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Abstract
In this paper, we propose a novel algorithm for computing an atlas from a collection of images. In
the literature, atlases have almost always been computed as some types of means such as the
straightforward Euclidean means or the more general Karcher means on Riemannian manifolds. In
the context of images, the paper’s main contribution is a geometric framework for computing
image atlases through a two-step process: the localization of mean and the realization of it as an
image. In the localization step, a few nearest neighbors of the mean among the input images are
determined, and the realization step then proceeds to reconstruct the atlas image using these
neighbors. Decoupling the localization step from the realization step provides the flexibility that
allows us to formulate a general algorithm for computing image atlas. More specifically, we
assume the input images belong to some smooth manifold M modulo image rotations. We use a
graph structure to represent the manifold, and for the localization step, we formulate a convex
optimization problem in ℝk (k the number of input images) to determine the crucial neighbors that
are used in the realization step to form the atlas image. The algorithm is both unbiased and
rotation-invariant. We have evaluated the algorithm using synthetic and real images. In particular,
experimental results demonstrate that the atlases computed using the proposed algorithm preserve
important image features and generally enjoy better image quality in comparison with atlases
computed using existing methods.

1. Introduction
Computing an atlas from a collection of images is a fundamental problem in medical
imaging and computer vision. (e.g., [10,7,6,21]). Since the atlas is supposed to be an
informative representative of the given set of images, in most existing approaches, the atlas
construction problem is often formulated as some kind of mean estimation problem. For
example, one of the popular existing methods for computing an atlas is the unbiased
diffeomorphic atlas construction algorithm proposed in [7]. If {I1, · · ·, Ik} denote the input
images, [7] solves the atlas construction problem using a variational approach based on the
large deformation diffeomorphism framework described in [12,3,13]. The image atlas I is
given as:
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where  is a metric on the space  of images. Geometrically, Equation 1 can be interpreted
as computing the mean of the collection of points (images) {I1, · · ·, Ik} in the metric space
( , ).

Figure 1 shows the result of applying the above method to a collection of 2D images. The
result is clearly unsatisfactory in that the atlas image is blurry and many important details
are missing or are corrupted. A geometric explanation for this result is offered in Figure 2:
The smooth variation of the images allows us to assume that these images belong to some
smooth submanifold M in . [7] computes the mean of the images in the ambient space ,
and as the figure shows, there is no guarantee that the result will be on M. Clearly, the
correct mean in this case should be the mean of the images considered as the points on M.
Based on the seminal paper of Karcher [9], numerical computation of means on Riemannian
manifolds has received considerable attention in the past few years (e.g., [20,14]), and there
is already a body of recent works that applies these techniques to vision problems (e.g.,
[5,22]). Unfortunately, all of these methods require the precise knowledge of the
Riemannian metric, and this limits the current techniques to mostly symmetric Riemannian
manifolds, examples of which include the Grassmanians and the symmetric positive-definite
matrices, etc.. In our case, the manifold M and its metric are both unknown. Therefore, we
need a method that can estimate the mean on M without using the metric on M, a
requirement that seems contradictory at first. However, Figure 2 also reveals one thing that
is often valid in that the mean on M can be approximated well by, for example, averaging a
few of its neighbors. The challenge here is, of course, to identify these neighbors in M
without knowing explicitly the Riemannian structure of M. In particular, this also suggests
that in the context of working with images, computing image atlases should be a two-step
process: localize the mean first by determining these neighbors and realize this abstract
mean as the atlas image using these neighbors. The two steps are qualitatively different in
that the localization step utilizes the entire set of input images. It uses the global geometry to
determine these crucial neighbors among the input images, and the realization step that
follows uses only these neighbors for constructing the image.

