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In that sense, natural perception is relational. This is real-life, but 
in standard psychophysical experiments the situation is different: 
in these experiments much effort is invested by the experimental-
ist to control the conditions so that the threshold-level stimulus 
remains static. The subject might actively explore various features 
of the stimulus (“active sensing”), but any given stimulus feature in 
these standard psychophysical designs, remains the same regardless 
of the subject’s behavior. Hence no feedback between the subject’s 
actions and the stimulus dynamics is involved, and perception 
becomes non-relational.

In view of the above, and encouraged by old and recent analy-
ses that reveal rich temporal structure and non-independence 
in response fluctuations at threshold over extended timescales 
(Conklin and Sampson, 1956; Gilden, 2001; Monto et  al., 2008; 
Marom, 2010, and references therein), we turned to examine the pos-
sibility that trial-to-trial variation in responses to repeated presenta-
tions of the same weak sensory object do not reflect an inherent noise 
that constrains sensory acuity and information processing. Rather, 
we hypothesize that most of the observed variability in responses 
to weak stimuli is due to an active cognitive exploratory process, 
seeking for a coupling between the stimulus dynamics and subject’s 
behavior. To test this hypothesis we have used a generic feedback 
loop control algorithm, endowing a visual stimulus in a detection 
task the capacity to on-line match its contrast to the subject’s per-
formance, while “clamping” the performance at a predefined (mostly 
0.5) probability of detection. We show that once such relations are 
established (i.e., as long as the control algorithm is active), trial-to-
trial variability is dramatically diminished, breaking the apparent 
limits of inherent noise, while keeping detection threshold and sen-
sitivity (as reflected in the psychometric function) unchanged. This 
result points at the possibility of trial-to-trial variability in sensory 
detection of weak stimuli being a high-level meta-cognitive control 
process that explores for something that life trained us to expect: 
subject–object relational (or, coupled) dynamics.

Introduction
Trial-to-trial variation in responses to repeated presentations of the 
same weak sensory object is noticeable in practically every cognitive 
modality. These fluctuations, which have been labeled “internal,” 
“unexplained,” or “inherent” noise, are correlated over extended 
timescales (Werthheimer, 1953; Gilden, 2001; Monto et al., 2008) 
and inversely related to the degree of stimulus-determination 
(Conklin and Sampson, 1956)1. Over the years since the incep-
tion of psychophysics, there has been a shift in how the source of 
trial-to-trial variation at threshold is explained. At present-time, 
the concept of noisy neural response dynamics that “poses a fun-
damental problem for information processing” is dominant (Faisal 
et al., 2008).

Yet there is something very un-natural in the way traditional 
psychophysical studies of sensory detection – studies that expose 
extensive trial-to-trial variation at threshold – are set up. In real-
life situations, when encountering a weak sensory stimulus that 
deserves attention, we try to “do something about it.” Consider the 
set of operations performed by the average man over 50 confronted 
with a barely detectable printed text: tilting the page, exposing it 
to enhanced light conditions, etc. The stimulus itself becomes 
dynamic. If the barely detected stimulus originates from another 
subject, we (for instance) might lean forward or ask that other 
person to raise his voice or to present the object in a more favorable 
manner. Again, the stimulus itself becomes dynamic. Indeed, in 
real-life situation, our attempts to “do something about” the barely 
detected stimulus impacts on the stimulus dynamics, although not 
necessarily on our capacity to detect it. Thus, natural perception 
involves an expectation of the perceiver for an ongoing coupling 
between his actions and the threshold-level stimulus dynamics. 
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Materials and Methods
All the experiments and their analyses were performed within a 
Wolfram’s Mathematica 7.0 environment; the software package is 
available on request from Shimon Marom.

