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SUMMARY
Population-based case-control design has become one of the most popular approaches for
conducting genome-wide association scans for rare diseases like cancer. In this article, we propose
a novel method for improving the power of the widely used single-SNP two degrees-of-freedom
(2 d.f.) association test for case-control studies by exploiting the common assumption of Hardy-
Weinberg Equilibrium (HWE) for the underlying population. A key feature of the method is that it
can relax the assumed model constraints via a completely data-adaptive shrinkage estimation
approach so that the number of false positive results due to the departure of HWE is controlled.
The method is computationally simple and is easily scalable to association tests involving
hundreds of thousands or millions of genetic markers. Simulation studies as well as an application
involving data from a real genome-wide association study illustrate that the proposed method is
very robust for large-scale association studies and can improve the power for detecting
susceptibility SNPs with recessive effects, when compared to existing methods. Implications of
the general estimation strategy beyond the simple 2 d.f. association test are discussed.
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1 INTRODUCTION
The identification of large numbers of single-nucleotide polymorphisms (SNPs) across the
human genome and the development of technologies for massive multiplex genotyping have
now made genome-wide association studies (GWAS) involving hundreds of thousands of
markers feasible [Hirschhorn & Daly, 2005; Thomas et al., 2005; Wang et al., 2005]. A
number of successful studies have now been able to identify novel susceptibility loci for
complex diseases like cancer, heart disease, and diabetes [McPherson et al., 2007; Yeager et
al., 2007; Ridderstrale & Nilsson, 2008]. In GWAS, the evaluation of the association
between a disease trait and an individual SNP often constitutes the initial analytic step. The
lack of statistical significance in this first step may lead to the exclusion of a SNP from
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further scrutiny. Thus, to reduce the chance of false negatives, it is important to use
powerful methods for preliminary screening of associations.

Population-based case-control studies are now being increasingly used for conducting
genome-wide association scans. A widely used method for testing single-SNP associations
in case-control studies is the Cochran-Armitage (CA) one-degree-of-freedom trend test
[Armitage, 1955; Sasieni, 1997; Slager & Schaid, 2001; Freidlin et al., 2002], which is
known to be optimal when the mode-of-effect for a SNP is multiplicative. An alternative
method, which is known to have robust power under alternative modes-of-effect, is the two-
degrees-of-freedom (2 d.f.) chi-square test for independence between case-control and
genotype status. The power of the standard 2 d.f. test, however, can be low for detection of
SNPs with recessive effects, often because of the lack of sufficient sample size for
homozygous variants among the cases and controls. To resolve this sparse data problem, we
recently proposed the use of the assumption of Hardy-Weinberg Equilibrium (HWE) for
estimation of the genotype frequencies among the controls, then comparing the resulting
distribution with the empirical genotype distribution of the cases to obtain a novel 2 d.f. test
of association [Chen & Chatterjee, 2007]. We showed that the proposed methodology can
increase the power of 2 d.f. tests in a major way under non-multiplicative genetic effects,
with the gain being particularly dramatic under the recessive model. A number of other
reports had also previously pointed out that “retrospective” methods for analysis of case-
control studies can exploit assumptions of HWE or a related population genetics model to
gain major power for both genotype- and haplotype-based tests of association [Epstein &
Satten, 2003; Satten & Epstein, 2004; Thompson et al., 2004].

A major limitation of all HWE-based tests of genetic association is that they can lead to
serious inflation of type-I error when the underlying assumptions of HWE or other genetic
models are violated. In Chen & Chatterjee [2007], we characterized the bias of the 2 d.f. test
analytically and showed that even modest departure of HWE can lead to an unacceptably
high increase in the type-I error of the procedures. The main objective of this article is to
develop a 2 d.f. test that can gain power by exploiting the model assumptions of HWE for
the underlying population and yet be resistant to bias when the model assumptions are
violated. The method involves estimation of genotype-specific disease odds ratio parameters
by data-adaptive “shrinkage” of a “model-free” estimator that does not require HWE
assumption towards a “model-based” estimator that directly exploits the HWE constraints.
The amount of “shrinkage” is sample-size-adaptive and data-adaptive, so that in large
samples the method has no bias irrespective of whether the assumptions of HWE hold and
yet the method can gain efficiency by shrinking the analysis towards HWE, but only to the
extent that the data validate the assumptions. The closed-form expression of the estimator
itself and the availability of a simple variance estimator facilitate rapid computation of a
corresponding Wald-type 2 d.f. test for GWAS involving hundreds of thousands of SNPs.

