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Abstract

Molecular recognition is determined by the structure and dynamics of both a protein and its ligand, but it is difficult to
directly assess the role of each of these players. In this study, we use Markov State Models (MSMs) built from atomistic
simulations to elucidate the mechanism by which the Lysine-, Arginine-, Ornithine-binding (LAO) protein binds to its ligand.
We show that our model can predict the bound state, binding free energy, and association rate with reasonable accuracy
and then use the model to dissect the binding mechanism. In the past, this binding event has often been assumed to occur
via an induced fit mechanism because the protein’s binding site is completely closed in the bound state, making it
impossible for the ligand to enter the binding site after the protein has adopted the closed conformation. More complex
mechanisms have also been hypothesized, but these have remained controversial. Here, we are able to directly observe
roles for both the conformational selection and induced fit mechanisms in LAO binding. First, the LAO protein tends to form
a partially closed encounter complex via conformational selection (that is, the apo protein can sample this state), though
the induced fit mechanism can also play a role here. Then, interactions with the ligand can induce a transition to the bound
state. Based on these results, we propose that MSMs built from atomistic simulations may be a powerful way of dissecting
ligand-binding mechanisms and may eventually facilitate a deeper understanding of allostery as well as the prediction of
new protein-ligand interactions, an important step in drug discovery.
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Introduction

Molecular recognition plays important roles in many biological

processes. For example, enzymes must recognize their substrates

and drugs must be designed to have specific binding partners.

Unfortunately, our understanding of how ligand binding occurs

remains incomplete. In particular, the role that protein dynamics

play in protein-ligand binding is unclear.

Two popular models for protein-ligand binding are the induced

fit and conformational selection mechanisms. Both attempt to

explain how a protein could transition from an unbound

conformation to a bound conformation in complex with a ligand.

In the induced fit model—introduced by Koshland [1]—the

ligand first binds to the protein in its unbound conformation and

this binding event induces the protein to transition to the bound

state. Such models have been applied to many protein-protein and

protein-DNA/RNA binding systems [2,3,4]. The conformational

selection (or population shift) model [5,6,7,8,9,10,11,12] is a

popular alternative to the induced fit mechanism. In this model,

the intrinsic dynamics of the protein lead it to constantly transition

between a stable unbound conformation and a less stable bound

conformation. The ligand can then bind directly to the bound

conformation, thereby stabilizing the bound state and increasing

its population relative to the unbound state. The conformational

selection model has recently gained popularity in antibody or small

ligand binding systems [10,11,12]. Some docking studies have also

tried to exploit conformational selection by generating an

ensemble of protein structures and docking small molecules

against each of them in the hopes of identifying a transiently

populated bound conformation that will be stabilized by the ligand

[13].

Many recent studies have attempted to determine whether a

variety of systems under different conditions can be best described

by the induced fit or conformational selection model

[14,15,16,17,18,19,20,21]. For example, Okazaki et. al. [20] have

found that strong and long range protein-ligand interactions favor

the induced fit model, while weak and short range interactions

favor the conformational selection model. Based on an analytic

model, Zhou has suggested that the determining factor in ligand

binding is the timescale for transitioning between the unbound and

bound states with and without the ligand [18]. He found that

conformational selection dominates when transitioning between

the unbound and bound states is slow, while the induced fit

mechanism dominates when this transition is fast. Many studies

have proposed that conformational selection and induced fit are

not mutually exclusive; instead, a blend of these two models may

best describe most realistic systems [15,17,18,20,22,23]. For

example, Zagrovic and coworkers [17] have suggested that
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conformational selection and induced fit play equal roles in

ubiquitin binding based on their analysis of NMR structures.

However, in many cases, it is still difficult to dissect the chemical

details of binding mechanisms. While it is clear that the bound and

unbound states of a protein and their respective interactions with a

ligand molecule are of great importance [15,18,20,21], it may also

be important to take other conformational states into account.

Protein dynamics are ultimately determined by their underlying

free energy landscapes, whose ruggedness frequently gives rise to

numerous metastable regions-sets of rapidly mixing conformations

that tend to persist for extended periods of time.

In this work, we use Markov state models (MSMs) to map out

the relevant conformational states in LAO binding and describe

mechanistic details of this process. MSMs are a kinetic network

model and a powerful approach to automatically identifying

metastable states and calculating their equilibrium thermodynam-

ics and kinetics [24,25,26,27]. MSMs focus on metastable regions

of phase space, while there also exist other kinetic network models

to study transition state [28]. MSMs partition conformational

space into a number of metastable states; such that intra-state

transitions are fast but inter-state transitions are slow. This

separation of timescales ensures an MSM is Markovian (i.e. that

the probability of transitioning from state i to state j depends only

on the identity of i and not any previously visited state) and allows

MSMs built from short simulations to model long timescale events.

Many recent studies have demonstrated how MSMs can provide

insight into drastic conformational changes like protein and RNA

folding [26,29,30,31,32]. Here we demonstrate that MSMs built

with a hierarchical clustering algorithm [30] can capture the

mechanism by which the Lysine-, Arginine-, Ornithine-binding

(LAO) protein, one of Periplasmic Binding Proteins (PBPs), binds

to arginine. The LAO protein has a high binding affinity and

undergoes large-scale domain rearrangements from an open to a

closed state upon ligand binding [33,34,35,36] (see Fig. 1), making

it a valuable model system for probing the coupling between

protein conformational changes and binding.

