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Abstract
We propose an improved region based segmentation model with shape priors that uses labels of
confidence/interest to exclude the influence of certain regions in the image that may not provide
useful information for segmentation. These could be regions in the image which are expected to
have weak, missing or corrupt edges or they could be regions in the image which the user is not
interested in segmenting, but are part of the object being segmented. In the training datasets, along
with the manual segmentations we also generate an auxiliary map indicating these regions of low
confidence/interest. Since, all the training images are acquired under similar conditions, we can
train our algorithm to estimate these regions as well. Based on this training we will generate a map
which indicates the regions in the image that are likely to contain no useful information for
segmentation. We then use a parametric model to represent the segmenting curve as a combination
of shape priors obtained by representing the training data as a collection of signed distance
functions. We evolve an objective energy functional to evolve the global parameters that are used
to represent the curve. We vary the influence each pixel has on the evolution of these parameters
based on the confidence/interest label. When we use these labels to indicate the regions with low
confidence; the regions containing accurate edges will have a dominant role in the evolution of the
curve and the segmentation in the low confidence regions will be approximated based on the
training data. Since our model evolves global parameters, it improves the segmentation even in the
regions with accurate edges. This is because we eliminate the influence of the low confidence
regions which may mislead the final segmentation. Similarly when we use the labels to indicate
the regions which are not of importance, we will get a better segmentation of the object in the
regions we are interested in.
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1. INTRODUCTION
Shape priors are widely used for automatic segmentation, especially when we have some
prior knowledge about the objects in the given environment. Shape priors are also useful in
cases where the images have inherent noise, low contrast, missing or diffused edges.
Substantial research has been conducted in using shape priors in image segmentation, for
example, Chen et al.1 used an average shape model to incorporate shape information in
geometric active contour models and Levonton et al.2 used shape priors to restrict the flow
of the geodesic active contour. Region-based methods for segmentation using an active
contour by minimizing the Mumford-Shah 3 energy functional have also been proposed in
various papers. 4–7 Tsai et al.8 later developed a parametric model using pose and shape
parameters for segmentation, where they describe the segmentation curve as a linear
combination of eigenvectors that are obtained from a Principal Component Analysis (PCA)
on the variations from the mean shape. All these methods give equal importance to the
information provided by all the contour pieces. But in reality certain portions of the contour
which lie in the neighborhoods that contain missing or bad edges will provide misleading
information. Also in certain cases the user may not be interested in the segmentation of
certain parts of the object. Selectively using the information from the shape priors from the
regions of interest will improve the segmentation along these regions.

In this paper we describe a method which incorporates the information about the reliability/
significance of the segmentation in various regions of the object. While generating the
training dataset we also generate an auxiliary map of regions of confidence or regions of
interest. These maps can be in the form of levels of confidence or significance associated
with each region of the object. In this paper we use a binary label, where a region labeled
with ‘1’ would indicate a neighborhood in the image that is most likely to contain bad edges
or a neighborhood that would contain boundaries which are not of interest in the final
segmentation. A similar labeling approach is presented by Cremers et al., 9 where dynamic
labeling is used to enforce known shapes to minimize the Mumford-Shah 3 energy
functional. This technique can segment corrupt objects present in the training dataset, but
cannot segment unfamiliar objects.

Figure 1 shows an example of training images where the binary images in Figure 1(b,e) are
the manual segmentations and the maps in Figure 1 (c,f) show the regions of low confidence
and regions which we are not interested in segmenting, respectively. In the cardiac image we
see that the neighborhood which contains fuzzy edges have been marked in Figure 1(c) and
in the hand image (Figure 1 (f))we eliminate the influence of the segmentation of the thumb
to get a better segmentation of the other fingers. These binary images will form our training
dataset. Since, this training data is derived from various subjects, the first logical step would
be to align these images. This is described in Section 2. In Section 3, we describe the model
used for the segmenting curve using shape priors. Section 4 explains how we incorporate the
regions of confidence/interest labels into the existing model to improve segmentation. And
finally in Section 5 we show the application of this technique to two sets of images.

