hypo-methylated stem cell-required DMRs may have an

important role for reprogramming as do the stem cell-specific

DMRs, because reprogramming is dependent on the type of

parent cells. In fact, genes associated with the hypo-methylated

stem cell-required DMRs include a large number of transcription

factors that are involved in pluripotency. Establishment of the stem

cell-required DMRs database in iPSCs derived from different

types of parent cells can help to generate human iPSCs in a fast

and easy manner. Hypo-methylated stem cell-specific regions have

been reported to be abundant in CpG islands [28–30]. In this

study, the hypo-methylated stem cell-specific DMRs were

significantly biased towards CpG islands, whereas the hyper-

methylated stem cell-specific DMRs were biased to non-CpG

islands, suggesting that genes with CpG islands have a propensity

to be demethylated during reprogramming towards pluripotent

stem cells. The higher number of the hyper-methylated stem cell-

specific DMRs in iPSCs indicates that the Yamanaka factors

activate only limited numbers of stem cell-specific/associated

genes through demethylation of the specific DMRs shown in this

study on the genome in parallel with methylating most genes

associated with tissue-specific function during reprogramming.

Multiple appearances/disappearances of aberrant hyper-
methylation

Continuous passaging of iPSCs reduces differences among

clones in gene expression profiles in mouse [15] and in human

[31] cells. Here we detected multiple appearances and disappear-

ances of aberrant hyper-methylation throughout iPSC reprogram-

ming. Furthermore, human iPSCs were gradually reprogrammed

through the ‘‘convergence’’ of periodic aberrant hyper-methyla-

tion upon continuous passaging (Figure 7). The term ‘‘conver-

gence’’ is used here to mean that amplitude of aberrant hyper-

methylation (or number of ES-iPS-DMRs) decreases. The

decrease of aberrant methylation suggests that iPSCs lose the

characteristics inherited from the parent cells and adapt to ESCs.

This aberrant and stochastic hyper-methylation and their

convergence may be a direct cause of the transgene-independent

phases of iPS reprogramming [15]. Aberrant hyper-methylation,

for which the mechanism remains unclear, can possibly be

attributed, at least in part, to up-regulation of DNMT3B, a de

novo methyltransferase, at the early stages of reprogramming.

Maintenance of an epigenetic memory of their parent cells at

early passage of human iPSCs (Figure 4A) is consistent with recent

reports involving mouse iPSCs [15–17]. However, most inherited

sites from the parent cells in iPSCs were inconsistent among iPSC

clones from the same parent cells on the genome, and these sites

showed periodic aberrant hyper-methylation during passaging,

as well as aberrant sites. Inherited methylation is non-synchronous

and stochastic, much like aberrant methylation, rather than

deterministic. The inherited sites thus comprise a portion of all

aberrant methylation observed in the clones.

Mouse female iPSCs as well as mouse female ESCs carry two

active X chromosomes [32], but inactivation of the X chromo-

some in human female ESCs is variable [22,33–35]. It has been

reported recently that human female iPSCs show a variable state

of X-inactivation as is seen in human female ESCs [22,36]. In this

study, human iPSCs exhibited a dynamic epigenetic state on the X

chromosome. The ES-iPS-DMRs on the X chromosome in XY-

iPSCs were rare and the average number of ES-iPS-DMRs in XY-

iPSCs was significantly lower than in XX-iPSCs, suggesting that

iPSCs are prone to aberrant hyper-methylation on the inactive X

chromosome. A recent report showed that X inactivation in

human ESCs is sensitive to the level of oxygen through culture in

vitro [35]. Therefore, analysis of aberrant methylation in iPSCs

that are established and cultured in low oxygen condition would

be help to understand physiological relevance of X inactivation

and reprogramming.

