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Abstract

Objective: Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including
schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been
implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under long-
term continuous glucocorticoid exposure has not been elucidated.

Material and Methods: We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1
signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of
both control and schizophrenia subjects.

Results: We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein
levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN,
Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR)
and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels
were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR
protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects.

Conclusions: The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecular
mechanism of the neurobiological effects of chronic stress.
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Introduction

Stress and elevated glucocorticoid levels are known to be

associated with a number of neuropsychiatric disorders including

depression and schizophrenia. Although acute treatment with

corticosteroid is shown to be neuroprotective [1] their chronic

effects are deleterious to the structural and functional plasticity of

adult brain [2]. Moreover, many of the effects of chronic stress are

thought to be mediated by stress-induced increases in circulating

levels of glucocorticoids [3,4]. Animal studies have shown a number

of behavioral abnormalities similar to depression and anxiety

following chronic administration of glucocorticoids [5–7]. However,

the mechanism underlying long-term continuous glucocorticoid-

induced alterations in neuroplasticity is still not clear.

Vascular endothelial growth factor (VEGF) is a neuroprotective,

angiogenic and neurotrophic molecule [8]. VEGF is known to

mediate its biological functions via activation of the protein

tyrosine kinase receptors, VEGF receptor 1 (VEGFR-1/Flt1) and

VEGFR-2 (KDR/Flk1) [9]. VEGF and its receptors are expressed

on neurons and astrocytes, and VEGF induces neuronal

outgrowth. Flk1 has been shown to mediate VEGF action in

neuronal functions [10,11] and activation of Flk1 allows the

receptors to associate with various downstream effector molecules

including phosphatidylinositol 3-kinase (PI3K) [12,13]. PI3K/Akt

signal transduction pathway has been identified as an important

mediator VEGF signaling downstream of Flk1 [14].

The prefrontal cortex (PFC) is a brain region involved in higher-

order cognitive and affective processing, as well as executive

function [15,16]. The PFC is also a target region for glucocorticoid

effects, as it has a rich population of glucocorticoid receptors

[17,18]. High doses of glucocorticoids are known to impair PFC-

dependent working memory in rodents [19,20] and humans

[21].Chronic corticosterone (CORT) treatment has also been

shown to produce neuronal impairment in the PFC including the

remodeling of pyramidal neurons, significantly reduced distal

dendritic spines of neurons and neuronal loss [22–24]. VEGF

signaling is known to play an important role in cognitive functions

and neuroprotection [10,11]. A recent study has shown that

pharmacological inhibition of Flk1 signaling can block the

behavioral actions of fluoxetine in rats subjected to chronic stress

[25] indicating a possible role of Flk1 signaling in stress-mediated

behavioral changes. However, the effects of chronic glucocorticoid

on VEGF signaling remain unknown. Specifically it is not known

whether long-term continuous glucocorticoid exposure can cause

alterations in VEGF signaling pathway in PFC. Studies on the

effect of glucocorticoids on VEGF signaling might provide
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valuable information on the molecular mechanism of the

neurobiological effects of chronic glucocorticoid exposure.

In the present article, we investigated the effects of long-term

continuous CORT exposure on VEGF/Flk1 signaling in cultured

cortical neurons in vitro, mouse frontal cortex in vivo, and in post

mortem human prefrontal cortex of both control and schizophre-

nia subjects.

Results

Long-term Continuous CORT Treatment Does Not
Change Neuronal Cell Viability

Neuronal cell viability was measured at 48, 72 and 96 h

exposure of cortical neurons by MTT assay. We did not find any

significant change in neuronal cell viability at any of the treatment

point in CORT (I mM) treated cells as compared to vehicle treated

cells (data not shown).

Long-term Continuous CORT Treatment Decreases Flk1
Protein Levels in vitro and in vivo

Expression of Flk1 was examined at 12, 24, 48 and 72 h exposure

of primary cortical neurons to CORT or vehicle by western blot

analysis using Flk1 antibody. The densitometric values for Flk1 were

corrected for b-actin. No change in Flk1 protein levels was found at

12 and 24 h following CORT treatment (data not shown). In 24

and 48 h treatment groups, data from two-way ANOVA revealed a

significant time x treatment interaction [F(1, 20) = 19.27, p,0.01],

but no significant main effect of time [F(1,20) = 0.382, N.S.] or

treatment [F(1, 20) = 0.555, N.S.]. Post hoc analysis by Bonferroni’s

Multiple Comparison test showed a significant decrease in Flk1

protein levels at 48 h (t = 4.112, p,0.05), which lasted up to at least

72 h (t = 3.977, p,0.05) (Fig. 1A). Next, we examined Flk1 protein

levels in mice treated with CORT for 7 weeks. Western blot analysis

showed a significant decrease in Flk1 protein levels in frontal cortex

of mice treated with CORT for 7 weeks as compared to vehicle-

treated mice (Fig. 1B; t = 3.323, df = 10, p = 0.0039). In addition, we

found a significant decrease in serum Flk1 protein levels in mice

treated with CORT for 7 weeks (113.1869.55 ng/mL vs 78.636

5.77 ng/mL (mean6SE); t = 2.702, df = 8, p = 0.035).

