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Abstract
Background—Genetic determinants of BP response to potassium, or potassium sensitivity, are
largely unknown. We conducted a genome-wide linkage scan and positional candidate gene
analysis to identify genetic determinants of potassium sensitivity.

Methods and Results—1,906 Han Chinese participants took part in a 7-day high-sodium
followed by a 7-day high-sodium plus potassium dietary intervention. BP measurements were
obtained at baseline and following each intervention using a random-zero sphygmomanometer.
Significant linkage signals (LOD>3) for BP responses to potassium were detected at chromosomal
regions 3q24-q26.1, 3q28, and 11q22.3-q24.3. Maximum multipoint LOD scores of 3.09 at 3q25.2
and 3.41 at 11q23.3 were observed for absolute DBP and MAP responses, respectively. Linkage
peaks of 3.56 at 3q25.1 and 3.01 at 11q23.3 for percent DBP response and 3.22 at 3q25.2, 3.01 at
3q28, and 4.48 at 11q23.3 for percent MAP response were also identified. AGTR1 SNP
rs16860760 in the 3q24-q26.1 region was significantly associated with absolute and percent
systolic (SBP) responses to potassium (p-values=0.0008 and 0.0006, respectively). Absolute SBP
responses (95% CI) for genotypes C/C, C/T, and T/T were: −3.71 (−4.02, −3.40), −2.62 (−3.38,
−1.85), and 1.03 (−3.73, 5.79) mmHg, respectively; and percent responses (95% CI) were: −3.07
(−3.33, −2.80), −2.07 (−2.74, −1.41), and 0.90 (−3.20, 4.99), respectively. Similar trends were
observed for DBP and MAP responses.
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Conclusions—Genetic regions on chromosomes 3 and 11 may harbor important susceptibility
loci for potassium sensitivity. Furthermore, the AGTR1 gene was a significant predictor of BP
responses to potassium intake.

Clinical Trial Registration Information—http://clinicaltrials.gov; Identifier: NCT00721721
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Randomized clinical trials have documented that potassium supplementation reduces blood
pressure (BP) among hypertensive and normotensive participants1–3. These clinical trials
have also shown that BP response to potassium intake varies substantially among
individuals1, 4. Furthermore, previous data from the Genetic Epidemiology Network of
Sensitivity (GenSalt) Study indicated that BP response to potassium intake, known as
‘potassium sensitivity’, has a genetic component, with moderate heritability estimates for
this phenotype5. Still, few studies have been conducted to examine the genetic etiology of
potassium sensitivity5–7. Knowledge of the genetic mechanisms underlying BP response to
potassium will not only provide a novel strategy for the primary and secondary prevention
of hypertension, but may also provide further insights into the complex and multifaceted
biological mechanisms underlying hypertension susceptibility.

The objective of the current study was to identify chromosomal regions harboring
quantitative trait loci (QTLs) for systolic blood pressure (SBP), diastolic blood pressure
(DBP), and mean arterial pressure (MAP) responses to potassium intake by conducting a
genome-wide linkage scan. In addition, linkage results were followed-up by genotyping
single nucleotide polymorphisms (SNPs) located in positional candidate genes and
conducting association analyses to examine their relationship with BP responses to
potassium intake.

METHODS
Study Population

The GenSalt study was conducted in a Han Chinese population with habitually high-sodium
intake in rural areas of northern China. A community-based BP screening was conducted
among persons aged 18–60 years in the study villages to identify potential probands and
their families. Those with a mean SBP between 130–160 mmHg and/or a DBP between 85–
100 mmHg and no use of antihypertensive medications and their parents, spouses, siblings
and offspring were recruited as volunteers for the study. Detailed eligibility criteria for the
probands and parents/siblings/spouses/offspring have been presented elsewhere8.
Individuals who had stage-2 hypertension, secondary hypertension, clinical cardiovascular
disease (CVD), chronic kidney disease, diabetes, used antihypertensive medications, or were
pregnant, heavy alcohol drinkers or currently on a low-sodium diet were excluded from the
study. Only probands, siblings, spouses and offspring were eligible for the dietary
intervention. Of the 1,906 eligible participants, 1843 (96.7%) completed the potassium
intervention.