Psychophysical detection task
Fourteen healthy volunteers (six females), graduate students and 
post-docs at the age of 27–40 year, were the subjects of this study. 
Unless indicated otherwise, the basic visual detection task is as fol-
lows (see Figure 1): A random 500 × 500 background raster of black 
and white pixels, occupying 135 mm × 135 mm, was presented in 
the center of a flat Apple 24′′ screen. A single session was composed 
of 500 presentation trials of the raster, randomized in each trial. The 
raster remained on screen for half a second in each trial. A smaller 
foreground raster of 70 × 70 randomized grayscale pixels was embed-
ded in the background raster area. Within the foreground, the gray-
level (denoted x) of the i-th pixel in the n-th trial was determined 
by a uniformly distributed random number (0 ≤ r

i,n
 ≤ 1) such that
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where C
n
, referred to as “contrast,” was calculated on a trial-by-

trial basis as described in the next section. With this procedure the 
general pattern of background black and white scatter is present 
also within the foreground, while the range [0.5, C

n
] of foreground 

grayscale serves as the control variable. Of the 500 trials in a session, 
50 randomly introduced sham trials did not include any foreground 
object. The position of the foreground object in each trial was ran-
domized. After a trial, subjects were asked to press one of two keys, 
signifying whether they detected or not the foreground object. Each 
trial immediately followed the subject’s response to the preceding 
trial; no time limit was set for the subject to produce an answer.

Stimulus control and estimation of detection probability
The experimental design was adopted from a recently introduced 
Response Clamp methodology for analysis of neural fluctuations 
(Wallach et al., 2011), with modifications that enabled its applica-
tion to the present behavioral setting2.

Response probability was estimated on-line as follows: Let s
n
 be 

an indicator function, so that s
n
 = 1 if the subject detected the n-th 

foreground stimulus and s
n
 = 0 otherwise. We define π(n) as the 

probability of the subject to detect a foreground stimulus at trial 
n. We can estimate this probability using all past responses { } ,si i

n
=1  

by integrating them with an exponential kernel,
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where t is the kernel’s decay-constant. To compute this on-line, we 
used the recursive formula:
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setting t = 10 trials, and �P0 0 5= . .
A proportional–integral–derivative (PID) controller was real-

ized in Wolfram’s Mathematica 7.0 environment. The input to the 
controller is the error signal,

e P Pn n n= −∗ �

where Pn
∗ and �Pn are the desired and actual detection probabilities 

(calculated as explained below) at the n-th trial, respectively. The 
output of the controller is generally composed of three expressions,
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where g
P
, g

I
, and g

D
 are the proportional, integral, and derivative 

gains, respectively; g
P
 was set to 1.0, g

I
 to 0.02, and g

D
 to either 

0.02 or 0 (with no appreciable effect). Our experience has been 
that the integral component is essential: omitting that component 
results in stabilization around an arbitrary and time-variant value; 
for an extensive discussion on this issue see Figure 3D in Wallach 
et al. (2011), a methodology paper that introduces the concept of 
Response Clamp in the neural context.

Finally, the contrast C
n
 equals the controller’s output plus some 

baseline:

C y Cn n baseline= + ,

where Cbaseline = 0 5. .

Figure 1 | Detection task. Three examples of single trial presentations: 
Background raster only (left panel), a barely detectable foreground object 
indicated in the top-left field of the middle panel, and an obvious foreground 

object (right panel). A circle at the center of the image appeared in all trials of all 
sessions; the subjects were instructed to try to fixate on that circle at the 
beginning of each trial.

2For an extensive discussion of parameter choices, the reader is encouraged to 
consult Wallach et al. (2011).
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The main observation is shown in Figure 2, where the responses 
of one subject (left column) and the group of eight subjects (right 
column) that were tested in closed-loop (dark blue, top row), replay 
(purple, middle row), and fixed (a kind of yellow, bottom row) ses-
sions are plotted. Let us start with Figure 2A, describing the results 
obtained in the closed-loop session of one individual. The desired 
detection probability Pn

∗ (see Materials and Methods) was set to 0.5, 
and the control algorithm updated the contrast C

n
, trial-by-trial, as 

indicated by black dots (righthand y-axis of Figure 2A). The result-
ing estimated detection probability ( �Pn , dark blue, lefthand y-axis) 
of that individual gradually approached the desired value, albeit 
fluctuating about it. Also note the expected anti-correlation of C

n
 

and �Pn . Figure 2B shows the average performance (and SD) of all 
eight subjects that participated in such a closed-loop session, show-
ing that the controller converges within ca. 100 trials, and succeeds 
in “clamping” the detection probability at around 0.5, as preset.

