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CNRS/Université Grenoble 1, UMR 5588, Laboratoire Interdisciplinaire de Physique, Grenoble, France

Abstract

Aquatic species of Utricularia are carnivorous plants living in environments poor in nutrients. Their trapping mechanism has
fascinated generations of scientists and is still debated today. It was reported recently that Utricularia traps can fire
spontaneously. We show here that these spontaneous firings follow an unexpected diversity of temporal patterns, from
‘‘metronomic’’ traps which fire at fixed time intervals to ‘‘random’’ patterns, displaying more scattered firing times. Some
‘‘bursting’’ traps even combine both aspects, with groups of fast regular firings separated by a variable amount of time. We
propose a physical model to understand these very particular behaviors, showing that a trap of Utricularia accomplishes
mechanical oscillations, based on continuous pumping and sudden opening of the trap door (buckling). We isolate the key
parameters governing these oscillations and discuss the effect of their fluctuations.
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Introduction

Aquatic species from the genus Utricularia are widespread

carnivorous plants, catching their preys with millimeter-sized

traps. Since the discovery of their carnivorous character [1,2],

there has been much interest in the mechanism underlying their

extremely fast motion: the entrance of a trap is closed by a door

which is capable of opening and closing at the time scale of 1 ms
only [3]. It is known that slow pumping of water out of the trap

enables storage of elastic energy in the trap walls, which is

suddenly released when the trap is triggered by a slight touch on

one of its four trigger hairs [4,5]. However there is still debate on

the mechanism at the origin of the door opening [6,7]. Recent

work has focused on time-resolved analysis of the door dynamics at

small time scales, bringing to light the mechanical role of the door

as a buckling valve[3], and long time analysis, showing that a

single trap is able to fire spontaneously many times without any

external action [3,8]. In order to understand this surprising

behavior and how it is connected to the trapping mechanism, we

studied spontaneous firings of Utricularia inflata and Utricularia

australis, recording the times of the firings and the temporal

evolution of the trap shape. The aim of this paper is to present the

original behavior of the recorded traps which proved to be much

more complex than previously thought, and to show how these

behaviors can be described by a simple physical model combining

the deterministic mechanics of the elastic door and statistical

fluctuations.

Results

Time repartition of spontaneous firings
The plants were immersed in unstirred de-ionized water to

avoid the presence of animals or fluid motion capable of triggering

traps (see Figure 1 and Video S1). All observed traps showed

spontaneous firings, with a maximum of about 200 firings for a

single trap in three weeks. Some typical examples of their temporal

behavior are presented on Figure 2. On Figure 2A, a vertical bar is

plotted each time T a firing occurs, for three different traps.

Denoting n the firing number, we define the time interval between

consecutive firings tf as tf

� �
n
~Tnz1{Tn. On Figure 2B, tf is

plotted as a function of n. Both panels of Figure 2B show that

different traps on a same composed leaf of Utricularia inflata can

have very different behaviors. First, firings in trap A are spaced

and scattered in time. This behavior will be called ‘‘random’’ in

the following. On the contrary, ‘‘metronomic’’ traps such as trap C

show very regular firings occurring at well-defined time intervals.

The limit between these behaviors is sometimes thin, as shown by

trap B: events are not well organized in time such as in trap C, but

the time interval between firings is not as widespread as in trap A.

This suggests that more than two distinct behaviors, ‘‘random’’

and ‘‘metronomic’’ traps are two extreme cases of a continuous

range of behaviors.

We noticed that ‘‘metronomic’’ traps often show a slow drift of

their period tf , which is for example doubled after about 40 firings

for trap C. This fact prevents to use the standard deviation of tf as

an indicator of the behavior of a trap: much of the calculated

standard deviation for trap C would indeed come from the regular

drift of its period. To limit this bias, we define a ‘‘randomness

index’’ as

r~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SDt2

f T
q

Stf T
ð1Þ

where Dtf is the variation of time intervals for successive firings:
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Dtf

� �
n
~ tf

� �
nz1

{ tf

� �
n

and ST represents an average over all

successive firings of the considered sample. Values of r for traps A,

B, C are shown on the right panel of Figure 2, showing that the

visual feeling of randomness is well reproduced by the value of r,

which is less than 0.1 for very ‘‘metronomic’’ traps and of the

order of 1 for very random traps.

Noticeably, the last presented firings of trap C become more

scattered as tf increases, as was also observed on other

‘‘metronomic’’ traps. This suggests a link between the irregularity

of a trap, characterized by r, and its period tf . To check this

hypothesis, we calculated r and the mean value of firing intervals

Stf T for several samples from 21 different traps of Utricularia inflata.

Results are presented on Figure 3 and confirm the tendency of

higher irregularity for higher firing periods. ‘‘Metronomic’’ traps

(rv0:2{0:3) typically fire between 1 h and 3 h on average, while

‘‘random’’ traps (rw0:5) display values of tf usually bigger than

5 h.