Many have assumed that PBP binding occurs via the induced fit

mechanism because the ligand is completely encapsulated by the

protein in the bound state (see Fig. S1). Experimental studies of

many PBPs support the induced fit mechanism, where the closure

of the domains is triggered by the binding of the ligand

[33,34,36,37,38,39,40]. However, a few experimental studies

indicate that some PBPs (including GGBP [41] and ChoX [42])

are able to reach the closed conformation in the absence of the

ligand. This has been suggested as a sign of the conformational

selection mechanism [38]. Furthermore, recent NMR studies with

paramagnetic relaxation enhancement (PRE) of maltose-binding

protein (MBP) identified a minor (,5%) un-liganded partially

closed form. This partially closed state is in equilibrium with the

open state and, therefore, is available for the binding of the ligand,

which may further facilitate the transition to the bound state. This

work suggests a more complex binding mechanism where both

conformational selection and induced fit play significant roles [43],

but since the ligand was not present during the experiments, it is

unclear exactly what roles the two mechanisms may play.

With our MSM, we can directly monitor the mechanism of

LAO binding and assess the role of both conformational selection

and induced fit. Our model suggests that three dominant states

need to be considered to adequately describe LAO binding and

that both conformational selection and induced fit play important

roles in the transitions between these states. The third dominant

state in our model—besides the open and closed states—is only

partially closed and weakly bound to the ligand; therefore, we refer

to it as the encounter complex state. The ligand can induce the

protein to transition from the open state to the encounter complex;

however, the ligand-free protein can also transition to the

encounter complex state, indicating an important role for

conformational selection. In contrast, on our dataset the ligand-

free protein never sampled the closed state, this suggest that that

the closed state in the absence of the ligand may represent a very

high free energy state and that once the ligand reaches the binding

site an induced fit mechanism is responsible for transitions from

the encounter complex to the closed state.

Results

Model validation by ab initio prediction of the bound
state and binding kinetics

Before drawing system-specific conclusions from a simulation

study, it is important to first test the model against existing

experimental data. MSMs built using the Super-level-set Hierar-

chical Clustering (SHC) algorithm [30] greatly facilitate this

task by decomposing a system’s conformational space into its

Figure 1. The open (PDB ID: 2LAO) and closed (PDB ID: 1LAF)
states of the Lysine-, Arginine-, Ornithine-binding (LAO)
Protein. The ligand, Arginine, is shown in red.
doi:10.1371/journal.pcbi.1002054.g001

Author Summary

Protein-ligand interactions are crucial to chemistry, biology
and medicine. Many studies have been conducted to
probe the mechanism of protein-ligand binding, leading to
the development of the induced fit and conformational
selection models. Unfortunately, experimentally probing
the atomistic details of protein-ligand binding mechanisms
is challenging. Computer simulations have the potential to
provide a detailed picture of molecular recognition events.
In this study, we construct kinetic network models from
atomistic simulations to elucidate the mechanism by
which the LAO protein binds to its ligand. Because the
LAO protein completely encompasses its substrate in the
bound state, it has generally been assumed that it
operates via an induced fit mechanism. We find that both
the conformational selection and induced fit mechanisms
play important roles in LAO binding. Furthermore, we have
identified a number of parallel pathways for binding, all of
which pass through a single gatekeeper state, which we
refer to as the encounter complex state because the
protein is partially closed and only weakly interacting with
its substrate.

Flexible Ligand Binding
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constituent metastable regions and describing the thermodynamics

and kinetics of each. For instance, one can easily extract

representative conformations from each state, determine the

equilibrium probability of each state, or calculate the rates of

transitioning between sets of states and compare to experimental

results. In this study, we describe protein conformations by the

opening and twisting angles between their two domains [44] and

the location of the ligand because these degrees of freedom

describe the slowest dynamics of the system (see Fig. S2). We then

construct a 54-state MSM using SHC (See Methods for details of

MSM construction). The dominant conformational states in our

model are displayed in the Fig. S3.

Fig. 2 demonstrates that our model is capable of ab initio

prediction of the bound state. As described in the Methods section,

no knowledge of the bound state was included at any stage of our

simulations or model construction. Based on the high binding

affinity measured in experiments (Kd ,14 nM) [45] we postulated

that the bound state should be the most populated state in our

model. Indeed, representative conformations from our most

populated state (having an equilibrium population of 74.9%)

agree well with the crystal structure of the bound state, with an

RMSD to the crystal structure of the binding site as little as 1.2 Å,

as shown in Fig. 2A. Moreover, Figs. 2B and 2C show that the

crystal structure of the bound state lies within the minimum of the

most populated free energy basin. These figures also show that our

model’s bound state covers a relatively large region of phase space,

suggesting that it is flexible, possibly to accommodate favorable

interactions with all four of LAOs binding partners (L-lysine, L-

arginine, L-ornithine and L-histidine). The structural properties of

the remaining states are also consistent with experiments (see the

Text S1 for more details). For example, many of the unbound states

also contain partially closed protein conformations, consistent with

NMR experiments on another PBP protein: MBP [43].