Incomplete adaptation of iPSCs to ESCs
The number of passages for ‘‘convergence’’ of the aberrant

hyper-methylation seems be dependent on parental cell types and

their sex. Disappearance of iPSCs in culture within 10 passages is

occasionally observed, regardless of the cell of origin. This

instability may be due to an excess of aberrant hyper-methylation

at early passages in addition to the ‘‘partial reprogramming’’

theory [15]. The late-passage iPSCs, like the early-passage iPSCs,

retained the ability to differentiate into cell types found in all three

germ layers. iPSCs showed reduced aberrant methylation during

adaptation to ESCs; however, iPSCs retained approximately

100 aberrant sites on autosomes, implying that iPSCs do not

become identical to ESCs, although they become very close. The

remaining aberrant sites were inconsistent among iPSC clones

Figure 4. Effect of long-term cultivation on ES-iPS-DMRs. (A) Decrease in the number of the ES-iPS-DMRs with continuous passaging. Upper
panels show change of the number of the ES-iPS-DMRs (left), the inherited regions (middle) and aberrant regions (right) on whole genome. Lower
panels show change in the number of the ES-iPS-DMRs (left), inherited regions (middle) and aberrant regions (right) on X chromosome. The number
of the ES-iPS-DMRs in XX-iPSCs approached zero with continuous passaging on X chromosome. In contrast, XY-iPSCs had few ES-iPS-DMRs on X
chromosome throughout the passages. (B) The number of the ES-parent-DMRs with continuous passaging. (C) No expression of the transgenes in
iPSCs at each passage was detected by RT-PCR.
doi:10.1371/journal.pgen.1002085.g004
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with different parent cell types, but the numbers were consistent

among iPSC clones after a 42-week cultivation. The quantity

(or number) of ES-iPS-DMRs would be another validation index

for iPSC identity as well as quality analysis (or methylation ratio) of

pluripotent stem cell-specific methylation.

Abnormalities of imprint genes, MEG3 genes, and H19
genes in human iPSCs

Genomic imprinting of H19, IGF2 and MEG3 has been

reported to be unstable in human ESCs [37,38]. The Dlk1-Dio3

genes were aberrantly silenced in most of the mouse iPSC lines.

But mouse iPSCs without MEG3 expression still have the ability to

differentiate into cell type of three germ layers in vitro [39]. In

humans, IG-DMR and MEG3-DMR are relevant to upd(14)pat-

like and upd(14)mat-like phenotypes [40]. In this study, only

MEG3 and H19, out of 87 imprinted genes examined showed

aberrant methylation in human iPSCs (Figure S10). Six out of

15 human iPSC lines were aberrantly methylated at MEG3-

DMR. MEG3 expression was silenced in those six lines regardless

of their parent cell type, although all parent cells showed about

50% methylation at MEG3-DMR and expression of MEG3

(Figure S10A, S10B). However, MEG3-negative iPS lines are

almost indistinguishable from MEG3-positive iPS lines in DNA

methylation and gene expression in human. Continuous passaging

Figure 5. Number of the ES-iPS-DMRs and ES-parent-DMRs with passaging. (A) Number of the ES-iPS-DMRs with passaging. Red line plots
indicate total number of the ES-iPS-DMRs. Blue bars indicate the number of the ES-iPS-DMRs that appeared at the earliest passage. Orange, green and
red bars indicate the number of the ES-iPS-DMRs that appeared secondarily at later passages. Appearance/disappearance of the ES-iPS-DMRs and
inherited regions were repeated, but the number of newly-appeared ES-iPS-DMRs was decreased with passaging. (B) Number of the ES-parent-DMRs
with passaging. Blue bars indicate the number of the ES-parent-DMRs at P5 (or P7). Orange and green bars indicate de novo ES-parent-DMRs at P11
and P16, respectively.
doi:10.1371/journal.pgen.1002085.g005

Figure 6. Hyper-methylation in the ES-iPS-DMRs and ES-parent-DMRs. ES-iPS-DMRs that disappeared in UtE-iPS-11 and Edom-iPS-2 at the
latest passage (upper) were analyzed and the methylation score of each ES-iPS-DMR was plotted on bar graph (middle). To clearly compare
methylation scores, difference value were estimated by subtracting the scores of ESCs from that of each sample (lower). Red and blue bars represent
hypo- and hyper-methylated regions, respectively, in the parent cells, compared with ESCs. Notably, almost all the regions, even though their
difference values were hypo-methylated in the parent cells, became hyper-methylated in iPSCs at the early passage, and then their methylation levels
were adjusted to the level of ESCs with passaging, i.e. subtracted methylation score became close to zero. This transiently-induced hyper-methylation
was not detected in parent cells.
doi:10.1371/journal.pgen.1002085.g006
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did not resolve the aberrant hyper-methylation at MEG3-DMR,

suggesting that these abnormalities occur at early passage and are

fixed at later stages. In addition, aberrant hyper-methylation at

H19 in all iPSCs and ESCs was observed (Figure S10C), and H19

was not expressed in all iPSCs and their parent cells.