2. SHAPE ALIGNMENT
The various images present in the training dataset vary in shape, size and orientation. If we
use PCA on this data the variations in size and orientation will mask the shape variations,
preventing the PCA from capturing them. Thus, to capture only the shape variations by
using shape priors, we first need to align the images in our training dataset with respect to
size and orientation. Consider the training set with n binary images {I1, I2, ..., In} with pose
parameters {p1, p2, ..., pn}. For 2D images we define a pose parameter vector p such that p
= [a, b, h, θ] with a, b, h and θ correspond to x-, y- translation, scale and rotation,
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respectively. The transformed image of I, denoted by Ĩ, for a given pose parameter (p) is
obtained using a transformation matrix T(p). This transformation matrix T(p) also maps the

co-ordinates  to . The transformation matrix is a product of three
matrices: a transition matrix M(a, b), a scaling matrix H(h) and an in-plane rotation matrix
R(θ).

where,

And the transformation matrix, T(p) = MHR, where,

As suggested by Tsai et al.8 we can jointly align the n images by minimizing the following
energy functional:

(1)

where Ω is the image domain and dA is unit area.

We illustrate the alignment process using five 2-D slices of the segmented epicardium from
a training dataset generated using 4-D cardiac scans. These slices were taken from cardiac
scans of five different patients, hence the segmentations vary in shape, size and orientation.
In Figure 2 we show the cardiac images before and after alignment and in Figure 3 we show
the overlay of these images. Here the pose of Figure 2(a) was chosen to be fixed, i.e., p = [0,
0, 1, 0] and the pose parameters for the other images were evolved jointly to align them to
this image.

3. SHAPE PRIORS
We will use the level set approach introduced by Osher and Sethian 10 to represent the shape
of the image boundaries. We will represent the shapes using signed distance functions {ψ1,
ψ2, ...ψn}, where the image boundary is embedded as the zero level set and negative
distances are assigned to regions inside the boundary and positive distances to regions
outside the boundary. Taking the average of the n signed distance functions we get the mean
level set for the training images,
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We will extract the shape variabilities in each training image by subtracting the mean signed

distance function  from each signed distance function to form n mean offset functions

.

We then form a shape variability matrix , where the samples of 
are stacked lexicographically to form each column .

As suggested in8,11 we will take the eigenvalue decomposition of (1/n)STS, which will give

us the eigenshapes (principal modes), Ψi's. For  forming the S matrix we will
get a maximum of n different eigenshapes {Ψ1, Ψ2, ...Ψn}. A new level set function can } be
expressed as a linear combination of these eigenshapes. For k ≤ n,

(2)

where {α1, α2, ..., αk} are the weights associated with the k eigenshapes. We will again use

the zero level set of  as the representation of our shape. Thus, by varying α, we vary 
which indirectly changes the shape. The value of k must be chosen large enough to capture
the prominent shape variations in the training images. But if the value of k is too large, the
model will capture some intricate details that are specific to the images used for training. In
all the examples described in this paper we choose the value of k empirically.

The segmentation also needs to accommodate variations in the pose parameters along with
the variations in shape. Thus we will include the pose parameters in the representation of the

level set function  in (2).

(3)

3.1 Chan-Vese model for segmentation
We will use the region-based curve evolution model described by Chan and Vese 4 for
segmentation. As explained in8 we will use region statistics to evolve the pose parameters
(p) and weights of the eigenshapes (α) to vary the segmentation curve. Since, our level set

function  is a signed distance functions, the segmentation curve  can be represented as

the zero-level set of ,
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(4)

The regions inside and outside the curve , denoted respectively by Ru and Rv are given by,

For any observed image data denoted by I, the means inside (μ) and outside (ν) the
segmentation curve  can be defined as,

where Ω is the image domain and dA is unit area. And the Heaviside function H is given by,

Using the image statistics defined in this section we can define the Chan-Vese energy
functional for segmenting I as,

(5)

The 2-D gradient, ∇Ecv can be denoted as,

(6)

where F for the Chan-Vese model is given by, 

3.2 Parameter Optimization via Gradient Descent
We will use steepest descent on the Chan-Vese energy functional defined in (5) to evolve
the pose parameters (p) and the weights (α). We will need the gradient of Ecv with respect to
each pose parameter, pj and shape parameter, αi. These gradients can be written as,
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(7)

(8)

where s is the arc-length parameter of the curve C. The update equations for the weights and
the pose parameters are given by,

(9)

(10)

where dt is the step-size and pj
n and αi

n are the values of each pose parameter and weight at

the nth iteration. The new shape and pose parameters are used to update  and hence the
location of the segmenting curve C after each iteration. Based on the new location of the
curve the image statistics μ and ν are recalculated. The derivation of the final forms of (7)
and (8) are explained in Appendix - A.