Our model is also in reasonable agreement with the exper-

imentally measured binding free energy and association rates. For

example, from the MFPT from all unbound states to the bound

state, our model predicts an association timescale of 0.258 6

0.045 ms (see Methods for calculation details). Since rates are

proportional to the exponential of the free energy barrier, an 8-

fold difference in rates roughly corresponds to a 2 kT difference in

the height of the free energy barrier. Therefore, our result is in

reasonable agreement with the experimental value of ,2.0 ms

found in the highly homologous HisJ protein [46] (see Methods for

similarity between LAO and HisJ protein). We also estimate a

binding free energy of 28.46 kcal/mol using the algorithm

introduced by van Gunsteren and co-workers [47], which is also

in reasonable agreement with the experimental value of

29.95 kcal/mol for the LAO protein (see Methods for calculation

details). Together, this agreement between theory and experiment

suggests that our model is a sufficiently good reflection of reality to

make hypotheses about details of the binding mechanism.

Arriving at these conclusions with a single long simulation

would have been quite difficult due to the slow timescales involved.

For example, transitioning from the bound state to an unbound

state takes 2.1560.51 ms on average. Therefore, observing enough

transitions to gather statistics on the binding and unbinding rates

in a single simulation would require that it be tens of ms long. Such

simulations are now possible [31,48] but are still challenging to

perform. Moreover, scaling the long simulation approach to

millisecond timescales is still infeasible. MSMs built from many ms

timescale simulations, however, have already proven capable of

capturing events in a 10 millisecond timescale [49] and can likely

scale to even slower processes.

Insights into the mechanism of LAO binding
In addition to predicting experimental parameters, MSMs are

also useful for mapping out conformational transitions like protein-

ligand binding. For example, Figs. 3 and 4 show the 10 highest

flux pathways from any of the unbound states in our model to the

bound state. All ten pathways pass through an obligatory,

gatekeeper state (state 11) that we refer to as the encounter

complex state because the protein is partially closed and only

weakly interacting with the ligand (see Figs. 3, 4 and State 11 in

Fig. S3). In the encounter complex (see Fig. 5) the two lobes of the

LAO protein are structurally very similar to those in both the apo

and bound X-ray structures (with RMSD less than 2 Å, see Table

S1). Therefore the conformational change between crystal

structures and the encounter complex could be achieved through

a rigid body rotation. We also found that in the encounter

complex the ligand was stacked between the lobe I Tyr14 and

Phe52 and protrudes upward to interact with the lobe II Thr121.

These contacts are also observed in the X-ray bound structure.

(see Fig. S4). To further support our conclusion that the encounter

complex state is an obligatory step in ligand binding, we have

calculated that the average timescale for transitioning from the

unbound states to the encounter complex state is 0.19060.037

Figure 2. The bound state of our MSM for LAO binding (which
is also the most populated state, having an equilibrium
population of 74.9%). (a) A snapshot from our simulations (red)
achieves a 1.2 Å RMSD to the X-ray bound state (blue, PDB ID: 1LAF).
The RMSD is computed from the protein Ca atoms that are within 8 Å
to the center of mass of the ligand in the X-ray bound state (Residues
9–15, 17–19, 30, 50–53, 55–56, 67–74, 77, 83, 88, 90–92, 117–124, 141–
143, 159–162, 164, 190–191 and 194–196). If all-protein Ca atoms are
included the RMSD is 1.8 Å. (b) Free energy plot of the protein opening
angle versus twisting angle. The bin size is (5u, 5u), and the interval
between two adjacent contour levels is 0.5 KT. The green and blue
crosses correspond to X-ray structures of the bound and apo
conformations respectively. (c) Free energy plot of the opening angle
versus the distance between the ligand and the binding site. The bin
size is (1.5 Å, 5u), and interval between contour levels is 0.5 KT.
doi:10.1371/journal.pcbi.1002054.g002
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while the average timescale for transitioning from the unbound

states to the bound state is 0.258 6 0.045 ms. The average

timescale for transitioning from the encounter complex state to the

bound state is 0.09060.015 ms (see Methods for calculation

details). Thus, the unbound protein will typically transition to the

encounter complex before reaching the bound state.

The top ten paths from the unbound states to the encounter

complex can be divided into two sets, one that is best described by

conformational selection and one that is better described by the

induced fit mechanism. For example, the pathway from state 45

directly to 11 operates through conformational selection (see green

arrow in Fig. 4): in the unbound state 45 the protein and ligand are

not interacting but the protein conformations are very similar to

those in the encounter complex. Since the protein adopts similar

conformations in these two states, the ligand can always bind to a

pre-existing encounter-complex-like (state 11 like) protein confor-

mation (the conformational selection mechanism). The binding

kinetics of this conformational selection pathway is quite rapid,

having a mean first passage time for transitioning from the

unbound state 45 to the encounter complex state 11 of

0.22060.054 ms, and this pathway accounts for ,45% of the flux

of the top ten pathways from unbound states to the bound state.