Looking closer at some apparently very fluctuating traps, we

found that some of them displayed a surprising grouping effect,

where firings often happen by groups of 2 up to 7 very close and

regular events, separated by a variable amount of time. In our

experiment with Utricularia inflata, five traps presented these

‘‘bursts’’, but the most striking example was given by a trap of

Utricularia australis (trap D) followed ten consecutive days (see

Figure 4A and Video S2). The time intervals between firings tf

measured on this experiment are shown on Figures 4B and 4C,

showing that time intervals between consecutive events inside a

burst follow a very regular line as for ‘‘metronomic’’ traps, with a

randomness index r close to 0.1. On the contrary, the time

separation between bursts is very scattered as for ‘‘random’’ traps.

Note that the number of firings per burst is roughly constant, 3 or

4 in this case, and that tf inside a burst is very small, of order

30 min. Interestingly, even for Utricularia inflata traps, this latter

time is small, typically between 15 min and 1 h. This suggests that

bursts might be a characteristic behavior for high-frequency (low

tf ) traps.

During the three weeks of observation, traps have not shown

significant changes of behavior. Slow transitions from ‘‘metro-

nomic’’ to more ‘‘random’’ periods often happen, correlated with

an increase in the time between firings tf . Also, a few traps stopped

Figure 1. General view of an excised composed leaf of
Utricularia inflata. The plant is held by tweezers (in black) and
immersed in de-ionized water. See also Video S1.
doi:10.1371/journal.pone.0020205.g001

Figure 2. Extract of the firing events of 3 different traps of Utricularia inflata. Time (T) is set to 0 at the beginning of each sample. A: a
vertical bar is drawn each time a firing occurs. B: corresponding time intervals tf between successive firings. The value of the randomness index r
associated to each sample is indicated. For trap C, r~0:07 for the 20 first firings.
doi:10.1371/journal.pone.0020205.g002

Figure 3. Randomness index r versus mean firing time interval
Stf T. Values of r and Stf T are calculated for 24 samples containing
between 10 and 107 firings from 20 different traps of Utricularia inflata.
doi:10.1371/journal.pone.0020205.g003
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firing after a few days, sometimes temporarily, sometimes

definitely. We will refer to these latter traps as ‘‘waiting’’ in the

following.

In conclusion, our experiments exhibit a rich variety of

behaviors, the most surprising ones being ‘‘metronomic’’ sponta-

neous firings, following precise temporal patterns, and ‘‘bursting’’

ones which combine regularity and randomness at different time

scales. We suggested above that the mean time interval between

firings was an important parameter determining the behavior of a

trap.

Study of the change of width of the traps
In order to understand more in detail the origin of the behaviors

described above we focused on the physical process of trap setting:

due to active pumping of water, the volume of the trap decreases

with time, thereby lowering the pressure inside the trap. We thus

extracted when possible a measurement of the width of the traps as

a function of time w(t), obtained by image analysis on traps viewed

from above (see Figure 5), so it represents a projected width, used

as an indicator of the trap state. The curve obtained for trap B is

shown on Figure 6. Each peak corresponds to a spontaneous firing,

followed by a decrease of the trap width from its inflated state to its

deflated state. As shown in a previous paper [9], this relaxation is

exponential, with a characteristic time td . This is well verified in

our experiments, as can be seen on Figure 7. We also checked that

td did not vary much for a single trap, and that its variations were

not related to those of the time intervals between firings (see

Figure 8). This shows that the source of fluctuations in tf has to be

found elsewhere, and that td can be considered as a constant,

characteristic deflation time for the considered trap.

Similar results were found on other traps of Utricularia inflata and

Utricularia autralis, and some values of td are reported in table 1.

Since td is a natural unit of time for each trap, it is interesting to

measure the firing intervals tf in units of td : the ratio t~tf =td

indicates at which level of the deflation process firings occur. Our

results for ‘‘metronomic’’ and ‘‘random’’ traps presented in table 1

show that t seems to be strongly linked to the behavior of a trap :

Figure 4. ‘‘Bursting’’ behavior in trap D (Utricularia australis). A:
excerpt of the firing events. A vertical bar is drawn each time a firing
occurs (time is set to 0 at the beginning of the sample). Firings occur by
bursts of 3 or 4 events. B: time intervals tf between successive firings
for all the recorded firings. The scattered points correspond to the times
between consecutive bursts, while the regular line at the bottom is
drawn the very regular firings inside a burst. C: Magnification of the
bottom line of panel B. The associated randomness index is r~0:11.
doi:10.1371/journal.pone.0020205.g004

Figure 5. View of trap B (Utricularia inflata). The figure shows the
definition of the lateral width w used for the data presented on Figure 6.
doi:10.1371/journal.pone.0020205.g005

Figure 6. Extract of the evolution in time of the lateral width
w(t) of trap B. Three successive spontaneous firings can be observed.
doi:10.1371/journal.pone.0020205.g006

Figure 7. Degree of inflation x(t) for 5 successive firings of trap
B. x is defined as x~Dw=Dw(t~0) where Dw is the difference between
the current value of the trap lateral width w and its value at full
deflation. Left: linear plot. Right: logarithmic plot. The blue line
corresponds to a fit of x(t)~exp({t=td ) with td~39 min. Time t is
reset to 0 at each firing.
doi:10.1371/journal.pone.0020205.g007
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the higher the value of t, the higher the irregularity of the trap.