We revealed that transgene-independent reprogramming is a

convergence of periodic hyper-methylation. The aberrant hyper-

methylation in iPSCs occurs stochastically throughout the genome.

Early-stage iPSC clones with different propensities due to

stochastic hyper-methylation may be used after selection of

desirable phenotypes to treat a wide range of target diseases using

cell-based therapy, and would thus have advantages for clinical

use. In this sense, the number of ES-iPS-DMRs and methylation

states of the stem cell-specific DMRs are useful epigenetic indices

for evaluating human iPSCs in therapeutic applications.

Materials and Methods

Ethics statement
Human endometrium, amnion, placental artery endothelium

and menstrual blood cells were collected by scraping tissues from

surgical specimens, under signed informed consent, with ethical

approval of the Institutional Review Board of the National

Institute for Child Health and Development, Japan. Signed

informed consent was obtained from donors, and the surgical

specimens were irreversibly de-identified. All experiments han-

dling human cells and tissues were performed in line with Tenets

of the Declaration of Helsinki.

Human cell culture
Endometrium (UtE1104), amnion (AM936EP), placental artery

endothelium (PAE551) and menstrual blood cell (Edom22) cell

lines were independently established in our laboratory [41,42].

UtE1104, AM936EP, Edom22, and MRC-5 [43] cells were

maintained in the POWEREDBY10 medium (MED SHIRO-

TORI CO., Ltd, Tokyo, Japan). PAE551 cells were cultured in

EGM-2MV BulletKit (Lonza, Walkersville, MD, USA) containing

5% FBS. Human iPSCs were generated in our laboratory, via

procedures described by Yamanaka and colleagues [8] with slight

modification [17,41,44–46]. The human cells were infected with

retroviruses produced from the retroviral vector pMXs, which

encodes the cDNA for human OCT3/4, SOX2, c-MYC, and KLF4.

Human iPSCs were established from MRC-5, AM936EP,

UtE1104, and PAE551, which were designated as MRC-iPSCs,

AM-iPSCs, UtE-iPSCs and PAE-iPSCs [17,41,44–46]. Edom-

iPSCs were established from Edom22 in this study. Human iPSCs

were maintained on irradiated MEFs in 0222 medium (MED

SHIROTORI CO., Ltd, Tokyo, Japan) supplemented with

Figure 7. Model of mechanism for transgene-independent reprogramming. During reprogramming from somatic cells to iPSCs, the cells
undergo dynamic change of methylation of SS-DMRs and genome. The cells with incomplete reprogramming or excessive hyper-methylation of the
genome fail to maintain pluripotency at early passages. Human iPSCs are transgene-independently reprogrammed gradually through ‘‘convergence’’
of periodic aberrant hyper-methylation and become closer to ESCs upon continuous passaging. Due to the sensitivity to aberrant methylation on
X chromosome, XY-iPSCs become close to ESCs faster than XX-iPSCs do.
doi:10.1371/journal.pgen.1002085.g007
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10 ng/ml recombinant human basic fibroblast growth factor

(bFGF, Wako Pure Chemical Industries, Ltd., Osaka, Japan). The

201B7 human iPSC line [8] that was generated from human skin

fibroblasts by retroviral transfection with 4 transcription factors

was also used. Frozen pellets of human ESCs (HUESCs) [23,24]

were kindly gifted from Drs. C. Cowan and T. Tenzan (Harvard

Stem Cell Institute, Harvard University, Cambridge, MA).

DNA methylation analysis
DNA methylation analysis was performed using the Illumina

infinium assay with the HumanMethylation27 BeadChip (Illu-

mina) and the BeadChip was scanned on a BeadArray Reader

(Illumina), according to the manufacturer’s instructions. Methyl-

ated and unmethylated signals were used to compute a b-value,

which was a quantitative score of DNA methylation levels, ranging

from ‘‘0’’, for completely unmethylated, to ‘‘1’’, for completely

methylated. On the HumanMethylation27 BeadChip, oligonucle-

otides for 27,578 CpG sites covering more than 14,000 genes are

mounted, mostly selected from promoter regions. CpG sites with

$0.05 ‘‘Detection p value’’ (computed from the background based

on negative controls) were eliminated from the data for further

analysis, leaving 24,273 CpGs (13,728 genes) valid for use with the

51 samples tested. Average of methylation was calculated from

HUESCs, MRC-iPSCs, AM-iPSCs, UtE-iPSCs, PAE-iPSCs and

Edom-iPSCs, in which DMRs among each line in the each set

were removed. Analyzed data sets (list of stem cell-specific DMRs

and stem cell-required DMRs) can be obtained from http://www.

nch.go.jp/reproduction/e/thdmds.html.