Figure 2C shows the performance of the same individual whose 
data are shown in Figure 2A, but now in the replay session, where 
the C

n
 series obtained in the closed-loop session (black dots) is 

“replayed,” regardless of the subject’s responses. Under these con-
ditions the control algorithm is shut down and stimulus contrast is 
completely decoupled from the subject’s behavior. Note the emer-
gence of large slow fluctuations around the preset 0.5 detection 
probability; despite the fact that the stimulus series is practically 
identical to that shown in Figure 2A, the performance in Figure 2C 
is very different. Figure 2D shows the average performance (and 
SD) of all eight subjects that participated in the replay session.

And finally, as demonstrated in Figure 2E, when the average C
n
 

of the subject – whose data is shown in Figures 2A,C – is used in 
the fixed session, where all 450 trials have identical contrast (black 
line of Figure 2E), large slow fluctuations and drift (which might 
reflect perceptual fatigue) are observed. Figure 2F shows the aver-
age performance (and SD) of all eight subjects that participated 
in these fixed session.

As mentioned in the introductory comments to this study, psy-
chophysical data exhibits correlations over extended timescales in 
responses to near-threshold stimuli (Werthheimer, 1953; Gilden, 
2001; Monto et al., 2008). Such long-term correlations are apparent 
in the open-loop data of Figures 2C,E. Figures 3A,B demonstrates 
one way to quantify the statistics of these correlations, using Fano-
factor analyses (see Materials and Methods). It shows that both 
for the case of an individual subject (Figure  3A) as well as the 
lumped data of all subjects (Figure 3B), response fluctuations in the 
open-loop modes are indeed dominated by long-range correlations, 
whereas responses in the closed-loop (controlled) mode exhibit 
regularity, reflected as a decreasing Fano-factor within the observed 
bin sizes. Autocorrelation or, equivalently, power spectrum analyses 
also show substantial lessening of slow frequency components in 
the closed-loop mode (data not shown).

The group statistics of Figures  2B,D,F are summarized in 
Figure 3C. Clearly, the best performance is obtained when rela-
tional dynamics are allowed between �Pn  (the performance of the 
observer) and C

n
 (the contrast series). One possible explanation 

to this result is that under these different experimental conditions 
there is a change in the sensitivity of the subject to the stimulus. 
Figure 3D shows the psychometric functions for closed-loop and 
replay sessions, calculated by averaging the responses (1s and 0s), 

Fano-factor analysis
To quantify correlations in a given sequence of binary responses, 
the latter was divided to non-overlapping bins of size K. A count 
sequence Z

K
 was constructed by registering the number of posi-

tive responses (i.e., trials in which the visual object was detected) 
within each of the bins. This process was repeated for all bin 
sizes used. For each count sequence thus obtained, the Fano-
factor (variance to mean ratio) is defined as F(K)  =  var(Z

K
)/

mean(Z
K
) and plotted as a function of the bin size, K. As exten-

sively established by Teich et al. (1997), this quantity provides a 
way to extract correlations in a sequence of binary events: An 
uncorrelated white process (e.g., Homogeneous Poisson Process) 
yields a constant F(K) for all bin sizes; regularity (e.g., low-jitter 
oscillation) would be reflected in a decreasing F(K) within the 
relevant range of bin sizes; and, finally, a complex temporal 
structure, exhibiting long-term correlations (e.g., fractal point 
process), would produce an ever increasing F(K), following a 
power-law relation to bin size.

Closed-Loop, Replay, and Fixed contrast modes
In the basic design, each subject was exposed to three experimental 
sessions denoted closed-loop, replay, and fixed. The first session was 
always a closed-loop session, whereas the second and third were 
replay and fixed sessions, introduced in an alternating order to 
different subjects. A 10-min break was given after the first and 
second sessions.

In the closed-loop session, the desired response probability (Pn
∗) was 

kept constant (Pn
∗ = 0 5. , unless indicated otherwise in the main text) 

and the control algorithm operated as explained above, updating the 
contrast (C

n
) of the foreground object from one trial to the next based 

on the error signal (e
n
). The series of 450 C

n
 values produced in this 

closed-loop session (500 trials minus the 50 sham trials), served for the 
generation of both dynamically and statistically identical foreground 
objects in the replay session. Thus, in the replay session the control 
algorithm was disconnected, yet we were able to record the responses 
of the subject to exactly the same series of contrasts presented in 
the closed-loop session, but now in an open-loop context, detached 
from the trial-by-trial coupled observer’s–observed dynamics. In the 
fixed session, the average contrast calculated from the series of above 
mentioned contrasts was used for all presentations, thus omitting 
stimulus variance altogether. This fixed session allowed us to estimate 
the impact of stimulus fluctuations on response dynamics.