Observations on other traps where t was not precisely measurable

show this general trend: ‘‘metronomic’’ traps fire at an early stage

of the deflation process and ‘‘random’’ traps usually fire close to

their fully deflated state.

We now focus on ‘‘bursting’’ traps such as trap D. The evolution

of trap thickness presented on Figure 9 displays the same

characteristics: inside a burst, successive firings are fast and

complete deflation is never achieved (t*1), visible in the fact that

the slope of the curve of Figure 9 is always considerable, whereas

the time interval between two bursts is long compared to td (t&1),

as can be seen in the last two rows of table 1. We noticed that

Utricularia inflata bursting traps also feature t^1.

We thus suggest that instead of simply tf (see previous section),

the relevant parameter predicting the behavior of a trap is

t~tf =td : high values of t correspond to an irregular behavior,

while low values are associated with regular traps. In the following

discussion, we develop physical arguments supporting this

hypothesis.

Discussion

Our experiments show a very rich variety of behaviors in traps

of Utricularia inflata and Utricularia australis. Environmental

fluctuations such as day/night oscillations, temperature changes

or light intensity variations cannot account for these observations,

since all observed traps were on a same composed leaf under the

same conditions. To explain our observations we have to

understand how the trapping mechanism works. It has been put

forward that the opening of the trap door of Utricularia was based

on an elastic instability: buckling, which is a mechanical process

where an elastic membrane, in our case the trap door, resisting a

pressure difference Dp suddenly changes its curvature at a critical

pressure difference Dpc [3]. We will explain our experimental

results in the light of these considerations, suggesting that the

repetitive character of observed firings is a direct consequence of

the spontaneous buckling of the trap door.

Buckling cycles: ‘‘metronomic’’ and ‘‘waiting’’ traps
Our results confirm previous observations [3,8,10] that deflation

starts immediately after firing. Since deflation originates from

active pumping of water out of the trap [5], this indicates that

pumping is a continuous process. Starting from a fully inflated

trap, this continuous pumping entails a progressive deflation,

represented by w(t). As a consequence, the pressure inside the trap

lowers to a pressure pintvpext, where pext is the pressure in the

surrounding liquid. This entails an increase of Dp~pext{pint,

representing the net pressure exerted on the trap door. If there is a

well-defined pressure difference Dpc at which the trap door

buckles, then the door spontaneously opens when Dp reaches that

value. The door being open, the trap inflates and the pressure

difference is reset to zero. As the door closes, the same cycle of

deflation - buckling can start again, ad infinitum This picture shows

how the observed ‘‘metronomic’’ oscillations of the trap width may

arise from the combination between continuous pumping and

spontaneous buckling of the trap door. Note that if Dp is never

high enough to reach Dpc, then the trap never fires spontaneously

and stays in a ‘‘waiting’’ phase (see Figure 10). Experimentally, the

hypothesis of door buckling is supported in our experiments by the

fact that the level of deflation achieved when a firing happens does

not vary much for successive firings of a single trap (see Figure 9

for example), meaning that firings probably occur at comparable

Dp. We now derive a simple model to extract the physical

parameters governing these oscillations.

First, we have to understand the evolution of the pressure

difference Dp in time. Our experiments only access to the trap

width w, but due to the elasticity of the trap wall, w is directly

Figure 8. Measured deflation time td for 12 different firings of
trap B versus the corresponding firing time interval tf . Two
series of 5 and 7 firings are shown (first series in circles, second series in
crosses), and are separated by five days. Uncertainties on tf are
negligible compared to those on td (Dtd*3 min).
doi:10.1371/journal.pone.0020205.g008

Table 1. Deflation times and firing intervals.

trap A B C9 D

type random (r^1) random (r^0:6) metronomic (r^0:1) burst (intra) burst (inter)

td (h) 0:87+0:10 0:65+0:05 0:47+0:07 0:42+0:08

Stf T (h) 10:9 7:7 1:6 0:41 6:5

t~Stf T=td 12:5+1:4 11:8+0:9 3:4+0:5 0:98+0:19 15:5+3:1

Typical values of deflation times td and the mean value of firing intervals Stf T, calculated over successive firings of the considered trap. Due to the angle of observation,
td was not precisely measurable on trap C so another ‘‘metronomic’’ trap was considered, denoted C9. For trap D, we distinguish the firing time inside a burst (intra) and
between bursts (inter).
doi:10.1371/journal.pone.0020205.t001

Figure 9. Extract of the evolution in time of the lateral width of
trap D (Utricularia australis). Two successive bursts comprising 4
firings each are shown. See also Video S2.
doi:10.1371/journal.pone.0020205.g009
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linked to Dp with a relationship that we assume linear (see

Methods). Consequently, since w decays exponentially with a time

constant td , one should also have

Dp(t)~Dpd 1{exp({t=td )ð Þ ð2Þ

Dpd being the maximum pressure difference attainable by the

trap, corresponding to a fully deflated state. The value of Dpd has

been estimated to 16 kPa [10].