The second group of pathways to the encounter complex, which

together account for ,55% of the flux may be better described by

the induced fit mechanism. In general, these pathways start off in

conformations that are much more open or twisted than the

encounter complex. Next, the system transitions to one or more

intermediate states where the ligand is interacting with the protein

at (or near) its binding site, though the protein is still quite open or

twisted. Finally, the protein-ligand interactions induce a transition

to the encounter complex state. For example, the pathway starting

from state 47, passing through state 14, and ending at state 11 falls

into this category (see Fig. 4).

Transitions from the encounter complex to the bound state are

best described by the induced fit mechanism. When the system

enters the encounter complex state, the protein is generally in a

relatively open conformation (opening angle within 20u to 70u, see

Fig. 6). However, when the system leaves the encounter complex

state to enter the bound state, the protein is mostly in a more closed

conformation (opening angle smaller than 30u, see Fig. 6). Thus, it

appears interactions with the ligand induce the protein to close.

Furthermore, our model predicts that the encounter complex-to-

bound transition (0.09060.015 ms) is much faster than the

encounter complex-to-unbound transition (1.92760.499 ms), so

Figure 3. Superposition of the 10 highest flux pathways from the unbound states to the bound state. The flux was calculated using a
greedy backtracking algorithm [31,66] applied to a 54-state MSM generated with the SHC algorithm [30]. These pathways account for 35% of the
total flux from unbound states to the bound state. The arrow sizes are proportional to the interstate flux. State numbers and their equilibrium
population calculated from MSM are also shown. The conformational selection and induced pathways from the unbound states to the encounter
complex state is shown in green and grey arrows respectively.
doi:10.1371/journal.pcbi.1002054.g003
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the encounter complex is not likely to diffuse back to the unbound

state instead of converting into the bound state. In addition, the

protein never samples fully-closed conformations in the absence of

the ligand in our simulations. Together, these observations indicate

that the induced fit mechanism should dominate transitions from

the encounter complex to the bound state.

Mis-bound states
We have also identified a number of metastable mis-bound states,

like states 4 and 20 in Fig. S3. In these states, the ligand interacts

with the protein outside of the binding site. For example, in state 20

(population ,0.4%) the ligand is bound to the hinge region between

the two domains of the protein. Transitioning from a mis-bound

state to the bound state generally requires passing through an

unbound state (see Fig. S5). Therefore, these states are mostly off

pathway and likely slow down the overall binding kinetics.

Discussion

The LAO protein is a member of the PBP family, which is

responsible for transporting low molecular weight ligands from the

outer to the inner membrane in the ABC transport mechanism of

Gram-negative bacteria [34,50]. Crystal structures for this system

have shown that the binding site is completely closed-off in the

bound state [33,37], making it impossible for the ligand to enter

the binding site after the protein has adopted the closed

conformation (see Fig. S1). Therefore, it has often been proposed

that LAO binding occurs through an induced fit mechanism

[51,52,53].

Our observations of LAO binding indicate that, like protein

folding, ligand binding is a multi-state process with parallel

pathways. All top 10 pathways pass through a gate-keeper state

that we refer to as the encounter complex state because the protein

is partially closed and only weakly interacting with the ligand. The

system can reach this state through either the induced fit

mechanism or conformational selection. Rather than being a

transient state, this encounter complex is quite metastable. Once

in the encounter complex state, the ligand is able to quickly induce

protein conformational changes that lead to a transition to the

fully closed, bound state.

Other systems may operate through a similar mechanism such

as other PBPs. Indeed, our model is consistent with Tang

Figure 4. Superposition of the 10 highest flux pathways from the unbound states to the bound state as in Fig. 2 but with
representative structures replaced with free energy plots of the protein opening angle versus twisting angle. The green and blue
crosses correspond to X-ray structures of the bound and apo conformations respectively. The bin size is (5u, 5u), and the interval between contour
levels is 0.5 KT (same as Fig. 2b). The conformational selection and induced pathways from the unbound states to the encounter complex state is
shown in green and grey arrows respectively.
doi:10.1371/journal.pcbi.1002054.g004
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et. al.[43]’s findings for MBP. Specifically, they discovered a

partially closed state in equilibrium with the open state for the apo

protein. Thus, this state is available for the binding of the ligand to

form the encounter complex through the conformational selection

mechanism. Next, the binding could facilitate the transition to the

bound state via the induced fit mechanism. Their model was

proposed mainly based on NMR experiments in the absence of the

ligand, but our simulations directly observed this interplay at

atomic resolution. Furthermore, our results suggest that transitions

from the open to the partially closed state occur via a combination

of conformational selection and induced fit mechanisms. For

several PBPs including MBP and HisJ, the rate constant measured

by the stopped flow experiments is proportional to the ligand

concentration, indicating a simple two-state binding mechanism

[46]. However, as discussed by Tang et. al. [43], these stopped flow

measurements may not be able to capture the intermediate

encounter complex state because the overall binding timescale is

extremely rapid, e.g. a few hundred nanoseconds for LAO.