We evaluate performance of the proposed method compared with a number of alternative
tests, using both simulated and real data. In particular, we use data from the Cancer Genetics
Markers of Susceptibility (CGEMS) study to evaluate the ability of the proposed shrinkage
estimation procedure to protect against inflated type-I errors due to the departure of HWE
that may occur on a genome-wide scale. The study reveals potential problems associated
with the application of the so-called “retrospective” methods on a genome-wide scale, even
though the underlying assumption of HWE overall may be a good assumption for the
genome. These studies together suggest that the proposed novel shrinkage estimation
procedure is a promising method for testing genetic association in case-control studies. The
method can gain major power over standard case-control analysis by exploiting the possible
constraint of HWE for the underlying population and yet can adapt itself to protect against
inflation of type-I error when the HWE constraints are violated. We also discuss the
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potential implications of these findings beyond the context of the simple 2 d.f. test
considered in this article.

2 METHODS
The genotype information for an individual SNP in a case-control study can be represented
by the 2 × 3 contingency table shown in Table 1. Here D is the indicator of case (D = 1) or
control (D = 0) status and G is the number of minor alleles carried by an individual (G = 0,
1, 2). Let Pdg = pr(G = g|D = d), d = 0 and 1, denote the population genotype frequencies for
the controls and the cases, respectively. The likelihood L for case-control data is given by

the product of two sets of multinomial probabilities, ,
where n1g and n0g denote numbers of cases and controls with genotype g, respectively. In

addition, define  for d = 0 and 1, i.e., n1+ for the number of cases and n0+ for
the number of controls.

We consider re-parameterizing the likelihood in terms of alternative parameters of interest.
Following Lindley [1988], we define

(1)

Note that θ and ω characterize the genotype frequencies of the controls according to the

formulas . The Hardy-
Weinberg Disequilibrium (HWD) coefficient θ is a measure of the departure from HWE
among controls, with θ = 0, θ > 0, and θ < 0 corresponding to HWE, excess homozygosity,
and excess heterozygosity, respectively. We note that the HWE assumption is reasonable for
the underlying population, which will include both diseased and disease-free subjects.
However, for rare diseases like certain cancers, the assumption of HWE is reasonable in the
control population, as they approximately represent the underlying whole population.

Further, let  be the disease odds ratio parameter vector
associated with the genotypes G = 1 and G = 2 relative to the baseline genotype G = 0. Let

.

Given θ and ω and hence the genotype frequency for the controls, we can characterize the
genotype frequencies for the cases by ψ according to the formula

(2)

Thus, the likelihood for case-control data, L = L(β, ω, θ), is a function of ψ, ω, and θ.

Let β̂(θ) denote the maximum-likelihood estimate of β for a fixed value of θ. When θ = 0,
i.e., when HWE holds among the controls, the maximum-likelihood estimate of β, denoted
by β̂(θ = 0), which we have shown previously [Chen & Chatterjee, 2007], can be expressed
in closed form as
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(3)

where  denote the expected genotype
counts for the controls computed assuming HWE, with the estimated allele frequency f̂ =
(n01+2n02)/2n0+. If θ is left completely unconstrained, then the maximum-likelihood
estimate of β is given by the standard case-control estimator

(4)

The unconstrained ML estimator can also be expressed as β̂ = β̂ (θ ̂), where

 denotes the maximum-likelihood estimator of θ.