Note that expression (2) can be predicted theoretically using

simple hypotheses (see Methods). The model presented in the

Methods section also justifies our experimental observation that td

does not vary much in time for a single trap, since it does not

depend on the pumping rate but mainly on the permeability and

elasticity of the trap body, which can be considered as constant.

The spontaneous firing of the trap occurs at a time tf where

Dp(tf )~Dpc, which is possible only if DpdwDpc, i.e. when

pumping is strong enough to make the door buckle. If this is the

case, then from equation (2) we have

tf ~td ln
1

1{Dpc=Dpd

� �
: ð3Þ

As we demonstrated in our experiments, td is constant for a

trap, so that tf only depends on the ratio Dpc=Dpd . If Dpc and Dpd

are constant, tf is a constant too and firings occur at very regular

intervals: this corresponds to the ‘‘metronomic’’ behavior. Notice

that this metronomic characteristic doesn’t depend on the

mathematical expression of Dp(t), and is always true if the

evolution of Dp in time is the same after each firing, which is

justified by our observations that td is a trap constant, and if there

exists a time tf where Dp reaches the critical buckling pressure

Dpc. If this latter condition is not verified, the trap is not able to

fire spontaneously and is in a ‘‘waiting’’ state.

Fluctuations and ‘‘random’’ traps
In order to explain random firings with this model it is necessary

to introduce fluctuations. At these scales, buckling is insensitive to

thermal noise [9] and for an incompressible spherical shell with a

thickness h, a radius R and a Young’s modulus E, the critical

buckling pressure is given by [11]

Dpc*E
h

R

� �2

ð4Þ

so any change in elasticity, affecting E, or shape, affecting R but

also probably the exact prefactor in equation (4), is able to impact

the value of Dpc.

Changes in shape can occur at each firing since the trap door

doesn’t necessarily come back exactly at the same position when it

closes. Changes in elasticity are also possible if there are variations

of turgor pressure inside the door wall. It is clear from equation (3)

that fluctuations in Dpc directly impact the time interval between

firings tf . Figure 10 shows how fluctuations in Dpc affect the

distribution of tf . In particular, fluctuations around a small value

of Dpc have a much weaker effect than the same fluctuations

around a value of Dpc close to Dpd , due to the exponential

evolution of Dp(t). Thus ‘‘metronomic’’ traps should have a low

value of Dpc=Dpd or equivalently a low value of t~tf =td (see

equation (3)), while ‘‘random’’ traps would have Dpc=Dpd closer to

1, leading to a higher value of t, which is well supported by our

experimental results.

This model also predicts that if the mean firing period of a single

trap increases, fluctuations of the firing times should also increase.

Trap C provides a good illustration of that point on Figure 2B,

bottom. It could also be an explanation of our observation that as

time passes, ‘‘metronomic’’ traps often slow down their firings,

leading them to become more ‘‘random’’, temporarily or

permanently.

Notice that Dpd could also fluctuate on the same order of

magnitude than Dpc, due to changes in the pumping rate for

example. However, one cannot actually separate the effect of Dpc

and Dpd as can be seen from equation (3), and the relevant

parameter is in fact P~Dpc=Dpd . Using the other natural

parameter t~tf =td , equation (3) reduces as

t~ln
1

1{P

� �
ð5Þ

and we now derive some properties of such a dependence between

t and P, keeping in mind that the detailed results depend on the

exact expression of Dp(t). However this simple expression helps us

to illustrate the previous arguments. Moreover, the ideas

developed below remain valid for any Dp(t) provided that

d2Dp=dt2
v0. For example one can calculate how fluctuations

propagate from P to t (see Methods), and one can readily show,

assuming Pv1, that the mean values StT and SPT follow

equation (5), and that the standard deviations st and sP of

respectively t and P, are related by

st~
1

1{SPT

� �
sP: ð6Þ

Due to the denominator 1{SPT, fluctuations get largely

amplified as the mean value of the pressure ratio SPT gets closer

to 1. Within the framework of this model, the wide range of time

intervals between firings of some traps (the ‘‘random’’ ones) just

reflects the amplification of pressure fluctuations which become

very important when the buckling and pumping pressure Dpc and

Dpd are comparable. We also show that in addition to the

amplification of fluctuations, the shape of the probability

distribution is modified (see Figure 11). In particular, symmetrical

distributions on P give distributions on t that expand towards

large values of t, explaining the non-symmetrical aspect of the

Figure 10. Model explaining the trap behaviors. The black curve
is the evolution of the pressure difference Dp due to the deflation
process, saturating at a value Dpd . Firing of the trap door occurs at a
time tf when Dp reaches the buckling pressure Dpc. Fluctuations in Dpc

entail fluctuations in tf which are bigger when Dpc is close to Dpd ,
explaining the scattered values of tf for ‘‘random’’ traps. If Dpc is bigger
than Dpd , buckling is impossible and the trap is in a ‘‘waiting’’ state.
doi:10.1371/journal.pone.0020205.g010
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repartition of firing times tf in random traps (see inset of

Figure 11).