Gene expression analysis
Gene expression analysis was performed using the Agilent

Whole Human Genome Microarray chips G4112F (Agilent, Santa

Clara, CA), which contains over 41,000 probes. Raw data were

normalized and analyzed by GeneSpringGX11 software (Silicon

Genetics, Redwood City, CA). For RT-PCR, an aliquot of total

RNA was reverse-transcribed using Random Hexamer primers.

The cDNA template was amplified using specific primers for

EPHA1, PTPN6, RAB25, SALL4, GBP3, LYST, SP100, UBE1L,

OCT3/4 and NANOG. For detecting RNA derived from

transgenes, specific primer sets, FY-11 and OCT3/4-SR, FY-11

and SOX2-SR, KLF4-SF and FY-12, cMYC-SF and FY-12, were

used. Expression of glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) was used as a control. Primers used in this study are

summarized in Table S8.

Quantitative combined bisulfite restriction analysis
(COBRA) and bisulfite sequencing

To confirm the DNA methylation state, bisulfite PCR-mediated

restriction mapping (known as the COBRA method) was

performed. Sodium bisulfite treatment of genomic DNA was

carried out using EZ DNA Methylation-Gold kit (Zymo

Research). PCR amplification was performed using BIOTAQ

HS DNA polymerase (Bioline Ltd; London, UK) with specific

primers for EPHA1, PTPN6, RAB25, SALL4, GBP3, LYST, SP100,

and UBE1L. Primers used in this study are summarized in Table

S8. After digestion with restriction enzymes, HpyCH4IV or Taq I,

quantitative-COBRA coupled with the Shimadzu MCE-202

MultiNA Microchip Electrophoresis System (Shimadzu, Japan)

was carried out for quantitative DNA methylation level. To

determine the methylation state of individual CpG sites, the PCR

product was gel extracted and subcloned into pGEM T Easy

vector (Promega, Madison, WI), and then sequenced. The

promoter regions of the OCT3/4 and NANOG [41,44] were also

amplified and sequenced. Methylation sites were visualized and

quality control was carried out by the web-based tool, ‘‘QUMA’’

(http://quma.cdb.riken.jp/) [47].

Web tools
The following web tools were used in this study: NIA Array [48]

(http://lgsun.grc.nia.nih.gov/ANOVA/) for hierarchical cluster-

ing, DAVID Bioinformatics Resources [49] (http://david.abcc.

ncifcrf.gov/home.jsp), PANTHER Classification System [50]

(http://www.pantherdb.org/).

Accession numbers
NCBI GEO: HumanMethylation27 BeadChip data and gene

expression microarray data have been submitted under accession

number GSE 20750, GSE24676 and GSE24677.

Supporting Information

Figure S1 Immunohistochemistry of stem cell-specific surface

antigens, NANOG, OCT3/4, SOX2, SSEA-4 and TRA-1-60 in

AM-iPSCs, MRC-iPSCs and Edom-iPSCs, and teratoma forma-

tion of those iPSCs by subcutaneous implantation into NOD/Scid

mice. The iPSCs differentiated to various tissues including

ectoderm (neural tissues and retinal pigment epithelium), meso-

derm (cartilage) and endoderm (gut). Immunostaining and

teratoma formation were carried out as previously described

[41,44].

(PDF)

Figure S2 Immunohistochemistry of stem cell-specific surface

antigens, NANOG, OCT3/4, SOX2, SSEA-4 and TRA-1-60 in

PAE-iPSCs and UtE-iPSCs, and teratoma formation of those

iPSCs by subcutaneous implantation into NOD/Scid mice. The

iPSCs differentiated to various tissues including ectoderm (neural

tissues and retinal pigment epithelium), mesoderm (cartilage) and

endoderm (gut). Immunostaining and teratoma formation were

carried out as previously described [41,44].

(PDF)

Figure S3 Bisulfite sequencing at the OCT3/4 and NANOG

promoter regions in ESCs, iPSCs and their parent cells.