We propose to combine β̂ (θ = 0) and β̂ (θ ̂), the constrained and unconstrained estimators of
β, using an empirical-Bayes-type shrinkage estimation approach that we developed earlier
for combining alternative estimates of the gene-environment interaction parameter obtained
with or without the assumption of gene-environment independence in the underlying
population [Mukherjee & Chatterjee, 2008]. In particular, following a very general
formulation of the problem we described in that article, we propose to use the composite
estimator (referred to as the vector-based shrinkage estimator, EB1) as

(5)

where V ̂β̂ denotes the estimated asymptotic variance-covariance matrix of β̂ as in Breslow &

Day [1984], and where . We refer the reader to Mukherjee & Chatterjee [2008]
for the detailed rationale for the estimator. Intuitively, we note that β̂EB1 is an weighted
average of the constrained and unconstrained estimators. As the sample size increases, and
hence V̂β̂ decreases, the composite estimator puts more weight on the robust unconstrained
estimator. The weight also depends on θ̂, the data-driven estimate of the HWD coefficient. If
the absolute value of θ̂ increases, i.e., if the data suggest departure of HWE, then less weight
is given to the constrained estimator. The influence of θ on the weight depends on Δ̂, which
determines the rate of change of β̂(θ) as a function of θ at the point θ = 0. In the Appendix,
we derive a closed-form expression for Δ̂. In formula (5), the EB estimator for β = (β1, β2) is
presented where β is treated as a whole vector. Alternatively, one could derive an EB
estimator for each of the two components of β separately. In a vectorized form, we can write
the alternative EB estimator (referred to as the component-wise shrinkage estimator, EB2) as

(6)

where diag (A) is the matrix that takes the diagonal of matrix A but sets all the off-diagonal
elements to zero, and M = diag(V̂β̂)[diag(V̂β̂ + θ̂2Δ ̂TΔ ̂)]−1. In the current as well as other
applications (see e.g., Chen et al. [2009]), we have found that the component-wise method
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generally produces more shrinkage compared to its multivariate counterpart. This
observation is purely based on extensive empirical studies under several simulation settings.
Theoretical justification of the performance advantage of EB2 over EB1 in mean squared
error (MSE) and power are still unknown. In the current HWE context with only two
parameters, EB2 and EB1 are noted to have very similar MSE, but EB2 has better power
properties across all scenarios. With increase in the dimension of the parameter space, as in
the haplotype-based estimation context of Chen et al. [2009], the efficiency advantage of
EB2 over EB1 becomes more pronounced. Simulation studies indicate that for a large
number of parameters, the off-diagonal elements of (V̂β̂)[(V ̂β̂ + θ̂2Δ ̂TΔ ̂)]−1 are quite variable
across the samples, which possibly offset the advantages of a full multivariate vector-wise
shrinkage. The issue of relative efficiency of EB2 over EB1 merits further theoretical
exploration.

In the Appendix, we use the Delta method to obtain an estimate of the variance-covariance
matrix (ΣEB) for the two EB estimators of β = (β1, β2). For each of the methods, a 2 d.f.

Wald test can be constructed as , for i = 1, 2.

We perform simulation studies to compare the type-I error and power for four alternative
tests of association: (1) the standard unconstrained 2 d.f. test; (2) the 2 d.f test assuming
HWE in the controls; (3) a two-step method that first tests the HWE constraint (i.e., null
hypothesis θ = 0) among the controls at a designated significance level, then uses a
constrained test if not rejected, or uses a unconstrained test if rejected; and (4) Wald tests
based on the proposed EB estimation procedures. In these simulation studies, we assume
that the disease susceptibility allele is the less frequent or minor allele. Given the minor
allele frequency (MAF) f and HWD coefficient θ, we calculate the genotype frequencies for
the controls, p0g according to formula (1). Further, given the odds ratio parameters ψ0 = 1
(reference group), ψ1, and ψ2, we obtain the genotype frequencies for the cases (i.e., p1g)
using formula (2). The genotypes for the cases and the controls are then generated from the
respective multinomial distributions.