Fluctuations around P~1 can also occur, making the trap

oscillate between ‘‘waiting’’ and ‘‘random’’, giving much more

scattered events, which is probably the case for trap A which

displays long waiting periods and a large value of t.

Interestingly, even ‘‘metronomic’’ traps have t bigger than 1,

meaning that Dpc=Dpd~P~1{exp({t) is never far from 1.

Thus, all traps seem to have Dpc comparable to Dpd . The reason

could be that a too low P would have the trap firing very often but

not achieving significant deflation: only a small amount of liquid

would be sucked at each firing making the trap not efficient to

catch preys. On the other hand, a high value of P would mean

that the deflation pressure Dpd is small compared to the buckling

pressure Dpc, making the door wall very stable and the trap

difficult to trigger. This completes the discussion presented in [3]

showing how the elasticities and shapes of the trap wall and the

door are optimized for efficient prey capture.

Bursts
At first sight, bursts could also be interpreted as fluctuations of

time intervals. However, the facts that time intervals in the bursts

are very well defined and that the number of peaks in a burst is

roughly constant rules this idea out. In a burst, the behavior of a

trap strongly looks like a ‘‘metronomic’’ one. Looking at a larger

time scale, bursts groups seem on the contrary to be randomly

distributed. To account for this unexpected behavior, we suggest

that after a trap is triggered, there should be a process relaxing

with a time tex. For example, tex could be a typical relaxation time

of the door rigidity via its turgor pressure. Thus, any firing of the

trap would be associated with a reduction of the buckling

threshold Dpc for a time tex. When triggered or spontaneously

fired, such a trap would go from ‘‘waiting’’ or ‘‘random’’ to a

‘‘metronomic’’ state for a time tex due to the lowering of Dpc, thus

P, then go back to its initial state, giving the observed bursts. This

hypothesis is supported by the experimental fact that the number

nburst of firings per burst is usually constant over long periods of

time: this number would be approximately given by nburst*tex=tf .

To check this, we analyzed 53 bursts on six different traps, and

recorded nburst and the mean value of firing intervals Stf T inside

the considered burst. We then plotted nburst versus 1=Stf T (see

Figure 12), the slope of which should be approximately tex. We

find a good agreement with this prediction for a wide range of

nburst, comprised between 2 and 7, and we deduce that tex should

be of order 1{2 h. The scattering of the points on the plot

probably comes from the variation of tex from trap to trap, but also

for a single trap in time.

Note that if the process related to tex was triggered at each

firing, the started burst would never end: it is here implicitly

assumed that the excitation process cannot be reactivated until it

has fully relaxed.

When tex is smaller than tf or of the same order, there is only

one firing per burst, which means that no burst is observed. This

should be the case for usual ‘‘random’’ or ‘‘metronomic’’ traps

which present no bursts. Indeed, as seen on Figure 3, the fastest

non-bursting traps have tf of order 1{2 h which is also the value

of tex calculated above.

Bursts in Utricularia seem to be an evidence of a sensitive process

occurring during firings of its traps, suggesting that in addition to

td there is another characteristic time of a trap tex to take into

account. We hypothesize that bursts are likely to happen when the

parameter j~tex=td is greater than 1, since spontaneous firings

happen with a time interval of order td or more. However, there

are still open questions to explore, either on the precise chemico-

physical mechanism explaining the origin of tex or on the benefit

bursts could bring to the plant: is it a way to increase the capture

rate of a trap when animals are close, or is it just an unavoidable

effect of the global trapping mechanism of Utricularia?

Conclusion
Early investigations on spontaneous firings of Utricularia traps

suggested that they were randomly distributed in time. We proved

Figure 11. Probability distributions on t. They are calculated
assuming gaussian fluctuations on P with standard deviation 0.01 and
centered on SPT~0:8 (black), SPT~0:9 (blue), SPT~0:98 (red). The
distribution on t becomes broader as SPT increases, but also less
symmetrical, as observed for ‘‘random’’ traps: a histogram of the firing
times tf of trap B is presented in the inset of the figure for qualitative
comparison.
doi:10.1371/journal.pone.0020205.g011