4. REGIONS OF CONFIDENCE/INTEREST
In this section we explain how we incorporate labels of confidence/interest in the model to
improve segmentation. As shown in Figure 1, each training image Ii will have a
corresponding confidence/interest label image Ri. We will use signed distance functions to
represent these images as well. The boundary of the region labeled with low reliability/
significance will be our zero level set, the regions inside will be assigned negative values
and the regions outside will be assigned positive values. Thus we will form a new set of
signed distance functions, {L1, L2, ..., Ln}, where negative values indicate regions with low
reliability/significance. With these signed distance functions we will form a new shape
variability matrix S, which will include these labels,

Here the samples of each signed distance function Li are stacked lexicographically to form
the corresponding 1-D array . Taking the eigenvalue decomposition of this S matrix will
give us n eigenshapes {Ψ1, Ψ2, ...Ψn} and their corresponding eigenlabels {l1, l2, ..., ln}.
These eigenlabels can be used to improve the final segmentation by influencing the update
on pose parameters (p) and the weights (α) and thus influencing the curve evolution. For this
we will take a linear combination of the eigenlabels to form a new level set function for the
labels l, similar to the level set formed in (2).
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(11)

where k ≤ n and {α1, α2, ..., αk} are the weights associated with the k eigenlabels. The
variable l̄ is the mean of the n signed distance functions which is defined as,

Incorporating this new label function l in calculating the gradients of the energy functional
Ecv with respect to each pose parameter pj and shape parameter αi we get,

(12)

(13)

The amount of influence of each pixel on the evolution of the curve is now governed by the
value of l. Since negative values of l at a given pixel indicates low confidence or
significance, we will not include these pixels in our calculation. The values of each shape
parameter αi and pose parameter pj are updated iteratively using the equations (9) and (10)

respectively. These updated weights are used to calculate the new level set function  in (3)
and the new label function l in (11) after each iteration.

5. RESULTS
We apply the model described in the previous sections to two sets of images: 1) Cardiac
MRI data and 2) Hand images. We also compare the results generated in using the model
with and without the aid of regions of confidence/interest labels.

5.1 Segmentation of Cardiac CT data
We compare the segmentation of the myocardium on 2D cardiac slices using shape priors as
explained in 8,11 with our technique of using shape priors along with the regions of
confidence labels. Fifteen slices from a 4-D interactive segmentation of cardiac data from a
single patient form our training dataset. Along with the manual segmentation on these slices
we also have corresponding images that mark the regions of low confidence. Figure 4 shows
the raw data, manual segmentation and regions of low confidence of one such slice from the
training dataset.

Our target segmentation curve should form the boundary of the two ventricles and the
epicardium. Representing this curve using a single level set would make the model
susceptible to harmful topological changes such as merging of the inner and outer walls of
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the myocardium (especially in the regions where the myocardium is very thin). Thus, we
represent each ventricle and the epicardium as a separate curve with three different signed
distance functions associated with each of them. Our training dataset thus consists of images
that represent the two ventricles, epicardium and corresponding maps indicating regions of
low confidence. Figure 5 shows an overlay of the aligned training images. Here we use a
single combined pose parameter p to align the ventricles and the epicardium. This way we
can prevent the curves from crossing each other. The same pose parameters are also used to
align the regions of low confidence.

We derive eigenshapes for each region (left ventricle, right ventricle and epicardium) and
their corresponding eigenlabels by performing a PCA as explained in Section 3. Since the
regions were aligned using a single set of pose parameters, we will also take a combined
PCA of these regions. We chose a value of k=5 to generate these results.

Figure 6(a-b) shows the manual segmentation on a 2-D slice consisting of four regions
marked as L, R, M and O which represent the left ventricle, right ventricle, myocardium and
region outside the epicardium respectively. The three curves used for segmentation will
divide the observed image data (I) into these four regions. Since the image is now divided
into multiple regions, we introduce a new coupled energy functional, Ecoupled.

We evolve the parameters p and α by minimizing Ecoupled using image statistics based on
these four regions. uL, uR, uM, uO represent the means inside the regions L, R, M, O
respectively and dA is the unit area.

Figure 7 shows the segmentation results, and compares each result with the manual
segmentation. The white contour is the curve we obtained in our segmentation and the black
contour indicates the ground truth (manual segmentation) for that particular slice. We can
see that using regions of confidence labels significantly improves the segmentation within
the highlighted sections. Since, this approach uses global parameters to evolve the curve, our
approach shows improvement in segmentation even in the regions containing strong edges.