Institutional Review Boards at all of the participating institutions approved the GenSalt
study. Written informed consents for the baseline observation and for the intervention
program were obtained from each participant.
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Potassium Supplementation Intervention
The study participants were given a high-sodium diet (307.8 mmol of sodium per day) for 7
days. After that, they received a 60 mmol potassium-supplementation while continuing on
the high-sodium diet for another 7 days. One 20 mmol potassium pill (Klor-Con M20
potassium tablets, Upsher-Smith Laboratories, Maple Grove, MN) was given during
breakfast, lunch, and dinner. Total energy intake was varied according to each participant’s
baseline energy intake. All study foods were cooked without salt, and pre-packaged salt was
added to the individual study participant’s meal when it was served by the study staff. To
ensure study participants’ compliance to the intervention program, they were required to
have their breakfast, lunch and dinner at the study kitchen under supervision of the study
staff during the entire study period. The study participants were instructed to avoid
consuming any foods that were not provided by study personnel. Three timed urinary
specimens (one 24–hour and two overnight) were collected at baseline and at the end of each
phase of intervention (days 5, 6, and 7) to monitor compliance to the dietary sodium and
potassium interventions among all participants. In addition, a random subsample of 238
participants collected the 24-hour specimens at baseline and each intervention phase using
two separate containers, one for the overnight and one for the daytime. Regression equations
of 8-hour overnight excretions on 24-hour excretions of sodium and potassium were
calculated using data from the subsample for each intervention phase separately. These
formulas were used to calculate the 24-hour urinary excretions of sodium and potassium
based on 8-hour overnight values in all study participants. The mean of three 24-hour
measures (one collected 24-hour measure and two estimated 24-hour measures) were used to
estimate each participant’s average 24-hour urinary excretion for each intervention phase.
The results from the 24-hour urinary excretions of sodium and potassium showed excellent
compliance with the study diet: the mean (standard deviation) 24-hour urinary excretions of
sodium and potassium were 242.4 (66.7) mmol and 36.9 (9.6) mmol at baseline, 244.3
(37.7) and 35.7 (7.5) during the high-sodium intervention, and 251.9 (36.9) and 77.3 (12.6)
during the potassium intervention, respectively.

Phenotype Measurement
A standard questionnaire was administered by trained staff at the baseline examination to
collect information on family structure, demographic characteristics, personal and family
medical history, and lifestyle risk factors. Three morning BP measurements were obtained
according to a standard protocol during each of the 3-days of baseline observation and on
days 5, 6 and 7 of each intervention period. All BP readings were measured by trained and
certified observers using a random–zero sphygmomanometer9. BP was measured with the
participant in the sitting position after 5 minutes of rest. In addition, participants were
advised to avoid alcohol, cigarette smoking, coffee/tea, and exercise for at least 30 minutes
prior to their BP measurements. All BP observers were blinded to the participant’s dietary
intervention. Body weight and height were measured twice in light indoor clothing without
shoes during the baseline examination. Body mass index (BMI) was calculated as kilograms
per meters squared (kg/m2).

Absolute BP response to potassium was calculated as the mean of 9 measurements on days
5, 6 and 7 during the potassium intervention minus the mean of 9 measurements during the
high-sodium intervention; and percent response to potassium as the absolute response
divided by the mean of 9 measurements on days 5, 6 and 7 during the high-sodium
intervention multiplied by 100. The pairwise correlations of all phenotypes are displayed in
Supplemental Table 1.
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Microsatellite Marker Genotyping
Lymphocytic DNA samples were obtained from GenSalt family members (probands,
parents, spouses, siblings, and offspring) and used for genotyping microsatellite markers
spaced at approximately 9 cM intervals (359 markers, Marshfield Screening Set 12).
Microsatellite genotyping used fluorescently labeled PCR primers for marker amplification
followed by capillary electrophoresis on automated DNA sequencers (ABI 3730 DNA
Analyzer). Quality control samples included blind duplicates, no DNA controls, and CEPH
DNA standards. Genotypes were assigned using GeneMapper software (ABI). ASPEX and
GRR were used to check for potential misreported relationships in the GenSalt family
pedigrees10, 11. MapMaker/Sibs and PedCheck were used to check for Mendelian
inconsistencies within families for each marker12, 13.