More broadly, there may also exist other proteins with closed

active sites that have metastable encounter complex states.

Sullivan et. al. [16] suggested that in such encounter complex

state substrate-enzyme interactions are almost identical to the

active state, while the enzyme has not yet reached the active form.

Furthermore, the enzyme must operate by an induced fit

mechanism to reach the active form because of the closure of

the enzyme would prevent the substrate from entering the active

site. This model is consistent with our findings for the LAO

protein. However, in order to reach this encounter complex state,

we suggest that both induced fit and conformational selection may

play important roles. In general, other proteins with closed active

sites may also make use of both conformational selection and

induced fit to reach the encounter complex. However, the relative

contributions of these mechanisms may vary depending on factors

like the relative strength of the protein-ligand interactions [20].

The ability to map out the details of LAO binding using MSMs

is an important step towards a deeper understanding of protein-

ligand interactions for this system. Future application of these

methodologies to other systems could even lead to the identifica-

tion of general principles of protein-ligand interactions and

allostery. This knowledge may also greatly aid in computational

drug design. For example, it may not always be possible to identify

all the relevant states via other structural methods, like

crystallography. Using MSMs, however, one can hope to identify

the most important relevant states and design small-molecules to

Figure 5. Structural comparisons between encounter complex and X-ray apo (or open) and bound (or closed) structures for the
LAO protein. The X-ray apo (PDB ID: 2LAO) and bound structure (PDB ID: 1LAF) are shown in green and light blue respectively. Three representative
conformations from the encounter complex state are superimposed and shown in red. These three conformations are representative of 10,000
randomly selected conformations from the encounter complex state (i.e. they have the smallest protein Ca RMSD to all the rest of the randomly
selected conformations and are, therefore, the most central/typical of the state). In the right panel, the open, closed X-ray structures are overlaid with
one of the representative conformations from the encounter complex state.
doi:10.1371/journal.pcbi.1002054.g005

Figure 6. Overlay of free energy plots of the protein opening
angle versus twisting angle for the encounter complex (red)
and bound state (blue). Green dots correspond to where transitions
from the encounter complex to the bound state occur. Blue dots
correspond to where transitions into the encounter complex from other
states occur. Only transitions without re-crossing are counted
(minimum residence time in the final state after the transition is 6 ns).
doi:10.1371/journal.pcbi.1002054.g006
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specifically stabilize one or more states over the others. Future

work with improved force fields and greater sampling could also

greatly enhance our understanding of protein-ligand interactions.

However, we stress that the present work lays out the methodology

that would be employed in such future research.

Conclusions
In this study, we demonstrate the power of MSMs for

understanding protein-ligand interactions using the LAO protein

as a model system. Our results indicate that LAO binding is a two-

step process involving many states and parallel pathways. In the

first step, the ligand binds to a partially closed protein to form an

encounter complex. Both the conformational selection and

induced fit mechanisms play significant roles in this step. In the

second step, the system transits from the encounter complex state

to the bound state via the induced fit mechanism. This two-step

binding mechanism (see Fig. 7 for schematic diagram of the

binding mechanism) may also be used by other systems, such as

other PBP proteins, enzymes with closed active sites, and systems

where the apo protein dynamics rarely visits the bound

conformation. Future applications of MSMs with improved force

fields, greater sampling, and to other protein-ligand interactions

will reveal how general this mechanism is, aid in understanding

allostery, and lay a foundation for improved drug design.

Methods

Simulation dataset
We have performed 65 molecular dynamics simulations, each

200 ns long, of the LAO protein from the organism Salmonella

typhimurium and one of its ligands, L-arginine. Ten simulations

were started from the open protein conformation (PDB ID: 2LAO

[37]) with the ligand at more than 25 Å away from the binding

site. The other simulations were initialized from conformations

randomly selected from the first ten simulations. We saved

conformations every 20ps with a total of more than 650,000

conformations. Among these MD simulations, we have observed

multiple binding events and unbinding events (see Fig. S6 and

Text S2). The protein was solvated in a water box with 11,500

SPC waters [54] and 1 Na+ ion. All the simulations were

performed using the GROMACS 4.0.5 simulation package [55]

with the GROMOS96 force field [56]. The simulation system was

minimized using a steepest descent algorithm, followed by a

250 ps MD simulation applying a position restraint potential to

the protein heavy atoms. The simulations were performed under

isothermal-isobaric conditions (NPT) with P = 1 bar and T = 318

K, using Berendsen thermostat and Berendsen barostat with

coupling constants of 0.1 ps21 and 1 ps21 respectively [57]. A

cutoff of 10 Å was used for both VDW and short-range

electrostatic interactions. Long-range electrostatic interactions

were treated with the Particle-Mesh Ewald (PME) method [58].

Nonbonded pair-lists were updated every 10 steps. Waters were

constrained using the SETTLE algorithm [59] and all protein

bonds were constrained using the LINCS algorithm [60].

Hydrogen atoms were treated as virtual interaction sites, enabling

us to use an integration step size of 5 fs [61].