Figure 12. Number of firings inside a burst versus firing
frequency. The firing frequency is defined as the inverse of the mean
time interval between firings inside a burst Stf T. It is calculated for 53
bursts of 5 different traps of Utricularia inflata and one trap of
Utricularia australis, along with the number of firings per burst nburst.
Blue lines correspond to nburst|Stf T~tex with values of tex of 1.7 h
(central line), 1.1 h (lowest dashed line) and 2.4 h (upper dashed line).
doi:10.1371/journal.pone.0020205.g012
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here that these apparently random distributions were just one

aspect of a larger set of behaviors, which can be very regular and

organized in time. All these behaviors can be found on different

traps of a composed leaf, suggesting complementary roles: in

addition to catching occasional preys as ‘‘waiting’’ and very

‘‘random’’ traps do, the very regular firings of ‘‘metronomic’’ traps

could be a way to diversify the plant’s alimentation by

continuously catching smaller organisms not capable of triggering

the trap by themselves, such as phytoplankton or bacteria. This

underlines the importance of these organisms for the plant’s

nutrients supply, as recently suggested [12,13].

We also proposed a physical model, showing how the short and

long time behavior of the traps were connected: fast opening of the

door and spontaneous firings are just two consequences of a single

aspect which is the buckling of the door wall. Thus, to achieve its

regular firings without any active signal or feedback, the plant

simply uses mechanical oscillations, which only ingredients are

continuous pumping and buckling of the trap door. Based on this

idea, the different trap types can be explained by introducing

fluctuations in the mechanical parameters, which occur naturally

due to biological or geometrical changes. The key parameters to

predict the behavior of a trap are Dpc, the critical pressure at

which its door buckles, and Dpd , the maximum pressure difference

it can generate by active pumping. We suggested that Dpc and Dpd

were always of the same order, optimizing the trap efficiency, and

that their relative values condition the temporal aspect of firings. It

has to be noted that even if our model strongly supports the idea of

buckling as the mechanism for firing Utricularia traps, it doesn’t

exclude any sensitive effect of the trigger hairs, which could act

chemically or mechanically to facilitate buckling. Note that the

presence of a sensitive process is also suggested by the bursting

behavior of some traps.

This ingenious way to create a periodic signal, recalling some

aspects of Tantalus vase, could provide biomimetical inspiration

for autonomous elastic structures, and represents in itself an

original illustration of mechanical oscillators for an undergraduate

Physics course.

Hopefully this work will stimulate further collaboration between

biologists and physicists to clarify completely the mechanical and

biological processes at the root of the unique trapping mechanism

of Utricularia. One big challenge is a direct, non destructive

measurement of the pressure inside the trap, which is for now only

accessible by looking at the trap width. Future work could also be

directed towards the characterization of the bio-chemical response

resulting of action on the trigger hairs, or of temporal behaviors for

other Utricularia species.

Materials and Methods

Preparation of excised leaves
Composed leaves from aquarium-cultivated Utricularia inflata

and Utricularia australis obtained from ‘‘Nature et Paysages’’,

France, were excised keeping bladders, and carefully washed with

deionized (DI) water before immersion in a Petri dish filled with

DI water. Special care was taken to avoid accidentally triggering

the traps when transferred, usually leading to the aspiration of an

air bubble. The leaf was held at the bottom of the petri dish by

inoxidable tweezers. Volumes of DI water used in the experiments

were small (v50 mL), so we cannot exclude the presence of solutes

such as minerals in an unknown concentration, brought by the

plant itself for example. As a matter of fact, authors of previous

studies of Utricularia cited in this article (see for example [8,10])

usually add a small quantity of ions in water to reproduce natural

living conditions. However, since the excised leaves continued to

live and grow for more than three weeks and most of the traps

presented regular deflation - firing cycles, our liquid medium was

probably adapted, even if not optimized.

Observation
The Petri dish rested on a LED Backlight device (from LEICA,

France) consisting of 20 6-watts white LED at color temperature

5000K, distributed on a 55 mm disk under a light diffuser. Such

constant illumination was used to avoid any effect due to ambient

light. Images were recorded with a time-lapse camera, allowing

observation of Utricularia traps for long times, of the order of

several weeks. Petri dishes were not covered to avoid condensa-

tion, so they had to be regularly refilled with care, typically each

week. The room temperature during observation was 23+4
degrees Celsius and no effect of temperature variations on the trap

behaviors was observed.

Two composed leaves of Utricularia inflata respectively containing

10 and 12 traps were followed continuously during 3 weeks. All of

the 22 observed traps showed spontaneous firings, even if 6 of

them stopped firing after 1 to 3 days. Among these 6 latter traps, 2

traps fired again a few days later, showing that they were still

working. One trap also oscillated between periods of firings and

periods of apparent inactivity, each during about 3 days. All other

traps had constant firing activity.

Two other experiments were conducted with single traps: one

with Utricularia inflata (trap B) and one with Utricularia australis (trap

D).

On these 24 traps, a total amount of 1549 spontaneous firings

were recorded. The bursting behavior was observed on 6 different

traps.

Image analysis and data processing
Image and data were processed using ImageJ freeware and

Matlab (Mathworks), to extract the times at which observed firings

occur, the time intervals between firings and their distribution.