Candidate Gene and SNP Selection and Genotyping
A positional candidate gene approach was used to select genes and single nucleotide
polymorphisms (SNPs) for the association analysis. A total of 912 candidate genes
previously reported to be associated with BP related disorders were identified using the
Human Genome Epidemiology (HuGE) Navigator and the following search terms:
‘Hypertension’, ‘Hypertension, Malignant’, ‘Hypertension, Portal’, ‘Hypertension,
Pregnancy-Induced’, ‘Hypertension, Pulmonary’, ‘Hypertension, Renal’, ‘Hypertension,
Renovascular’, and ‘Hypotension’14. Of these 912 genes, 11 positional candidate genes were
selected for examination because they were located in chromosomal regions exhibiting LOD
scores of 3 or higher in our linkage analysis. One-hundred thirty-three functional and tag
SNPs providing greater than 75% coverage of common polymorphisms in positional
candidate genes and their flanking regions (5,000 bp) were genotyped using oligonucleotide
ligation-based SNPlex assays (Chinese National Human Genome Center, Beijing, China)
and chip based hybridization assays (Affymetrix, Inc., Santa Clara, CA)15.

Data quality control revealed 20 SNPs with a minor allele frequency <0.01, 1 SNP with a
low genotyping call rate (<85%), and 1 SNP that significantly deviated from Hardy-
Weinberg Equilibrium [P value adjusted for correlated tests (PACT) < 0.05]. After exclusion
of these 22 SNPs, a total of 111 SNPs remained (please see Supplemental Table 2).

Statistical Analysis
The mean or percent of each baseline characteristic and BP response variable was calculated
for each study participant. Allele frequencies from the entire GenSalt sample were used to
calculate the multipoint identity by descent estimates with Merlin software16. Multipoint
quantitative trait linkage-analysis was conducted using SOLAR software17 and adjusted
absolute and percent BP response phenotypes. Phenotypes were adjusted for age and room
temperature during BP measurement separately within sex and field center groups. Bivariate
linkage analyses were also conducted to determine whether similarly adjusted baseline BP
phenotypes and the BP response phenotypes had shared genetic factors.

Additive associations between single SNPs and absolute and percent BP responses to
potassium intervention were assessed using a mixed linear regression model. A sandwich
estimator was used to account for the non-independence of family members. This method
assumes the same degree of dependency among family members. Age, gender, BP
measurement room temperature, and study site were adjusted in multivariable analyses. To
adjust for multiple comparisons, an adjusted p-value using the PACT method was calculated
for each SNP18. For SNPs with an adjusted p-value<0.05, we estimated the mean effect size
and 95% confidence interval (CI) for each genotype using a mixed linear regression model.
To assess whether significant BP response findings were independent of baseline BP levels,
we added the appropriate baseline BP measure as a covariate in sensitivity analyses. These
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analyses were conducted using SAS (version 9.1; SAS Institute Inc) and R (version 2.8.1;
http://www.r-project.org) statistical software. Finally, to determine whether significant SNPs
explained some of the observed linkage in its corresponding chromosomal region, linkage
analyses with phenotype adjustment for the original covariates plus any significant SNP
findings were conducted.

RESULTS
The baseline characteristics of 3,142 participants, including 676 probands, 69 spouses, 1,236
parents, 956 siblings, and 205 offspring from 633 families are presented in Table 1. Average
baseline SBP ranged from 107 mmHg among offspring to 137 mmHg among parents; DBP
from 65 mmHg among offspring to 80 mmHg among probands; and MAP from 79 mmHg
among offspring to 96 mmHg among probands. Among the 1843 participating probands,
spouses, siblings and offspring, average SBP, DBP, and MAP decreased during the
potassium intervention. For example, absolute SBP, DBP and MAP responses were −4.4,
−1.6, and −2.5 mmHg, respectively, among study probands. All BP response phenotypes
were normally distributed.