In many applications, it is reasonable to demand rotation invariance for the atlas, and Figure
3 shows one example. More specifically, suppose I is the atlas for {I1, · · ·, Ik} and if k
different rotations gi are applied to these images to form a new collection {g1(I1), · · ·,
gk(Ik)}, then the atlas Ĩ for the latter collection should be related to I by some rotation. This
requirement is desirable because the image contents of Ii and gi(Ii) are essentially the same,
and modulo the rotations, these two image collections are completely equivalent. Therefore,
it is reasonable to require that their atlases are also equivalent modulo rotations, i.e., Ĩ = g(I)
for some rotation g. However, this requirement means that we can no longer assume that the
input images belong to some submanifold M in . Instead, the correct assumption should be
that modulo rotations, the images belong to a submanifold M in the quotient space Q of 
[17,16].

In this paper, we propose a novel approach to the atlas construction problem that
incorporates the ideas discussed above. Starting with a rotation-invariant metric  on , it
induces a metric dQ on the quotient space Q. The proposed algorithm computes the atlas as
an approximation of the mean m of the images considered as points on M. In general, the
metric on M is unknown; however, the pairwise geodesic distances mij = dM(Ii, Ij) between
images can be estimated using the metric in Q [8]. An important element in the proposed
algorithm is to estimate the geodesic distances dM(m, Ii) between the mean m and images Ii
using the pairwise geodesic distances mij as the inputs. We formulate this as a convex
optimization problem in IRk, and the solution to this optimization problem will provide an
approximations to dM(m, Ii). This will allow us to locate the mean m on the manifold M and
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identify images that are neighbors of m (belonging to a neighborhood of m). These
neighbors (images) are used, together with their geodesic distances dM(m, Ii) to the mean, to
form the image for m, which, before this point, is simply an abstract point in M. It is
straightforward to show that the proposed algorithm is both unbiased and rotation-invariant.
Preliminary experimental results have shown that, with greater preservation of important
image features and details, the image atlases produced by the proposed algorithm enjoy
better image quality when compared with atlases obtained using exiting methods.

The rest of this paper is organized as follows: in Section 2, we describe the theoretical
framework for image atlas construction. Experimental results for synthetic and real image
data are presented in Section 3. Finally, we conclude in section 4.

2. A Theoretical Framework for Atlas Construction
In the following discussion,  will denote the space of images. Images in  are defined
formally as L2-functions on a finite domain Ω ⊂ IRn, where Ω is the underlying coordinate
system for the images in  (n = 2 for 2D images and n = 3 for 3D images). Let  ≡ {I1, · · ·,
Ik} denote a collection of k images and g(I)(x) = I(g−1(x)) for g ∈ SO(n) and x ∈ Ω. In this
section, we will define the image atlas I for the image collection  and outline an algorithm
for computing I. We require the algorithm to satisfy the following two properties:

1. Unbiasedness: The algorithm output should not depend on the particular ordering
of the images in the collection .

2. Rotation Invariance: If  are images obtained by applying k
rotations to images in :  for gi ∈ SO(n), 1 ≤ i ≤ k, then the atlas I′ for the
image collection  is related to I by a rotation g ∈ SO(n): I′ = g(I).

2.1. Geometry of the Quotient Space Q
The demand for rotation invariance requires us to work not in  but in Q, the quotient space
of  by the rotation SO(n) (see [17,16] for details). Basically, Q is a space that
parameterizes the SO(n)-orbits in  and in this paper, we will assume that Q has a manifold
structure induced from the manifold structure of . Let π :  → Q denote the canonical
projection map that sends each image I ∈  to the unique SO(n)-orbit [I] ∈ Q containing I:
π(I) = [I]. The points {[I1], · · ·, [Ik]} are assumed to belong to a smooth submanifold M in
Q. As a submanifold of Q, M is equipped with the natural induced Riemannian metric and
we let dM([Ii], [Ij]) denote the geodesic distance function on M. Let m denote the mean of
{[I1], · · ·, [Ik]} with respect to dM, and the atlas [I] computed by our algorithm will be a
suitable approximation of m.