3 RESULTS
3.1 SIMULATION STUDIES

In the first set of simulations, we examine the type-I errors of various tests under the null
hypothesis of no disease-genotype association. We simulate data in the settings that involve
two sample sizes (i.e., n0 = n1 = 500 and n0 = n1 = 2000) and multiple combinations of
coefficients θ (i.e., θ = 0, 0.5 log(1.2), 0.5 log(1.6), and 0.5 log(2.0), referred to as HWE,
small, modest, and large deviation from HWE, respectively) and minor allele frequencies f.
We choose the significance levels α to be 0.05 for the sample size of 500 and 1.0e–5 for the
sample size of 2, 000. We observe from Table 2 that when HWE holds, all of the different
procedures, except the two-step method, maintain the desired type-I error level very well.
The inflation of the type-I error in the two-step method in this setting is probably due to the
fact that the procedure ignores the variability associated with uncertainty in the underlying
model selection procedure at the first step. When HWE is violated, we observe that the type-
I error of the constrained test rapidly increases with θ and becomes unacceptably high even
under modest deviation from HWE. The two-step method, although it reduces the problem
of type-I error inflation to a large extent, can still produce a large inflation of the type-I
error. The EB procedures provide much better control of type-I error, compared with both
the constrained and the two-step method. In particular, it is encouraging to note that when
the departure of HWE is small, say |θ| ≤ 0.5 log(1.2), a range where the large majority of
HWE departures are likely to appear in practice (see, e.g., Figure 3 in the CGEMS
application), the type-I errors of the EB procedures are generally very close to the nominal
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level. As θ further increases, the type-I errors of the EB procedures initially increase and
then eventually again decrease.

In the next set of simulations, we assume HWE in the control population and explore the
power of various test procedures under different combinations of minor allele frequency and
odds ratio parameters. Figure 1 displays the power curves estimated from 10, 000 simulated
data sets of 500 cases and 500 controls. It is clear that in this setting the constrained test can
gain major power over the unconstrained test, especially when the true effect of the
genotype is recessive. The EB1 test procedure, although it gives up some efficiency
compared with the constrained test, retains a major power advantage over the unconstrained
test for detecting recessive genetic effects. The power of EB1 was slightly lower than that of
EB2 (not shown in Figure 1). The power of the two-stage test lies between the unconstrained
and constrained tests, as expected.

In Table 3, we show the power for various tests of association under the recessive model and
different combinations of the minor allele frequency f and the HWE coefficient θ. We
observe that when there is small departure from HWE, a scenario that is likely to be
common in practice, the EB procedures can maintain desired type-I error levels fairly well
(as seen in Table 2) and yet can gain substantial power over the unconstrained test. Similar
comparisons for the dominant model are shown in Table 4. Here we observe that under
small departures from HWE, the EB procedures generally perform similarly to the
unconstrained test. Under large departures from HWE, however, the EB procedures can
sometimes have a substantial loss of power compared with the unconstrained test. Since
some of the tests we consider do not strictly maintain type-I error under the departure of
HWE, we also provide mean squared error (MSE) for the parameter estimates as an
alternative way of comparing the performance of the different estimators. The results are
similar to those presented in Mukherjee & Chatterjee [2008]. Under HWE, the EB methods
produce MSE comparable to the constrained estimator, which has smallest MSE. Under
departures from HWE, the EB methods produce the smallest or close to the smallest MSE
among all methods we considered (as shown in Tables 3 and 4).

3.2 The CANCER GENETICS MARKERS OF SUSCEPTIBILITY (CGEMS) STUDY
We evaluate the performance of alternative 2 d.f. tests of association using data from the
Cancer Genetics Markers of Susceptibility (CGEMS) study, an NCI enterprize initiative to
conduct multistage whole-genome association studies to identify genes giving rise to
increased risks of prostate and breast cancers. In this article, we will focus on data from the
initial scan for the prostate cancer study, involving genotype data on about 550, 000 SNPs
from 1, 172 cases and 1, 157 controls. An initial report from the study describing the
increased risk of prostate cancer associated with the 8q24 region has been published [Yeager
et al., 2007]. Sequential replication studies are now ongoing for about 5% of the SNPs that
are considered to be promising based on the data from the initial scan. The details of the
CGEMS study design and the results from the initial scan can be found at the website
https://caintegrator.nci.nih.gov/cgems/.