Markov State Model (MSM) state decomposition
We used MSMBuilder [27] and SHC [30] to construct the state

decomposition for our MSM for LAO binding.

We first used the k-centers algorithm in MSMBuilder [27] to

cluster our data into a large number of microstates. The objective

of this clustering was to group together conformations that are so

geometrically similar that one can reasonably assume (and later

verify) that they are also kinetically similar.

Because we had to account for both the protein and ligand, we

performed two independent clusterings; one based on the opening

and twisting angle of the protein and one based on the relative

position of the ligand (see Fig. S2). We then combined the two

clusterings by treating them as independent sets. For example, M

protein-based clusters and N ligand-based clusters would lead to a

total of M6N clusters.

For the protein-based clustering, we created 50 clusters using

the Euclidean distance between a vector containing the protein

opening and twisting angles. The opening angle (see Fig. S2a) was

defined as the angle between the normal vectors of the two planes

defined by the center of masses of the following groups of Ca

atoms:

N Plane-A: Residues 6–88 & 195–227; 162–168; and 121–127;

N Plane B: Residues 92–185; 162–168; and 121–127.

The twisting angle (see Fig. S2b) is the angle between the

following two planes:

N Plane-A: Residues 6–88 & 195–227; 83–88 &194–199; and

92–97 & 156–161;

N Plane-B: Residues 92–185; 83–88 &194–199; and 92–97 &

156–161.

The strong correlation between opening and twisting angles of

the protein and the two slowest eigenvectors from Principle

Component Analysis (PCA) analysis of a 20 ns MD simulation

started from the apo structure in the absence of the ligand

demonstrates that they are a reasonable descriptor of the protein’s

conformation (see Figs. S2c and S2d). As a reference point, we

note that the holo X-ray structure (PDB ID: 1LAF) [33] has both

opening and twisting angles equal zero, while the apo X-ray

Figure 7. A schematic diagram describing the proposed two-
step binding mechanism for proteins in steric occlusion of the
direct binding of the ligands. The first step is the transition from the
apo to the encounter complex state. In this step, multiple pathways
exist where both conformational selection and the induced fit
mechanisms play important roles. The second step is the transition
from the encounter complex to the bound state, where the induced fit
mechanism is adopted.
doi:10.1371/journal.pcbi.1002054.g007
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structure (PDB ID: 2LAO) [37] has opening angle = 38.2u and

twisting angle = 226.2u.
For the ligand-based clustering, we created 5000 clusters using

the Euclidean distance between all heavy-atoms.

We then had to modify our clustering to account for the fact

that the ligand dynamics fall into two different regimes (see Fig.

S7): one where the ligand moves slowly due to interactions with

the protein and one where the ligand is freely diffusing in solution.

The existing clusters are adequate for describing the first regime.

However, when the ligand is freely diffusing (more than 5 Å from

the protein), the procedure outlined above results in a large

number of clusters with poor statistics (less than ten transitions to

other states). Better sampling of these states would be a waste of

computational resources as there are analytical theories for

diffusing molecules and a detailed MSM would provide little

new insight. Instead, we chose to re-cluster these states using the

same protein coordinates and the Euclidean distance between the

ligand’s center of mass (as opposed to the Euclidean distance

between all ligand heavy-atoms). For this stage, we created 10 new

protein clusters and 100 new ligand clusters.

After dropping empty clusters, this procedure yielded 3,730

microstates. Of these, 3,290 microstates came from the initial high

resolution clustering and 440 came from the data that was

reclustered at low resolution. To verify that the final microstate

model is valid (Markovian) we plotted the implied timescales and

found that they level off at a lag time between 2 and 6 ns (see Text

S3 and Fig. S8a), implying that the model is Markovian for lag

times in this range. Therefore, we can conclude that the

microstates are sufficiently small to guarantee that conformations

in the same state are kinetically similar.

We then lumped kinetically related microstates into macrostates

using the SHC algorithm [30]. This is a powerful lumping method

that efficiently generates more humanly comprehensible macro-

state models (i.e. ones with fewer small macrostates arising from

statistical error) than the PCCA algorithm currently implemented

in MSMBuilder.

In SHC, one performs spectral clustering hierarchically using

super level sets (or density levels) starting from the highest density

level, thereby guaranteeing that highly populated meta-stable

regions are identified before less populated ones. For SHC, we

selected density levels Lhigh = [0.50, 0.55, 0.60, 0.65, 0.70, 0.75,

0.80, 0.85, 0.90, 0.95, 0.99] and Llow = [0.4, 0.95], for the high

and low-density regions respectively. The low and high resolution

states were lumped separately because the states in each set have

different sizes, so it is difficult to compare their densities. We then

combined these two sets of macrostates to construct an MSM with

54 macrostates. Once again, we used the implied timescales test to

verify that the model is Markovian and found that a 6 ns lag time

yields Markovian behavior (see Fig. S8b).