5.2 Segmentation of hand images
In this example we take hand images, with varying positions of the fingers. Our training
dataset for this example consists of 5 images. Once we align the training images, the palms
of all the images in our training datasets will be aligned. Thus the PCA will be able to
capture the variation in the shape, size and position of the fingers. The initial overlay of
these hand images are shown in Figure 8(a) and Figure 8(b) shows an overlay of the aligned
hand images. We also generate two sets of regions of interest here, one masking the thumb
and the other masking the last three fingers in each hand. Because the thumb finger shows a
large variation in position, masking the thumb out while segmenting the other fingers will
improve the overall segmentation of the other fingers. And in the second set, we mask out
the last three fingers to segment the thumb. If we mask all the four fingers, there is a
possibilty that the final segmentation rotates the entire palm to fit the thumb. To avoid this
we leave the index finger out of the mask to give the segmentation some information about
the location of the palm. Figure 8(c,d) show the mean images of the regions of interest
masking the thumb region and the last three fingers.

We use shape priors to segment the hand image as explained in Section 3. The initializing

curve obtained from the zero level set of  of the training data is shown in Figure 9(a). The
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result generated by shape priors as explained in 8 is shown in Figure 9(b). Figure 9(c,d)
show the results generated by using the two sets of region of interest masks generated. We
chose a value of k=3, in all these examples. We see that in Figure 9(b) the curve tries to
capture the variations in thumb as well as the fingers, and fails to segment them very well.
But by masking the thumb we get a very good segmentation of the other fingers, although
the thumb segmentation is worse than in the previous case(Figure 9(c)). In Figure 9(d), by
masking the last three fingers we get a good segmentation of the thumb, but in the process
we deteriorate the quality of segmentation along the other fingers. Thus by using these
separate masks we can selectively improve segmentation in certain regions of the image.

6. CONCLUSION AND FUTURE WORK
In this paper we have presented a novel technique that uses labels of confidence/interest to
enhance the existing region based shape prior segmentation model. We have described how
we can selectively exclude the influence of certain neighborhoods in segmenting the curve
and thus improve the quality of segmentation. We show how this technique can improve
segmentation in medical images, not only along the regions with fuzzy edges but also in the
regions with prominent edges. We also show how we can get higher quality segmentation in
certain parts of the image by ignoring regions in the image which we are not interested in.
The results presented in the paper show how we can use this model to separately improve
segmentation in various portions within a single image using fewer training images. We are
currently working on ways to combine these separate regions with high quality
segmentations to obtain a single segmenting curve on the entire object.
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APPENDIX A
In this section we explain how we can simplify the equations (7) and (8) to express the
gradients ∇αiEcv and ∇pjEcv in terms of the level set function and image statistics. The

segmentation curve is embedded as the zero-level set of the function . Since,  is a
function of the curve C, weights α and pose parameters p; the curve C (zero level set) will
also be a function of α and p along with the arc-lenght parameter s. Hence the zero level set
can be represented as,

Taking derivative of with respect to αi we get,

We thus have,

(14)
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Now the gradient of the energy functional Ecv with respect to αi is defined in (7) as,

(15)

Substituting, the value of ∇αiC.  from (14) we have,

(16)

Similarly, for the gradient of Ecv with respect to pj will be,

(17)

Thus in calculating the update for each parameter in equations (9) and (10) we only need the
gradients of the signed distance function with respect to that parameter and the value of F
along the line integral of C. The image statistics μ and ν need to be calculated only once
after each iteration. This makes the model simple to implement and computationally
efficient.
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Figure 1.
(a-c) Cardiac training images. (d-e) Hand images.
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Figure 2.
(a-e) Training images: Five 2-D images from cardiac training data. (f-j) Aligned images: 2-
D images from cardiac training data after alignment.

Appia et al. Page 13

Proc SPIE. Author manuscript; available in PMC 2011 May 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Comparison of the shape overlay (a) Before alignment. (b) After alignment.
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Figure 4.
(a) Raw Image. (b) Manual segmentation with Regions of low confidence. (c) Regions of
low confidence for epicardium. (d) Regions of low confidence for endocardium.
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Figure 5.
Overlay of training images for epicardium, left ventricle, right ventricle and Region of low
confidence (a-d) before alignment (e-h) after alignment.
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Figure 6.
Images showing manual segmentation of cardiac 2-D slices which are differentiating into 4
regions: Left ventricle, Right ventricle, Myocardium and Outside region.
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Figure 7.

(a) Initialization of segmentation using the zero level set of . (b) Segmentation results using
shape priors. (c) Segmentation enhanced with use of Regions of confidence.
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Figure 8.
(a) Overlay of hand images before alignment. (b) Overlay of aligned hand images. (c)
Aligned regions of interest label masking the thumb. (d) Aligned regions of interest label
masking the last three fingers.
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Figure 9.

(a) Initialization of segmentation using the zero level set of . (b) Segmentation results using
shape priors. (c) Segmentation of the fingers with the regions of interest masking the thumb.
(d) Segmentation of the thumb with the regions of interest masking the last three fingers.
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