Results
The nature of the detection task is demonstrated in Figure 1: The 
left panel shows a background raster only. The middle panel shows 
a barely detectable foreground object (indicated in the top-left 
field). The righthand panel demonstrates an obvious foreground 
object. The probability of false positive detection, calculated from 
responses of all subjects to the 50 sham trials was negligible (0.017, 
SD = 0.029, n = 8), indicating that the subjects did not tend to 
report detection when they did not really see something. The 
average response time was around 1 s per trial, slightly longer in 
the closed-loop session (1.03 s, SD = 1.3) compared to replay and 
fixed sessions (0.89 s, SD = 1.6 and 0.81 s, SD = 1.0, respectively). 
Response time distributions in all three sessions had a long right 
tail (coefficient of skewness: 11, 17, and 19, respectively).
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the coupling of observer’s–observed dynamics is disconnected, the 
variance of detection probability markedly increases and slow cor-
relations seem to emerge, at all Pn

∗ tested. As shown in the averaged 
histograms of Figure 4B, within the fixed phase of the experiment 
of Figure 4A the detection probabilities are skewed, exhibiting a 
“binary” preference toward 1 or 0 (for the cases of Pn

∗ = 0 75.  and 
Pn

∗ = 0 25. ,  respectively). This preference stands in contrast to the 
symmetric case of Pn

∗ = 0 5.  (e.g., Figure 3C).

Conclusion
Two basic observations are presented here. The first is that trial-
to-trial variability in sensory detection of a weak visual stimulus 
is dramatically diminished when rather than presenting a stimulus 
contrast that is independent of the subject’s ongoing actions, the 
fluctuations in stimulus contrast were matched to the fluctuations in 
a subject’s judgment. Clearly, this result reaffirms that trial-to-trial 
fluctuations are not “noise” in the strict sense of being independent 

for each of the eight subjects, in different contrast (C
n
) bins. (Note 

that average response thus calculated is not the same quantity as 
detection probability �Pn ; the latter takes into account the temporal 
order of responses.) Clearly, these psychometric functions show 
that both threshold and sensitivity extracted from the responses of 
all the subjects, are practically identical in closed-loop and replay. 
However, the richness of the dynamics and the marked differences 
between closed-loop and replay modes seen in Figures 2 and 3B, are 
practically averaged out when the data are collapsed to standard 
psychometric functions of the kind shown in Figure 3D.

The importance of instantaneous coupling between the 
observer’s behavior and the stimulus dynamics is demonstrated 
in Figure 4A, where a closed-loop mode is instantly switched to 
a fixed mode, by disconnecting the controller and using a con-
stant contrast value (average of the C

n
 series over a time segment 

depicted by a black bar). Figure 4A shows data of a single subject, 
in three different preset Pn

∗ values (0.25, 0.5, and 0.75). As soon as 
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Figure 2 | Detection probability in closed-loop, replay, and fixed sessions. 
Data obtained from an experiment on one individual (left column) and the 
summation of observations from the eight different subjects that were tested in 
this protocol (right column). In all cases, the fluctuations around mean detection 

probability are significantly smaller in the closed-loop session. The initial decline 
in detection probability, which is most apparent in the closed-loop and replay 
sessions, reflects the initial setting of both �Pn and Cn to 0.5. Error bars in the 
righthand column depict SD across all subjects.
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Figure 3 | Temporal structure and psychometrics. (A,B) Fano-factor analysis 
(see Materials and Methods) for a single subject (A) and the average over eight 
subjects (B). Long-term correlations in the temporal fluctuations of responses 
in both the replay and fixed modes (solid lines, purple, and yellow, respectively) 
are revealed. A solid black line in (B) depicts power-law relations (exponent 
power of 0.4), for reference. Under the closed-loop conditions (solid dark blue 
line), the Fano-factor decreases as a function of bin size, indicative of a highly 
regular process. Random shuffling of the response sequences eliminates all 
temporal correlations, yielding (as expected) a constant Fano-factor (dashed 
lines). (C) Histograms of detection probability ( �Pn), calculated from data of all 