Long-term Continuous CORT Treatment Alters p-PTEN,
p-Akt and p-mTOR Levels in Cortical Neurons

Several studies have reported PTEN/Akt/mTOR pathway as a

key downstream signaling to Flk1 [14]. To determine whether the

changes in Flk1 protein levels result in alterations in its downstream

signaling pathway, the PTEN/Akt/mTOR pathway was investigat-

ed. Cortical neurons were exposed to CORT for 48 or 72 h, and

equal amounts of lysates were separated by PAGE and immuno-

blotted using phosphospecific PTEN antibody. The two-way

ANOVA revealed significant effects of treatment [F(1, 20) = 5.7,

p,0.05], time [F(1, 20) = 5.77, p,0.01] and time x treatment

interaction [F(1,20) = 9.246, p,0.05]. Subsequent comparisons by

Bonferroni’s Multiple Comparison test indicated that CORT

significantly stimulated the phosphorylation of PTEN at 48 h of

exposure compared with the control group (Fig. 2A; t = 3.838,

p,0.05). However, a significant reduction in phospho-PTEN levels

were found at 72 h as compared to levels at 48 h (t = 4.833, p,0.01),

but no change as compared to vehicle-treated cells. Next, we

examined the effect of CORT treatment on phospho-Akt levels in

neurons. Data from two-way ANOVA showed a significant effect of

treatment [F(1, 20) = 30.43, p,0.001], but no time x treatment

interaction [F(1, 20) = 0.353, N.S.] or main effect of time

[F(1,20) = 0.002, N.S.]. Post hoc analysis showed a significant

reduction in phospho-Akt levels at 48 h following CORT treatment

as measured by phosphorylation of serine 473 (Fig. 2B; t = 4.472,

p,0.01). Also, a significant reduction in phospho Akt levels was

observed when examined at 72 h following CORT treatment

(t = 3.37, p,0.05). Since mTOR has a critical function in transducing

signals from PI3K/Akt cascade, we next investigated the activation

status of mTOR in neurons following CORT treatment. We found

significant effects of treatment [F(1, 20) = 35.84, p,0.001], time

[F(1,20) = 5.774, p,0.05] and time x treatment interaction [F(1,

20) = 6.786, p,0.05]. Post hoc analysis showed a significant

reduction in phospho-mTOR levels at 48 h (t = 7.238, p,0.001)

and 72 h (t = 3.581, p,0.05) following CORT exposure (Fig. 2C).

Effects of Long-term Continuous CORT Treatment on
VEGF Protein Levels in vitro and in vivo

To examine whether CORT treatment alters VEGF expression

in cortex, we analysed VEGF protein levels in primary cortical

Figure 1. Long-term Continuous CORT treatment decreases
Flk1 protein levels in vitro and in vivo. (A) CORT (CORT; I mM) was
applied to mouse primary cortical neurons at DIV 5. Flk1 protein levels
were determined by western blotting analysis at 48 hand 72 h
following CORT treatment. CON means DMSO treatment. Data
represent mean6SE. (n = 6) expressed as fold change in Flk1 protein
levels as compared to CON. b-actin is the loading control. *P,0.05
(Bonferroni’s test). (B) Flk1 protein levels in frontal cortex of mice
treated with CORT or vehicle control (CON; 0.45% hydroxypropyl-b-
cyclodextrin) for 7 weeks. Data represent mean6SE (n = 6–8) expressed
as fold change in Flk1 protein levels as compared to CON. *P,0.01
(t test).
doi:10.1371/journal.pone.0020198.g001
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neurons as well as in frontal cortex samples from mice treated with

CORT for 7 weeks. In 24 and 48 h treatment groups, data from

two-way ANOVA revealed a significant time x treatment

interaction [F(1, 20) = 28.37, p,0.001], main effect of time

[F(1,20) = 52.42, p,0.001] and treatment [F(1, 20) = 21.656,

p,0.01]. Post hoc analysis showed that VEGF level was

dramatically increased by nearly 56% when examined at 48 h of

CORT exposure (Fig. 3A; t = 4.676, p,0.05), which lasted up to

at 72 h (t = 3.856, p,0.05). We found a significant increase in

VEGF protein levels in frontal cortex of mice treated with CORT

for 7 weeks as compared to vehicle-treated mice (Fig. 3B; t = 10.04,

df = 8, p,0.0001). In addition, we have examined VEGF levels in

serum samples collected from mice treated with vehicle or CORT

for 7 weeks. We found a significant decrease in serum VEGF levels

following CORT treatment (Fig. 3C; t = 2.39, df = 9, p = 0.04).