Genome-wide linkage results for absolute and percent BP responses to potassium are
illustrated in Figures 1a and 1b, respectively. We observed linkage (LOD>3) of BP
responses to chromosomal regions 3q24-q26.1, 3q28, and 11q22.3-q24.3. Maximum
multipoint LOD scores of 3.09 at 3q25.2 and 3.41 at 11q23.3 were observed for absolute
DBP and MAP responses to potassium, respectively (Table 2). Linkage peaks of 3.56 at
3q25.1 and 3.01 at 11q23.3 for percent DBP response and 3.22 at 3q25.2, 3.01 at 3q28, and
4.48 at 11q23.3 for MAP response were also identified (Table 2). Bivariate linkage analyses
yielded one significant finding in the 11q22.4-q24.3 region for baseline MAP and percent
MAP responses to potassium, with a maximum multipoint LOD score of 3.88.

Chromosomal region 3q24-q26.1 harbored 2 candidate genes [angiotensin II receptor, type 1
(AGTR1) and purinergic receptor P2Y, G-protein coupled, 12 (P2RY12)] which have been
previously implicated in BP-related disorders (Figure 2a). Similarly, 11q22.3-q24.3
harbored 9 candidate genes [interleukin 18 (IL18), dopamine receptor D2 (DRD2),
nicotinamide N-methyltransferase (NNMT), apolipoprotein A-V (APOA5), apolipoprotein
A-IV (APOA4), apolipoprotein C-III (APOC3), apolipoprotein A-I (APOA1), heat shock
70kDa protein 8 (HSPA8), and potassium inwardly-rectifying channel, subfamily J, member
1 (KCNJ1)] which have also been associated with BP related phenotypes in past studies
(Figure 2b).

Figure 3 shows the association between 111 SNPs in the 11 positional candidate genes and
absolute (a) and percent (b) SBP, DBP, and MAP responses to the potassium intervention.
Only AGTR1 SNP rs16860760 (MAF=7%) was significantly associated with any of the BP
responses. Absolute and percent BP responses to the potassium intervention, by rs16860760
genotypes, are shown in Figures 4a and 4b, respectively. SBP responses to potassium
intervention decreased with the number of T alleles, with absolute responses (95% CI) for
genotypes C/C (n=1,626), C/T (n=235), and T/T (n=13) of −3.71 (−4.02, −3.40), −2.62
(−3.38, −1.85), and 1.03 (−3.73, 5.79) mmHg, respectively (raw and adjusted p-values for
linear trend=0.0008 and 0.05, respectively), and percent responses (95% CI) of −3.07
(−3.33, −2.80), −2.07 (−2.74, −1.41), and 0.90 (−3.20, 4.99), respectively (raw and
adjusted p-values for linear trend=0.0006 and 0.04, respectively). A similar trend was
observed for DBP responses, with absolute responses of −1.47 (−1.74, −1.20), −0.90
(−1.51, −0.28), and 1.60 (−1.40, 4.60) mmHg, respectively (raw and adjusted p-values for
linear trend=0.02 and 0.64, respectively), and percent responses of −1.76 (−2.14, −1.38),
−0.98 (−1.85, −0.10), and 2.56 (−1.56, 6.69), respectively (raw and adjusted p-values for
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linear trend=0.02 and 0.69, respectively) for genotypes C/C, C/T, and T/T; and MAP
responses, with absolute responses of −2.22 (−2.48, −1.96), −1.47 (−2.07, −0.88), and 1.45
(−2.13, 5.03) mmHg, respectively (raw and adjusted p-values for linear trend=0.003 and
0.18, respectively), and percent responses of −2.37 (−2.66, −2.08), −1.50 (−2.21, −0.80),
and 1.86 (−2.25, 5.96), respectively (raw and adjusted p-values for linear trend=0.004 and
0.19, respectively), for genotypes C/C, C/T, and T/T. Inclusion of the appropriate baseline
BP measure as an additional covariate in sensitivity analyses for each BP response
phenotype did not change these findings. Multipoint linkage analysis of chromosome 3, with
an additional phenotype adjustment for rs16860760, explained some of the linkage observed
at both 3q24-q26.1 and 3q28. In this analysis, only one phenotype (percent DBP response to
potassium intake) achieved a significant maximum multipoint LOD score of 3.27 at 3q25.1.