subjects, in closed-loop (top), replay (middle), and fixed session. (D) Both 
threshold and sensitivity are practically identical in closed-loop (dark blue) and 
replay (purple) sessions. The curves were calculated by averaging the 
responses (1’s and 0’s), for each of the eight subjects, in different contrast (Cn) 
bins; bin size = 0.025. A minimum of five occurrences of a given contrast per 
bin was set as a requirement for inclusion in the calculation. The Average 
Response (y-axis) and its SD among subjects for each contrast bin are shown in 
the plot. Note that average response thus calculated is not the same quantity 
as detection probability �Pn  (the latter takes into account the temporal order 
of responses).
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Figure 4 | Responses of subjects to sudden transition from closed-loop to 
fixed modes. (A) A closed-loop mode is instantly switched to a fixed mode, by 
disconnecting the controller and using a constant contrast value (average of the 
Cn series over a time segment depicted by a black bar). Data obtained from a 

single subject in three different preset Pn
∗  values (0.25, 0.5, and 0.75). (B) 

Average distributions of detection probability (n = 4 subjects) for Pn
∗ = 0 25.  and 

Pn
∗ = 0 75.  sessions as shown in (A); obtained separately from the closed-loop 

(blue) and fixed phases.

of each other. Moreover, the significant difference, between fea-
tures of fluctuations measured when dynamic observer–observed 
relations exist, and those measured in the absence of such cou-
pled dynamics, calls for re-examination of the way psychophysical 

experiments are conducted. Indeed, measuring temporal fluctua-
tions of a psychophysical function under open-loop conditions, 
where there is no relation between subject performances and sen-
sory object contrast dynamics, is a most un-natural setting. Here we 
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threshold stimulus (in auditory, visual, and somatosensory modali-
ties) are correlated over timescales ranging from seconds to days 
(Werthheimer, 1953). These long-range trial-to-trial response 
correlations were then interpreted as reflecting modulation of an 
a priori detection probability by recent subjective experience, a 
meta-cognitive guessing process that is active where there is no 
possibility for stimulus-determination; the assumption being that 
“guesses are more likely to be influenced by preceding responses 
(success and failures) than are sensory judgments” (Conklin and 
Sampson, 1956). Later years brought with them a more reduction-
istic focus on neural sources of “noise” and “short-term plasticity” 
that may account for observed trial-to-trial response variability 
(Faisal et al., 2008). Viewed from this historical angle, the results 
presented here pull the pendulum back to the meta-cognitive pole, 
offering an interpretation according to which – when facing a weak 
stimulus – subjects vary their response patterns, seeking to estab-
lish (predictive? see Rosen, 1985; Creutzig et al., 2009) relations 
between their actions and the dynamics of stimulus features. This 
interpretation, in its broader sense, goes far beyond psychophysics 
of weak stimulus detection; it touches upon what psychologists 
try to tell us over the past 50 years on the developing mind (e.g., 
Stern, 1985), when we care to listen.

implemented an adaptive algorithm (PID) borrowed from control 
theory in order to couple the observer–observed dynamics. The PID 
control algorithm has theoretical advantages in the present context 
by being simple, and probably the most extensively used and theo-
retically studied in control engineering (Levine, 1996). Having said 
that, there exist many other adaptive psychophysical procedures 
(Treutwein, 1995) that are, actually, in use when experimentalists 
attempt to identify points of interest on psychometric functions. 
We propose to substantially extend their use in order to expose the 
dynamics of perception under more natural experimental condi-
tions. The second basic observation is that the above diminishing of 
trial-to-trial fluctuations by coupling between observer–observed 
dynamics, is not accompanied by a change in sensory sensitivity to 
the input. Taken together, the two basic observations suggest that 
trial-to-trial variability in sensory detection of weak stimuli might 
reflect a high-level control process.

As pointed out by Werthheimer (1953), trial-to-trial variation 
at threshold was generally attributed, in the early days of psycho-
physics, to uncontrolled experimental conditions, with the assump-
tion that the subject is stable. Response fluctuations, however, were 
soon shown to be non-independent (Verplanck et al., 1952); that 
is – successive responses to repeated presentations of the same 
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