Calculating transition matrices
To calculate a transition matrix using the above state

decomposition we first counted the number of transitions between

each pair of states at some observation interval (the lag time) to

generate a transition count matrix, where the entry in row x and

column y gives the number of transitions observed from sate x to

state y. In particular, we use a sliding window of the lag time on

each 200 ns trajectory with a 20 ps interval between stored

conformations (i.e. each trajectory contains 10,000 conformations)

to count the transitions. Because we use a hard cutoff between

states, simulations at the tops of barriers between states can quickly

oscillate from one state to the other, leading to an over-estimate of

the transition rate between states [62]. To mitigate the effect of

these recrossing events, we only counted transitions from state x to

state y if the protein remained in state y for at least 300 ps before

transitioning to a new state. To generate the transition probability

matrix (where the entry in row x and column y gives the

probability of transitioning from state x to state y in one lag time),

we normalized each row of the transition count matrix.

Mean First Passage Time (MFPT) calculation
We followed the procedure in Ref [63] to compute the mean

first passage time (MFPT) from initial state i to final state f, i.e.

the average time taken to get from state i to state f. In particular,

the MFPT (Xif) given that a transition from state i to j was made

first is the time it took to get from state i to j plus the MFPT from

state j to f. MFPT (Xif) can be defined as,

Xif ~
X

j

Pij tijzXjf

� �
ð1Þ

where tij = 6 ns is the lag time of the transition matrix T. The

boundary condition is:

Xff ~0 ð2Þ

A set of linear equations defined by Equation (1) and (2) can be

solved to obtain the MFPT Xif. We used bootstrapping to put

error bars on MFPTs. That is, one-hundred new data sets were

created by randomly choosing trajectories 130 times with

replacement. We then calculated the MFPTs for each data set

and reported their means and standard deviations. In MFPT

calculations, the encounter complex was considered to contain

state 11 and state 5, because state 5 also has features of the

encounter-complex, though it plays a significantly smaller role

(refer to the Text S1 for details).

Calculation of the binding free energy and association
rate

To compute the binding free energy DG from our simulations,

we use the method introduced by van Gunsteren and co-workers

[47]:

DG~{kbT ln Kb~{kbT ln
abound

c0afree
2

� �
ð3Þ

where abound and afree are the fractions of bound and free species

respectively. c0 is the overall concentration of ligand. In our

simulations, c0~1= NAVboxð Þ, where NA is Avogadro’s number,

and Vbox is the volume of the simulation box. In our system,

c0 = 0.0049 mol/L, T = 318K. We consider all the unbound states

as free species, so that afree = 1.75%. Thus, the bound species

abound = 12afree = 98.25%, which contains all the states where the

protein and ligand are in close contact. From Eq. (3), we have:

DG~{8:46Kcal=mol

We can also derive the association rate. Given a system in

equilibrium described by the protein P, ligand L and the protein-

ligand complex PNL, the protein-ligand binding reaction can be

written as:

PzL?P.L ð4Þ
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Rate equation can be written as

d P½ �
dt

~{kon P½ � L½ �zkoff P.L½ � ð5Þ

Where kon and koff are forward and backward rate constants

respectively. Since the forward reaction (i.e. association) only

depends on kon, the rate equation for the forward reaction can be

written as:

d P½ �
dt

~{kon P½ � L½ � ð6Þ

The total concentrations of protein and ligand in the system are

constant

Ptot½ �~def
P½ �z P.L½ � ð7Þ

Ltot½ �~def
L½ �z P.L½ � ð8Þ

Thus only one concentration among [P], [L], and [PNL] is

independent. If we choose [P] as the independent concentration

and then rate equation for forward reaction can be rewritten as:

d½P�
dt

~{kon½P�½L�~{kon(½Ltot�{½Ptot�z½P�)½P� ð9Þ

If we consider the condition ½Ptot�~½Ltot�, which is the case for our

simulations:

d½P�
dt

~{kon½P�2 ð10Þ

We can solve Eq (10) with the initial condition ½P�~½P0� at t = 0:

½P�~ ½P0�
kon½P0�tz1

ð11Þ

We define the association timescale (t1=2) as the time when half of

the protein (½P�~½P0�=2) has associated with the ligand:

t1=2~
1

kon½P0�
ð12Þ

Since there is no experimental kon rate constant available for the

LAO protein, we choose for comparison the kon from the Histidine

binding (HisJ) protein. The LAO and HisJ proteins have

considerable similarity both in structure and function. For

example, both proteins are the same size (238 a.a.) and have a

70% sequence identity. In fact, if conservative mutations are taken

into account the sequence identity increases to 83% [64]. These

homologous proteins also bind to the same membrane receptor

(HisQ/HisM/HisP) [37] and the same ligands (cationic L-amino

acids) [65]. The RMSD between the X-ray crystal structures of

holo LAO and HisJ bound to histidine (1LAG and 1HBP) is also

quite small (Ca RMSD as low as 0.62 Å). The binding affinities of

these proteins to their ligands are also similar (all about a

nanomolar, though the binding affinities are not exactly the same

[Histidine binds to HisJ most strongly, but binds to LAO most

loosely]). The similarity between LAO and HisJ has also been

discussed in detail in a previous study by Oh et. al.[65]. Therefore,

we think it is a reasonable assumption that the LAO and HisJ

proteins have similar binding kinetics.