SO(n)-invariant metric is defined as

for any two images I1, I2 ∈  and g ∈ SO(n). Many metrics can be easily shown to be
SO(n)-invariant, such as L2-metric and the following metric defined in [2]:

(2)
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where vi is the time-dependent vector field that defines the diffeomorphic flow from the
identity to the diffeomorphism hi, and L is a second-order elliptic operator. Any SO(n)-
invariant metric  on  induces a metric dQ in Q using the formula [16]

(3)

for any two points [x], [y] ∈ Q1. The two related metrics , dQ allows us to go between 
and Q. For example, computing the mean in Q minimizes the following function,

The corresponding function to minimize in  would be (using Equation 3)

In particular, we have ρ(I) = [I] and I ∈ π−1([I]). Following the similar approach in Isomap
[8], we could compute pair-wise geodesic distance dM([Ii], [Ij]) using the induced metric
dQ.

2.2. Estimating Mean from Pairwise Geodesic Distances
Suppose {x1, · · ·, xk} are points on a manifold M with dM denoting the Riemannian
geodesic distance. One possible way to determine the mean m of xi on M is the following.
Let ai = dM(xi, m), 1 ≤ i ≤ k. Determining ai is of course equivalent to locating m on M, and
ai can be determined as the solution to an optimization problem given by:

(4)

where mij = dM(xi, xj) and HDCM(ai, mij) denote the remaining higher-degree constraints
among ai, mij. The collection of constraints in HDCM depends on M as a metric space and in
general, for two different manifolds, their corresponding HDC will be different. The linear
inequality constraints between ai and mij are imposed because dM satisfies the triangle
inequality.

For our problem, the manifold M and its metric dM are unknown, and consequently, the
constraints in HDCM cannot be known. However, as an approximation, we can try to solve

1Note that [x], [y] are realized in  as SO(n)-orbits. dQ computes the distance between the two orbits in  as measured by 
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the following optimization problem in IRk and use the solution a1, · · ·, ak as an
approximation to the solution of the above problem:

(5)

The optimization problem is clearly convex since the objective function is strictly convex
(the Hessian is positive-definite everywhere) and the domain, which is the intersection of
half-spaces, is also convex. This particular type of optimization problem (with quadratic cost
function and linear inequality constraints) can be solved efficiently even with a large number
of variables and constraints. And because the object function is strictly convex, the solution
is unique [1]. Furthermore, the solution is stable with respect to the input parameters mij in
the sense that small perturbations of mij will not significantly change the solution a1, · · ·, ak
[1]. For computing robust L1-median [4] instead of mean, we simply need to change the cost
function to a1 + a2 + · · · + ak.

2.3. Computing the Image Atlas I
The non-negative number ai provides an estimate on the geodesic distance dM(m, [Ii]). The
last step is to use ai to determine a small number of points in {[I1], · · ·, [Ik]} that are close to
m as measured by dM, and m is then approximated from these points with respect to the
metric dQ in Q. In practice, a positive integer K is specified and K points [Ii1], · · ·, [IiK] with
shortest distances to m are chosen. We require that K ≥ 1+ dimension of the manifold.

We could approximate m with a weighted mean of the K points [Iij], with weights wj, 1 ≤ j ≤
K:

Since a point closer to m contributes more in atlas realization, the weights wj can be
constructed from the estimated geodesic distances aij:

where , 1 ≤ j ≤ K, for some σ > 0. Using the metric defined by Equation 2,
the corresponding atlas I is computed by solving the variational problem

(6)
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3. Experiments
In this section, we present three sets of experimental results that evaluate the proposed atlas
construction algorithm. In these experiments, we will use both synthetic and real image data,
and comparisons will be made with atlases computed using existing methods [4,7,21] that
are based on non-rigid group-wise registrations.

3.1. Experimental Results Using COIL-20
In the first set of experiments, we compute the image atlas using images from the Columbia
Object Image Library dataset (COIL-20) [18]. COIL-20 contains twenty objects, and images
for each object are obtained by placing the object on a turntable and rotating it in five-degree
increments in front of a fixed camera. This gives 72 images for each object. As the
viewpoint varies on a circle, the appearance variation of the images can be modelled using
an one-dimensional submanifold M in the image space. In particular, the dataset has been
used frequently to evaluate recognition and manifold learning algorithms (e.g., [19]). In this
experiment, the number of nearest neighbors K is set to four, and the image atlases for five
objects in COIL-20 are shown in Figure 4.