If possible, the evolution of the trap thickness in time was also

recorded, by extraction of the lateral dimension of a thresholded

image of the trap. The characteristic pumping time td was then

calculated by exponential fitting on these curves: if we define the

deflated state w~wd as the value of the exponential plateau (since

that due to spontaneous firings, wd is never attained, its value has

to be manually adjusted) and if wi is the inflated width, we define a

degree of inflation

x(t)~
w(t){wd

wi{wd

ð7Þ

which value is x~0 for a fully deflated state, and x~1 for an

inflated state, just after any firing. t is reset to zero for each firing

so that one has

x(t)~exp({t=td ): ð8Þ

Uncertainties on td represent the standard deviation of the fitting

parameter estimated in the regression process. Figure 7 presents

on a same graph five successive firings of trap B showing that the

deflation process is identical after all firings.

Some values of td were also determined graphically with the

methods of tangents, uncertainty is then an estimate of the error

made on the slope of the curve at its origin. For the purpose of this

article, precise determination of values and their uncertainties is

not essential and the order of magnitudes extracted are enough to

discuss the results.
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For purposes involving more precise measurement of the trap

width, the image analysis technique could also be used. Its

precision is relatively poor for small magnifications (Figure 1 for

example), due to the important pixel size: in this case, the precision

of the measurement of w is of the order of 10 to 20 mm, but it can

be greatly improved using higher magnifications. The measure-

ment of w as shown on Figures 5 and 6 has a precision of

2 to 3 mm. The drawback of using high magnifications is the loss of

the ability to follow several traps at the same time.

Compared to the linear position sensor used in [8], the image

analysis technique has the advantage to avoid any direct contact

with the plant, but it only accesses a projected width of the trap,

making it sensitive to any natural rotation of the trap. The

combined use of these two techniques should thus be advantageous.

Trap pumping and pressure evolution
The observed saturation of deflation to the fully deflated state

shows that there is a process balancing pumping for high deflation.

Two hypotheses can be formulated: either the pumping rate

depends on the pressure difference Dp between the inside and the

outside of the trap, so that pumping could be significantly lowered

in the deflated state, or there is an incoming water flow balancing

pumping due to porous fluid transport. Since lateral walls of the

trap are thin, the latter is probable. We show that these processes

can explain an exponential decrease of pressure inside the trap,

using simple hypotheses: assuming that water is expelled from a

trap with a constant flow rate Q0, the volume V of water inside the

trap should decrease linearly with time as
dV

dt
~{Q0. However, if

the wall of the trap is porous, there will be an incoming flow rate

Q. Due to the slowness of the pumping process and the small

lengthscales involved, Darcy’s law should be verified, and Q

should directly be proportional to the pressure gap Dp:

Q~aDp ð9Þ

with

a~
kS

hg
ð10Þ

where S is the surface of the trap, h and k are respectively the

thickness and permeability of the wall and g the viscosity of water.

The volume conservation equation thus implies

dV

dt
~{Q0zaDp: ð11Þ

We now assume that due to the elasticity of the trap wall, there

is a linear relationship between pressure and volume such that

Dp~K(V0{V )=V0 where V0 is the initial inflated volume of the

trap, and K is a positive effective elasticity modulus (in Pa). This

hypothesis was justified by numerical simulations with realistic

Utricularia shapes [3], showing that K was constant except for very

small deflations (volume change inferior to 5%). These simulations

also showed that the trap volume V and width w are proportional,

which is due to the fact that the trap deforms mainly in the lateral

direction (indicated by the arrows on Figure 5). As a result, the

assumption of linearity between w and Dp used in the Discussion

section is reasonable.

Equation (11) then rewrites as

dDp

dt
~{

1

td

Dp{Dpdð Þ ð12Þ

with

Dpd ~
Q0

a

td ~
V0

Ka

8><
>: : ð13Þ

We recognize here a first order differential equation which

admits (2) as a unique solution for the initial condition Dpt~0~0.

From equation (13) we can estimate the trap permeability k

using equation (10) rewritten as k~a
hg

S
and using typical values

for an Utricularia inflata trap: S^1 mm2, h^100mm, Q0^
0:02 mm3=min, Dpd^15 kPa and the viscosity of water

g^10{3 Pa:s, one finds k^2:10{18 m2 (see [9] for a similar

estimation). If trap permeability is not the only phenomenon

causing leaks, the flow rate Q due to porous leaks should be lower,

so that this estimate is a maximum value for the trap permeability.

Notice also that due to the inhomogeneous character of the trap

wall, the obtained value is an equivalent permeability averaged

over all its surface and thickness.

This model is consistent with the experimental value of td :

using V0=K~DVd=Dpd , DVd^1 mm3 being the difference of

volume between the inflated and deflated state, and equation (13),

one finds td^50 min.