For the Histidine binding protein, kon~1|108M{1sec{1. In

our simulation, the initial concentration of protein is

½P0�~0:0049mol=L, thus, the association timescale:

t1=2~2ms

The experimental association timescale is about eight times

slower than that computed from our simulations. However, we

note that the only available experimental kon was measured at

293K [46], while our simulations were performed at a higher

temperature (318K) with faster kinetics. Thus, the difference

between the experimental and simulation rates will be smaller at

the same temperature. For the binding free energy, the

experimental measurement was at an even lower temperature

(277K) [45]. Thus, the experimental binding free energy at the

temperature we simulated should be closer to our calculated

value.

Supporting Information

Figure S1 The X-ray bound structure of LAO (PDB ID: 1LAF)

from four different viewing angles shows that the protein

completely encloses the ligand. Thus, unbound ligands cannot

enter the binding site when the protein is closed.

(TIF)

Figure S2 (a) Opening and (b) twisting angles used to describe

the motion of the protein. (c). The projection of conformations on

the second eigenvector from Principle Component Analysis (PCA),

and protein opening dihedral angle (see SI Sec 2 for detailed

definition) as a function of time are shown in red and black

respectively. The 20 ns simulation is started from protein in the

closed state (PDB ID: 1LAF), but ligand was not included in the

simulation. (d) Same as (c) except that the projection of

conformations on the first eigenvector from PCA and protein

twisting dihedral angle are plotted. In this system, the twisting and

opening angles are correlated well with the first and second

eigenvectors from PCA.

(TIF)

Figure S3 Populations of top 23 most populated macrostates

(macrostate-population.0.1%) of the 54-state MSM. 1,000

conformations randomly selected from each macrostate are

overlaid and shown from four different viewing angles. Free

energy plots of the protein opening angle versus twisting angle (O,

T) and the distance between the ligand and the binding site versus

the opening angle (L,O) are displayed in red and blue respectively.

The bin size is 5u for ‘‘O’’ and ‘‘T’’ and 1.5 Å for the ligand

distance. The interval between two adjacent contour levels is

0.5 KT. The green and blue crosses correspond to the X-ray

bound and apo structures respectively. For the free energy plots

the x and y axis-scales are the same than those found in the Fig. 2

of the main text.

(TIF)

Figure S4 The three representative conformations from the

encounter complex state based on RMSD of the (a) protein C-a
atoms and (b) binding site plus the ligand (heavy atoms of the

residues within a cutoff of 8 Å from the ligand in the crystal

structure with PDB ID: 1LAF) are compared to (c) the crystal

bound structure of LAO (PDB ID: 1LAF). The protein is shown in
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cartoon representation while the residues within a cutoff of 8 Å

from the ligand in the crystal structure of 1LAF are shown in lines.

In these conformations, we found the ligand side chain interacts

with the lobe I Tyr14 and Phe52 through cation-Pi interactions.

From five out of the six conformations, we also observed that the

NH3COO2 group of the ligand protrudes upward to interact with

the lobe II residue Thr121. The same interactions are also

observed in the X-ray bound structure.

(TIF)

Figure S5 Superposition of the 5 highest flux pathways from

mis-bound states to the bound state. The flux was calculated using

a greedy backtracking algorithm from a 53-state Markov State

Model (MSM) generated with the SHC algorithm. The arrow size

is proportional to the interstate flux. (a) Representative structures

and equilibrium populations are shown for each state. (b) Free

energy plots of protein opening versus twisting angle are shown.

The macrostate number is inserted in each of the free energy plots.

(TIF)

Figure S6 The ligand distance to the binding site vs. simulation

time was plotted for 12 MD simulations where binding (11

simulations) or unbinding (1 simulation, gray shaded) events were

observed.

(TIF)

Figure S7 Ligand rotational autocorrelation functions for the

unbound states (blue), the encounter complex state (green), and the

bound state (red) are shown in the left panel. Autocorrelation

functions generated from different trajectories are overlaid in the

same figure. On the right panel, a schematic figure illustrates that

the ligand rotates quickly when it is far away from the protein but

the ligand rotation is restrained when it interacts with the protein.

Thus, when constructing MSMs, we only consider the ligand

center of mass motion when the ligand does not have strong

interactions with the protein but we consider motion of all the

ligand heavy atoms when the ligand is strongly interacting with the

protein.

(TIF)

Figure S8 Twenty slowest implied timescales as a function of lag

time computed from (a) MSM containing 3730 microstates and (b)

MSM containing 54 macrostates. Both plots level off at a lag time

of ,4 ns. Thus we choose 6 ns to construct final MSMs.

(TIF)

Table S1 Averaged RMSD of the LAO protein Lobes I and II

between three representative encounter complex conformations

and the apo and bound X-ray structures. Ca atoms of the Lobe I

residues 6-88 & 195-227 or Lobe II residues 92-185 were included

in the RMSD calculations. The structural alignment and RMSD

calculation were performed separately for each Lobe.

(PDF)

Text S1 Structural features of the macrostates.

(PDF)

Text S2 Binding/unbinding transitions observed in the MD

dataset.

(PDF)

Text S3 Implied timescales calculation.

(PDF)
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