We validate the algorithm using a known ground truth. Taking the ‘duck’ object in
COIL-20, we choose 36 images with pose (viewing angle) ranging from 5° to 90° and −5° to
−90°. Several sample images are shown in Figure 5. As the viewpoint varies from −90° to
90°, the manifold M underlies the 36 images has the topology of a semi-circle, and the mean
in M can be taken to be the image with 0-degree pose.

Figure 6 displays the image atlases (as L2-mean and L1-median) computed using our
method and the algorithms proposed in [7,4] that use non-rigid group-wise registration. The
algorithm in [7] computes the atlases as the L2-mean while [4] constructs the atlases using
L1-median. In both cases, it is clear that our results are much closer to the ground truth than
the atlases produced by the other methods. It is not surprising since the two existing methods
does not respect the manifold structure and they in fact compute the atlases as the mean and
median of the ambient space. Therefore, their images are typically blurry with substantial
loss of image details.

Finally, we test the rotational invariance of the proposed algorithm. Given the 36 images
used to compute the duck atlas above, we randomly rotate these images with angle between
20° and 30°. Since the algorithm factored out the rotations by working in the quotient space,
the new and the old atlases should be the same point in the quotient space. That is, they
should differ only by a planar rotation. As shown in Figure 6 (Second Row), this is indeed
the case.

3.2. Experimental Results Using Synthetic Images
In the second experiment, we synthetically generate 56 images from the Stanford bunny
mesh model. The model is centered at the origin and we sample 56 camera locations on the
viewing sphere surrounding the model. These 56 locations are uniformly sampled with
respect to a central (apex) location ([0 0 1]), with maximum angular deviation from the apex
of 30 degrees. These points are plotted in Figure 8. In all the renderings, we assume simple
Lambertian reflectance model with the distant lighting direction parallel to the viewpoint
(camera location). The 56 images are considered as a collection of sampled points from a
two-dimensional submanifold in the image space, and we choose a value of 5 for the
parameter K in this experiment. Figure 7 shows the atlas constructed by our method and the
two comparisons that use straightforward averaging of intensity values and the unbiased
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diffeomorphic atlas [7]. Note that outputs from the two competing methods are not
satisfactory as many details and features are lost or smoothed out. The camera locations
corresponding to the five neighbors (K = 5) closest to the mean determined by our algorithm
are shown by the five red points in Figure 8. For this example, it is evident that these five
points are near the expected mean for this collection of points on the sphere.
Correspondingly, our algorithm produces the image atlas using only images taken from
these five viewpoints.

3.3. Experimental Results Using OASIS
In the third experiment, we apply the proposed algorithm to construct atlases from
collections of MRI images. Specifically, the image data used in the experiment are the MRI
images from the freely available Open Access Series of Imaging Studies (OASIS) [11].
OASIS contains MRI brain images from a cross-sectional population of 416 subjects. Each
brain image has a resolution of 176×208×176 voxels. The ages of the subjects range from 18
to 96, and it is known that the structural difference in the brain across different age groups
can be significant [15]. Therefore, we divide the 416 subjects from OASIS dataset into three
groups: youth group (subjects younger than 40), middle-aged group (between 40 and 60)
and elderly group (older than 60), and one atlas is computed for each age group. Figure 10
displays sample images from the three age groups, and the computed atlases (using K = 12
nearest neighbors) are shown in Figure 9. For comparison, we use the EM-based iCluster
algorithm proposed in [21]. iCluster can automatically cluster a set of images and compute
the atlas (template) for each cluster. Applied to the OASIS dataset [21], iCluster clusters the
images into three clusters, which differ slightly from the three age groups defined above.
However, the two atlases visually look similar and comparable, especially for the youth
group since the composition of the youth group in [21] includes 201 subjects (aged 31.2 ±
14.5 years), which is very similar to ours. As shown in Figure 9, the atlases computed by our
method are substantially sharper with more structural details. Again, this is not surprising
because our atlases are computed as means on the manifolds, instead of the means in the
ambient space. Thus, the atlases computed by our method retain important brain structures
and they genuinely look like real brains when compared with the real samples in Figure 10.
In particular, our method keeps these structures mostly intact and clear while other existing
methods (e.g., [21,7]) blur them to various degrees. For applications such as atlas-based
segmentation and registration, prominent structures such as the ventricles are potentially
very useful, and therefore, our atlases with more contrasting details should provide better
templates for these applications.