Figure 2 shows the Q-Q plots associated with 449, 698 SNPs from 22 non-sex chromosomes
with minor allele frequencies larger than 0.05 for the four different tests of association: (i)
unconstrained; (ii) constrained; (iii) two-stage; and (iv) EB2. Each plot in the figure displays
the empirical percentile of the p-values associated with one of the four 2 d.f. tests against the
percentiles of the expected null distribution. For a well-designed study and a robust analytic
method, Q-Q plots for GWAS are expected to follow the diagonal lines closely, given that at
most a handful of the SNPs are likely to be truly associated with the disease. Thus, large-
scale departure of the Q-Q plot from the expected diagonal is often considered to be
indicative of bias in the underlying study design or/and analytic method.
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In Figure 2, we observe that the Q-Q plot for the unconstrained test closely follows the
diagonal line except at the extreme tail of the distributions, where p < 10−4. This plot
suggests that the CGEMS study does not suffer from any large-scale systematic bias such as
those due to population stratification or differential genotyping error. Moreover, the standard
2 d.f. test of association is a robust method for analysis of data from this study. In contrast,
we observe that the Q-Q plot for the constrained test departs dramatically from the diagonal
line in the range of p < 10−2. For example, the constrained test finds 1, 716 SNPs to have p-
values less than 10−3, while under the null hypothesis of no association, only 450 (i.e., 449,
698 × 10−3 ≃ 450) such SNPs would be expected in the study. This indicates a major
inflation of the type-I error for the constrained test due to departure of the HWE assumption.
We observe The Q-Q plot corresponding to the two-step procedure suggests that although
the type-I error inflation is substantially reduced compared with the constrained test, it still
remains significantly higher than desired. The two-step method, for example, finds 122
SNPs to have p-values less than 10−4, while under the null hypothesis of no association,
only 45 (i.e., 449, 698 × 10−4 ≃ 45) such SNPs would be expected. The Q-Q plot for the
EB2 procedure strikingly resembles that of the robust unconstrained test. The plot closely
follows the diagonal line except at the extreme tail of the distribution. The pattern provides
empirical evidence that EB-type procedures perform very well in controlling the type-I error
rates for the related tests of association under realistic departures from HWE that may arise
in GWAS. We refrain from presenting the Q-Q plot for the EB1 procedure in this example
as it appears to be very similar to EB2, and EB2 does have a slight edge over EB1 in terms
of power for detecting disease-SNP association.

In Figure 3, we show the histogram of the estimated HWD coefficient θ for the 449, 698
SNPs we studied. It is clear that, overall, HWE is a good assumption for the genome, with
69.6% and 96.7% of the estimated coefficients falling between the ±0.5log(1.2) and
±0.5log(1.6) limits, respectively. Nevertheless, a test based on the assumption of HWE can
lead to a major inflation of type-I error for large-scale studies.

The CGEMS group has recently reported results from a replication study involving 3, 941
cases and 3, 964 controls [Thomas et al., 2008]. Based on a “joint analysis” of the initial
scan and replication study, the report has listed 17 SNPs that have met genome-wide
significance for their association with prostate cancer. Given that associations of these SNPs
with prostate cancer are now considered to be “replicated”, we can use these SNPs to
evaluate the power of alternative methods for the analysis of the initial CGEMS scan. From
the results shown in Table 5, we observe that for 12 out of the 17 SNPs (row 1 to 12 of
Table 5), both EB-based procedures produce smaller p-values than the standard 2 d.f test,
while for 2 other SNPs (rows 13 and 14 of Table 5), one of the EB-based procedures
produces smaller p-values. The decrease in p-values, however, is quite modest in general.
These results are intuitive, given that none of SNPs shows a genotype odds ratio pattern that
resembles a recessive model, under which we would have expected to see a larger gain in
power by exploiting the HWE assumption.