At last, note that the exponential evolution of pressure is also

compatible with a model (not detailed here) using the hypotheses

of zero permeability of the trap wall and of a pumping rate Q
depending linearly on Dp.

Permeability and equivalent radius
In the above paragraph, we showed that a trap could not go

beyond a maximum pumping pressure Dpd due to porous leaks.

However, leaks could also come from a single hole of radius r in a

perfectly impermeable trap. Then if the Reynolds number (see

below) is sufficiently low, Q is also proportional to Dp creating a

Poiseuille flow with hydraulic resistance

Rh~
Dp

Q
~

8gh

pr4
: ð14Þ

Since Dp=Q was equal to a{1 in the permeability model above, we

find using equations (10) and (14) that

r~
8

p
Sk

� �1=4

: ð15Þ

Using the previous value of 1 mm2 for S, one finds r^1mm.

The Reynolds number is expressed by Re^rrv=g where v is the

fluid velocity in the hole and r the fluid density. If there is a flow

rate Q0 through the hole of raduis r we should have v*Q0=r2 so

that we have Re*rQ0=rg^0:2. The approximation of Poiseuille

flow is thus justified.

Notice that the values of the permeability k is very low, meaning

that the water fluxes in and out of the trap are very small. As can

be seen on the equivalent hydraulic radius of 1mm, the trap door

has to be perfectly closed to avoid any opening of this order of

magnitude. This also underlines the difficulty of intrusive

measurements of the inside pressure of the trap such as those of
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[10] which are likely to give biased results, since any hole of order

1 mm entails water fluxes comparable to the maximum ones that

naturally occur. Such a provoked leak would considerably lower

the observed value of Dpd .

Fluctuation propagation between t and p
We assume here that probability distributions are smooth

enough so that mean values and standard deviations are defined.

Expanding t(P) around SPT at the second order in P{SPT
and taking the average one finds

StT~t(SPT)z
1

2
s2
P

d2t

dP2

 !
P~SPT

: ð16Þ

Notice that the first order term is cancelled in the averaging

process. Using the expression of t(P) given in equation (5), one

finds that the second order term is negligible when

sP

1{SPT

� �2

%2StT ð17Þ

so that the mean value of t is simply given by

StT~t(SPT): ð18Þ

This allows calculating the mean value of t knowing the mean

value of P, or by reversing the equation deducing the mean value

of P by measuring the mean value of t experimentally.

Standard deviation can also be calculated with the same Taylor

expansion technique. The result for s2
t brings into play a sum of

terms proportional to S P{SPTð ÞnT, starting at n~2. The n~3
term equals 0 for symmetrical distributions of P, which we will

assume in the following. This is also the case for all odd terms.

Even terms are of order sP=(1{SPT)ð Þ2 with respect to the

previous even term so that one can keep only the term n~2 at the

condition

sP

1{SPT

� �2

%1 ð19Þ

giving the simple result

st~
sP

1{SPT
: ð20Þ

Notice that conditions (17) and (19) can be rewritten respectively

as s2
t%2StT and s2

t%1. In our experiments t is always bigger

than 0:5 so that the second condition is the most restrictive.

Comparison with experimental values is difficult for several

reasons: first, the previous inequalities are not verified for ‘‘random’’

traps. ‘‘Metronomic’’ traps have smaller fluctuations but these are

difficult to measure, since it is not easy to separate actual fluctuations

from the natural drift of the firing period. Second, results strongly

depend on the exact mathematical relation between t and P, which

is not accessible experimentally for now, especially for long times.

Probability distributions
Assuming that the variable P has gaussian fluctuations with

standard deviation sP, the associated probability distribution is

pP(P)~

exp {
(P{SPT)2

2s2
P

 !

sP

ffiffiffiffiffiffi
2p
p

and one has the relation pt~
dP

dt
pP which gives, using equation

(5):

pt(t)~

exp {
(1{SPT{exp({t))2

2s2
P

{t

 !

sP

ffiffiffiffiffiffi
2p
p

which is a function of t and of the parameters of the initial P
distribution: its mean SPT and its standard deviation sP. On

Figure 11, SPT and sP are chosen to illustrate the basic properties

of such a distribution, namely the amplification of its standard

deviation as SPT increases, and its asymmetry.

Supporting Information

Video S1 Spontaneous firings of Utricularia inflata traps.
This is the animated version of Figure 1. Ten traps of a same branch

of Utricularia inflata were immersed in de-ionized water and their

spontaneous firings were recorded with a time-lapse camera. The

field is about 16:5|11:5 mm and the video is accelerated 1680 times

(real duration: 11 hours and 12 minutes).

(AVI)

Video S2 Bursts in trap D (Utricularia autralis). This

video corresponds to Figure 9. This trap of Utricularia australis was

recorded with a time-lapse camera and presented regular bursts of

3 or 4 spontaneous firings. Two bursts of 4 firings are present in

the video. The trap is approximately 1 mm long and the video is

accelerated 1680 times (real duration: 7 hours and 47 minutes).

(AVI)
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