To model the variation within each age group with respect to the atlas, we can use a field of
spherical functions that encodes the point-wise deformation. More specifically, we use
pairwise nonrigid registration to align each subject in a given age group to its atlas. For each
voxel (point) x, these registrations provide a set of displacement vectors v1, · · ·, vn that
characterizes the local variation relative to the atlas at x. These displacement vectors can
then be interpolated using a non-negative spherical function f : S2 → ℝ. This results in a
field of non-negative spherical functions, and together with the atlas, they provide an
effective characterization of the variation in MRI brain images within a given population
group. Figure 11 displays a visualization of the field of non-negative spherical functions
using a method similar to [23]. Each spherical function is computed from 195 local
displacement vectors, and its graph on the sphere is plotted at each point.

4. Conclusion
We have proposed a novel approach to the atlas construction problem, an important problem
in medical imaging as well as computer vision. We assume that modulo image rotations, the
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input images I1, · · ·, Ik belong to a smooth manifold M, and the atlas computed by the
proposed algorithm in principle can be considered as an approximation of the mean of I1, · ·
·, Ik with respect to the metric on M. We proposed a two-step algorithm that first locates the
mean among the input images and then realizes the atlas image using a few of its neighbors.
We have provided several experimental results that validate the proposed algorithm, and in
particular, comparisons with existing methods have shown that the atlases computed using
our algorithm enjoy better image quality with preservation of important image features and
details.
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Figure 1.
Left: Images of an object. Center: The atlas computed using [7]. Right: The atlas
computed using the proposed algorithm.
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Figure 2.
Ten points on an one-dimensional manifold. Left Mean for the ten points computed using
the metric of the ambient space. Right Mean computed using the metric of the submanifold
M. Note that the mean can be approximated by using just two points on M, the two points
that are closest to the mean on M.
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Figure 3.
Top Row Images of a car. The smooth variation of the images allows the assumption that
these images belong to a smooth submanifold M in . Bottom Row Rotations are applied to
the images in the row above. The appearance variation in this collection is erratic, and it is
difficult to assume that they belong to a smooth submanifold in .
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Figure 4.
Image atlases for five objects from COIL-20. The images in the first row are the atlases
computed using [7]. Our results are shown in the second row.
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Figure 5.
Samples of input duck images.
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Figure 6.
First Row: L 2-mean images obtained using [7] (left) and our algorithm (middle). The
image on the right is the ground truth. Second Row: L1-median images obtained using [4]
(left) and our algorithm (middle). The right image is the atlas obtained by our algorithm
using the same set of images that are randomly rotated between 20° and 30°.
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Figure 7.
Left to right straightforward averaging, unbiased diffeomorphic atlas and our atlas.
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Figure 8.
56 Camera locations sampled on the viewing sphere. The camera locations of the five
nearest neighbors to the mean determined by our method are shown by the red points.
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Figure 9.
Axial views of atlases. Top Row: Atlases generated using our method for youth, middle-
aged and elderly groups (from left to right). Bottom Row: Youth, older middle-aged and
elderly templates generated by iCluster [21]. The images shown here are taken directly from
[21].
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Figure 10.
Sample images from from the three age groups. From left to right: youth, middle-aged and
elderly.
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Figure 11.
Left: Visualization of the field of non-negative spherical functions. The atlas is from the
elderly group with 195 subjects. The spherical functions are represented by their graphs on
the sphere: the value f(u) at u ∈ S2 gives the height of f at the point u, and the resulting
height surface over the sphere is shown. Right: A close-up view of the field.
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