4 Discussion
In this article, we propose a powerful test for genetic association in case-control studies by
exploiting the common assumption of HWE for the underlying population. Unlike previous
methods that have also aimed to gain efficiency for case-control association testing by
exploiting HWE for the underlying population, the proposed EB procedure can data-
adaptively relax the underlying constraints and thus can reduce the chance of false positive
results when the HWE assumption is violated. Simulation studies as well as an application
involving a genome-wide association study show that the EB procedure can maintain
appropriate control over the type-I error rate for large-scale studies that would have natural
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deviations from HWE of varying degree across different loci. Further, our studies illustrate
that the EB procedure has a major power advantage over standard case-control tests for the
detection of susceptibility SNPs with effects resembling a “recessive” pattern. In addition,
the closed form expression of the EB estimators and the simple corresponding variance
estimation make the computation cost comparable to that of the unconstrained test in the
study setting of GWAS.

The pattern of power seen for different methods under different models for genetic effects
are intuitive. The constrained test gains power over its unconstrained counterpart by
incorporating additional information from the departure of the observed genotype
distribution in the case-control sample from the assumed HWE model for the population. If
a SNP is under HWE in the population, its genotype distribution approximately follows
HWE in the controls, under the assumption of rare disease. Moreover, when the effect of a
SNP is multiplicative (log-additive) per copy of an allele, it can be shown that, again
assuming rare disease, the HWE for the population implies HWE for the cases [Sasieni,
1997]. It is expected that when the non-multiplicative effect of a SNP is larger, so is the
departure for the distribution of its genotypes from HWE, in the cases and hence in the case-
enriched case-control sample. Thus, the efficiency gains for the constrained and the EB-type
shrinkage procedures over the unconstrained one are expected to be increasing with the
magnitude of the non-multiplicative effect of a SNP. In our simulation, under the
multiplicative model for the effect of a SNP, we do not see any difference in efficiency
among the methods (results not shown). Under the dominant model, which corresponds to
modest departure from the multiplicative model, we observe some gain in efficiency for the
constrained and the EB procedures. Under the recessive model, which corresponds to large
departure from the multiplicative effect, we observe the highest gain in efficiency for the
constrained and the EB procedures.

In this article, we have focused on the 2 d.f. single-SNP test of genetic association. The
proposed shrinkage estimation strategy, however, can be used to improve the power of other
types of genetic association tests in case-control studies. For single-SNP association testing
with unknown modes of genetic effect, for example, a popular alternative to the 2 d.f. test is
the MAX procedure which uses the maximum of the single-SNP Z-statistics for the additive,
dominant, and recessive models as the test statistics for detecting association. For case-
control studies, the power of the MAX procedure can potentially be improved by deriving
the component Z-statistics by exploiting the HWE constraints for the genotype distribution
of the controls. In particular, the proposed shrinkage estimation strategy can be used to
estimate the disease-genotype odds ratios and their standard errors under alternative modes
of genetic effect and hence to derive the corresponding Wald statistics.

The proposed shrinkage estimation strategy can also potentially be used to improve the
power of case-control genetic association tests involving loci with more than two alleles.
The general strategy would involve first estimating disease-genotype odds ratios, once using
the empirical genotype frequency for the controls, once assuming HWE constraints for the
controls, then combining the two estimators using the empirical-Bayes-type weighting
strategy proposed here. Further research is merited on the development of such multi-allelic
tests, especially in the context of haplotype-based association studies, where the additional
complexity arises from the fact that haplotype-phase information is typically missing from
the observable genotype data.