DISCUSSION
The current study is the first to identify chromosomal regions harboring potentially
important QTLs for potassium sensitivity. Maximum multipoint LOD scores of 3.56 at
3q25.1, 3.01 at 3q28, and 4.48 at 11q23.3 were observed for the BP response phenotypes.
Furthermore, analysis of positional candidate genes revealed the AGTR1 gene as a
potentially important genetic determinant of potassium sensitivity. We identified a
significant and inverse dose-allele relationship between the minor T allele of AGTR1
marker rs16860760 and SBP response to potassium intake, with similar trends observed for
DBP and MAP responses. In aggregate, these findings have important implications for
future genetics research. The chromosomal regions localized in this study provide clues for
further investigations aimed at identifying novel genes involved in potassium sensitivity. In
addition, we provide early evidence of a definitive genetic mechanism underlying this
complex phenotype.

While many important genetic studies of BP have been conducted19, 20, the GenSalt study is
the first and only study to examine the genetic etiology of BP responses to dietary potassium
intake. Because microsatellite markers were genotyped for all family members (including
parents) and multipoint methods were used in the analysis, the current study had increased
power to detect linkage signals. The power to detect linkage and association was further
enhanced by the large number of BP measures that were collected for each participant,
which should have reduced measurement error. Study attributes, including the recruitment of
all Han Chinese participants, should make the association analysis robust to population
stratification. The study participants were also similar with respect to lifestyle risk factors,
including diet and physical activity, which minimized the confounding effects of
environment on genotype-phenotype associations. The majority of participants completed
the dietary intervention (96.8%), and compliance with the study interventions, as assessed
by urinary excretion of sodium and potassium during each intervention period, was
excellent. Finally, stringent quality control procedures were employed during measurement
of BP and the other study covariates, conduct of the dietary interventions, genotyping, and
marker data cleaning. Individuals with clinical cardiovascular disease, chronic kidney
disease, and diabetes were excluded from current study. Therefore, our findings might not
be directly generalizable to these patients.

We detected significant linkage signals for DBP and MAP responses to potassium intake at
3q24-q26.1 and 3q28. Although this is the first linkage analysis for potassium sensitivity,
past linkage scans have implicated this region in relation with other BP-related
phenotypes21–25. For example, Rice and colleagues found evidence of linkage to baseline
BP values on 3q28 in the HERITAGE Family Study24. Furthermore, in Perola and
colleagues’ genome-wide linkage scan of Finnish siblings, the strongest evidence for linkage
to hypertension was found for an intragenic AC-repeat microsatellite marker in the AGTR1
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gene located in the 3q21-q25 region22. In aggregate, these data provide strong evidence that
important QTLs for potassium sensitivity may exist on the long arm of chromosome 3.
However, replication studies examining a similar phenotype are needed.