(PDF)

Figure S4 Expression of the transgenes in iPSCs. (A) RT-PCR

for transgenes in 22 iPSC lines. No expression of the transgenes in

each iPSC lines was detected. (B) Quantitative RT-PCR for the

transgenes at each passage. Relative expression of each transgene

normalized to GAPDH was calculated. P0(D2), RNA from

UtE1104 cells that were infected with the retroviruses and were

cultured for 2 days. No expression of the transgenes at each

passage was detected.

(PDF)

Figure S5 (A) Unsupervised hierarchical clustering analysis

based on DNA methylation (left) and gene expression (right) in

each ESC line, iPSC line and their parent cell line.

(B) Unsupervised hierarchical clustering analysis based on DNA

methylation (left) and gene expression (right) of average of ESCs,

iPSCs and parent cells. (C) Scatter plot of DNA methylation (left)

and gene expression data (right) in ESCs, iPSCs and their parent

cells.

(PDF)

Figure S6 (A) Venn-like diagram showing seven categories

(aa-gg) overlapped CpG sites among ESCs, iPSCs and their parent

cells. (B) Number of CpG sites involved in each seven category

from the five ESCs-iPSCs-the parent cell sets. ‘‘Overlapped’’
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indicates a number of sites that overlap in all iPSCs examined.

The 220 overlapping sites in ‘‘ee’’ are designated as stem cell-

specific differentially methylated regions (DMRs) and 3,123 total

sites in ‘‘ee’’ are designated as stem cell-required DMRs. Notably,

no overlapping sites were observed in ‘‘bb’’ that is a category

involved in iPSCs-specific DMRs and in ‘‘ff’’ that is a category

involved in inherited regions in iPSCs from the parent cells.

(PDF)

Figure S7 (A) Distribution of stem cell-required DMRs on each

chromosome (upper) and frequency on each chromosome

(bottom). (B) The number of parent cell specific DMRs (left) and

the number of iPSC derived from different parent cells specific

DMRs (left).

(PDF)

Figure S8 The number of DMRs between ESCs and each iPSC

line (ES-iPS-DMRs) on each chromosome. ES-iPS-DMRs be-

tween 201B7 (iPSCs from Yamanaka) and ESCs are shown for

comparison.

(PDF)

Figure S9 Distribution of the ES-iPS-DMRs on each chromo-

some. Distribution of the EiP-DMRs overlapped in less than

9 lines (light blue bars), in more than 10 and less than 14 lines (blue

bars), and in more than 15 lines (red bars) among 22 lines.

(PDF)

Figure S10 DNA methylation at human MEG3 and H19. (A)

DNA methylation at MEG3-DMR (CG7) and expression of

MEG3. (Top) Schematic diagram of the MEG3 gene. The arrow,

open boxes and open circles represent transcription start site, first

exon and position of CpG sites, respectively. Red and blue

arrowheads represent the position of CpG sites in Infinium assay

and COBRA assay, respectively. DNA methylation scores of

MEG3 were determined by Illumina Infinium HumanMethyla-

tion27 assay (upper bar graph) and Bio-COBRA (lower bar

graph). (Bottom) Expression of MEG3 and GAPDH was

determined by RT-PCR. Information of MEG3 primers for

COBRA and RT-PCR is described by Kagami et al. [40].

(B) Bisulfite sequencing analysis of MEG3-DMRs (CG7).

(C) Methylation scores of H19 were determined by Illumina

Infinium HumanMethylation27 assay.

(PDF)

Table S1 List of human cells analyzed for a methylation state in

this study.

(PDF)

Table S2 STR analysis of iPSCs.

(PDF)

Table S3 Karyotypic analysis of iPSCs.

(PDF)

Table S4 List of genes with stem cell-specific DMRs exhibiting

significant changes in expression in human iPS cells.

(PDF)

Table S5 List of the top 100 genes with hypo-methylated stem

cell-required DMRs exhibiting ‘high’ expression in human iPS

cells.

(PDF)

Table S6 List of top 100 genes with hyper-methylated stem cell-

required DMRs exhibiting suppression in human iPS cells.

(PDF)

Table S7 List of top 5 categories of GO Term in ‘‘Stem cell-

required DMRs’’.

(PDF)

Table S8 Primer list.

(PDF)
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