In conclusion, we believe that the proposed shrinkage estimation strategy, considering its
power, robustness, generalizability, and computational simplicity, overall is a promising
approach for detecting genetic associations from case-control studies.
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APPENDIX

A.1 DERIVATION OF Δ̂

The likelihood function for controls, L0, which is proportional to , can be
expressed in terms of θ and ω as

where the hyperbolic cosine . Taking the derivative of the logarithm of L0
with respect to ω, we get

where the hyperbolic sine . Equating the last equation to zero, taking the
derivative on both sides with respect to θ, and letting θ = 0, we get

The unconstrained ML estimator β̂ = β̂(θ = θ̂) in (4) can be expressed in terms of θ̂ and ω ̂ as

Thus we have

A.2 VARIANCE CALCULATION FOR THE EB1 ESTIMATOR
We note that the total numbers of cases and controls, n0+ and n1+, are fixed by the study
design. The cell counts for genotype AA, Aa, and aa both in cases and controls follow a
multinomial distribution and the cases are independent of the controls. Then the variance-
covariance matrix for the cell count vector n = (n11, n12, n01, n02)T, denoted by B, is given
by

(7)
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We notice that the matrix (V̂β̂ + Δ ̂Tθ ̂θ ̂TΔ ̂)−1 in (5) is of the form (V + uuT)−1. From matrix

algebra, we know that . Then we can simplify (5) as

(8)

Since V̂β̂ and Δ̂ approach zero at the rate of O(1/n), we may ignore the variation in V̂β̂ and Δ̂
and treat them as constants while computing the variance-covariance matrix of the EB1
estimator. Then the EB1 estimator can be viewed as a fixed function of the cell count vector
n. Take the derivative of the EB1 estimator with respect to the cell count vector n. The

corresponding gradient matrix A1 is . The relevant derivatives
are as follows: for j = 1, 2,

The variance-covariance matrix of the EB1 estimator, denoted by ΣEB1, is given by ,
where T represents the matrix transpose.

A.3 VARIANCE CALCULATION FOR THE EB2 ESTIMATOR
The derivation of the variance for the EB2 estimator follows that of the EB1 estimator. Note
that (6) is also a function of the cell count vector n. Take the derivative of the EB2 estimator
with respect to the vector n. The corresponding gradient matrix

. The relevant derivatives are

and
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where  are computed in Appendix A.1.

The variance-covariance matrix of the EB2 estimator, denoted by ΣEB2, is computed as
, where B is shown in Appendix A.1.
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Figure 1.
Power comparison for alternative case-control tests of association: (i) a standard 2 d.f. test
(unconstrained), (ii) a 2 d.f. test assuming HWE in controls (constrained), (iii) a two-step
test that selects between the constrained and unconstrained tests based on a test of HWE
among the controls, and (iv) the proposed EB tests. Data are simulated for a case-control
study of 500 cases and 500 controls, assuming that HWE holds for the underlying
population. The effect of the SNP on the risk of the disease is assumed to follow either a
dominant (upper panel) or a recessive pattern (lower panel). All of the the tests are
performed at significance level α = 0.05.

Luo et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2011 May 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Q-Q plots for the CGEMS genome-wide association study of prostate cancer. Each panel
represents a plot for the percentiles of the observed p-values, obtained from a specific test of
association, against those expected under the “null” hypothesis of no association. The solid
line represents the diagonal Y = X.

Luo et al. Page 14

Genet Epidemiol. Author manuscript; available in PMC 2011 May 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Histogram of estimates of θ, a log-odds-ratio measure of Hardy-Weinberg Disequilibrium,
for the 449, 698 SNPs studied in 22 non-sex chromosomes in the CGEMS study with minor
allele frequencies larger than 0.05. The values θ = 0, θ > 0, and θ < 0 correspond to HWE,
excess homozygosity, and excess heterozygosity, respectively.
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Table 1

SNP genotype frequencies in diseased (D = 1) and disease-free (D = 0) subjects in the population

D = 0 D = 1 Total

G=AA P00 P10 P+0

G=Aa P01 P11 P+1

G=aa P02 P12 P+2

Total 1 1
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