Follow-up analysis of positional candidate genes in the 3q24-q26.1 region of chromosome 3
identified the AGTR1 gene as a potentially important genetic determinant of potassium
sensitivity. AGTR1 encodes the angiotensin II, type 1 receptor, a critical component of the
renin-angiotensin-aldosterone system26. Agonism of this receptor by angiotensin II increases
aldosterone which acts on renal distal tubules to increase the resorption of sodium and water
and the excretion of potassium, subsequently increasing BP27, 28. Polymorphisms in this
gene could therefore affect physiologic responses to potassium intake. Thus, the AGTR1
gene is not only a statistically significant, but also a biologically plausible candidate for
potassium sensitivity. Although the AGTR1 gene has not previously been studied in relation
to potassium sensitivity, it has been associated with other BP phenotypes29–31. Findings of
Bonnardeux and colleagues, as well as Zhu and colleagues showed significant associations
of the AGTR1 gene with essential hypertension29, 30. Furthermore, Gu and colleagues
identified several genetic variants in the AGTR1 gene that predicted BP salt-sensitivity31. In
the current study, we found a significant association between the AGTR1 marker
rs16860760 and SBP responses to potassium. Compared to those who were homozygous for
the major C allele, T allele carriers showed reduced BP responses to potassium while
homozygotes showed no significant BP responses to potassium intake. Similar trends were
identified for DBP and MAP responses. Interestingly, the same AGTR1 rs16860760 variant
identified in the current study was recently reported to be associated with diastolic heart
failure, an important BP related condition, among a Taiwanese population of Han Chinese
ethnicity32. It is unlikely that this intronic variant is causally associated with either trait.
Since this SNP was not in strong LD (r2>0.8) with any of the other SNPs genotyped in the
current study, further studies to identify the true causal variant are warranted. In addition,
while some of the linkage findings on chromosome 3 were explained by this SNP, a
significant signal was still observed for percent DBP response to potassium after adjustment
for rs1680760. This data suggests that other important and still unidentified genes for
potassium sensitivity may exist in this region.

Our strongest evidence of linkage to potassium sensitivity was at chromosomal region
11q22.3-q24.3 (LOD=4.48). Previous studies have linked this region to other BP-related
phenotypes33, 34. For example, a genome-scan meta-analysis for hypertension found the
strongest evidence of linkage at 11q22.3-q24.133. Similarly, our bivariate linkage analyses
suggested that loci in this region may have pleiotropic effects on potassium sensitivity and
baseline BP phenotypes. While follow-up genotyping of positional candidate genes did not
reveal any significant findings, this region spans over 20,000 kilobases and may harbor
important but still undiscovered susceptibility loci for potassium sensitivity. Future
investigations aimed at identifying novel genes for potassium sensitivity in this
chromosomal region are warranted.

The current study described genetic regions on chromosomes 3 and 11 that may harbor
important susceptibility loci for potassium sensitivity. Furthermore, we identified a genetic
variant in the AGTR1 gene significantly associated with BP responses to potassium intake.
These findings provide early evidence that genetic mechanisms contribute to potassium
sensitivity, a unique but particularly relevant phenotype. Further research aimed at
identifying novel genes in the chromosomal regions described here is needed. In addition,
replication of the AGTR1 locus identified in the current analysis is warranted, along with
work to uncover the functional AGTR1 variant.
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Current understanding of the genetic mechanisms underlying BP response to dietary
potassium intake is limited. Using data from 3,142 Han Chinese participants, including
1,906 who took part in a 7-day high-sodium diet followed by a 7-day high-sodium plus
potassium dietary intervention, we conducted a genome-wide linkage scan and positional
candidate gene study of systolic blood pressure, diastolic blood pressure and mean
arterial pressure responses to changes in dietary potassium intake. Our results identified
regions on chromosomes 3 and 11 that may harbor important susceptibility loci for
dietary potassium sensitivity. In addition, a novel variant in the AGTR1 gene was shown
to be a strong predictor of BP response to dietary potassium. These findings provide early
evidence of a definitive genetic mechanism underlying potassium sensitivity. Elucidating
the genetic mechanisms that influence this complex phenotype could provide further
insight into the pathophysiology of hypertension. In addition, cataloguing variants that
influence this trait could potentially lead to the development of targeted dietary
interventions among potassium-sensitive subgroups for the primary and the secondary
prevention of hypertension.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Genome-wide linkage scan results for absolute (a) and percent (b) systolic, diastolic, and
mean arterial pressure responses to potassium intervention.
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Figure 2.
Linkage regions and positional candidate genes for chromosomes 3 (a) and 11 (b).
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Figure 3.
–Log p-values for the association between 111 SNPs in 11 candidate genes and absolute (a)
and percent (b) systolic blood pressure, diastolic blood pressure, and mean arterial pressure
responses to potassium intervention. Labeled SNPs had an adjusted p-value<0.05.
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Figure 4.
Absolute (a) and percent (b) systolic blood pressure, diastolic blood pressure, and mean
arterial pressure responses to potassium for AGTR1 rs1680760, by genotype.
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