PI3K Signaling Is Not Involved in Long-term Continuous
CORT-induced Increases in VEGF Protein Levels

Since PI3K signaling is also involved in the regulation of VEGF

expression, we examined whether the changes in the above signaling

molecules observed following CORT exposure are upstream to

VEGF. In the first set of experiments, we determined the role of PI3K

signaling in the regulation of VEGF expression. Cortical neurons

were treated with PI3K inhibitor, LY294002 (LY) and VEGF protein

levels were determined by immunoblotting analysis. We found a

significant reduction in VEGF protein levels in neurons treated with

LY for 48 h indicating a possible role of PI3K in VEGF regulation

(Fig. 4A; t = 6.975; df = 10, p = 0.002). Next, we examined whether

LY294002 can attenuate CORT-induced increases in VEGF protein

levels. LY failed to inhibit CORT-induced increase in VEGF levels in

neurons (Fig. 4B) indicating pathways other than PI3K might be

involved in CORT-induced VEGF regulation.

Long-term Continuous CORT-induced Flk1 Regulation Is
Mediated Through Calcium

CORT treatment can regulate concentration of intracellular

calcium ions (Ca2+) by modulating extracellular Ca2+ influx and

intracellular Ca2+ pools [31–33]. To assess whether Ca2+

contributed to Flk1 regulation by chronic CORT exposure, we

treated neurons with the membrane-permeable chelator BAPTA-

AM. Application of BAPTA-AM abolished the decrease in Flk1

protein levels observed in the presence of CORT alone (Fig. 5A; F(3,

16) = 19.02; p,0.01). In addition, a significant increase in Flk1

expression was found in cells treated with BAPTA-AM alone as

Figure 2. Long-term Continuous CORT treatment alters phospho PTEN, phospho Akt and phospho mTOR protein levels in cortical
neurons. CORT (CORT; I mM) was applied to mouse primary cortical neurons at DIV 5. Cell lysates collected at 48 h or 72 h following CORT treatment
were used for western blot analysis. CON means DMSO treatment. Data represent mean6SE (n = 6) expressed as fold change in (A) phospho PTEN to
total PTEN ratio, (B) phospho Akt to total Akt ratio and (C) phospho mTOR to total mTOR ratio as compared to CON. *P,0.01 versus CON; #P,0.01
versus values at 48 h (Bonferroni’s test).
doi:10.1371/journal.pone.0020198.g002
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compared to vehicle-treated cells (p,0.05). The role of calcium in

mediating CORT effects on Flk1 protein levels was further studied

by examining the protein levels of neuronal calcium sensor-1 (NCS-

1) in primary cortical neurons as well as in mouse frontal cortex

following CORT exposure. NCS-1 is the mammalian ortholog of

frequenin, a calcium-binding protein implicated in mediating

several aspects of neurotransmission, including ion channel

regulation [34,35] and neurotransmitter release [36–38]. We found

a significant increase in NCS-1 protein levels in cortical neurons

treated with CORT for 48 h (Fig. 5B; t = 3.369; df = 8, p = 0.0281).

A significant increase in NCS-1 protein levels was also found in the

frontal cortex of mice treated with CORT for 7 weeks (Fig. 5C;

t = 6.145, df = 10, p = 0.0036). Our data suggest that the intracel-

lular concentrations of Ca2+ are regulated by CORT, and increased

Ca2+ may be involved in the downregulation of Flk1 by CORT.

Long-term Continuous CORT Treatment Decreases
Serum CORT Levels

CORT levels were analysed in the serum samples collected

from mice treated with vehicle or CORT for 7 weeks. We found a

significant reduction in serum CORT levels in CORT-treated

mice [113.2614.43 ng/mL vs 45.2569.78 ng/mL (mean6SE);

t = 3.659, df = 8, p = 0.008].

GR Downregulation Is Involved in Long-term Continuous
CORT-induced Downregulation of Flk1

We examined the possible role of GR in chronic CORT-

induced Flk1 downregulation. We found a significant reduction in

GR protein levels at 48 h following CORT treatment in cortical

neurons (Fig. 6A; t = 2.981, df = 8, p = 0.04). A significant

Figure 3. Long-term Continuous CORT treatment increases VEGF protein levels in vitro and in vivo. (A) CORT (CORT; 1 mM) was applied to
mouse primary cortical neurons at DIV 5. VEGF protein levels were determined by western blotting analysis at 48 hand 72 h following CORT
treatment. CON means DMSO treatment. Data represent mean6SE (n = 6) expressed as fold change in VEGF protein levels as compared to CON.
*P,0.05 (Bonferroni’s test). (B) VEGF protein levels in frontal cortex of mice treated with CORT (5 mg/kg) or vehicle control (CON; 0.45%
hydroxypropyl-b-cyclodextrin) for 7 weeks were determined by western blot analysis. Data represent mean6SE (n = 5) expressed as fold change in
VEGF protein levels as compared to CON. *P,0.01 (t test). (C) VEGF protein levels in serum samples collected from mice treated with CORT (CORT;
5 mg/kg) or vehicle control (CON; 0.45% hydroxypropyl-b-cyclodextrin) for 7 weeks were analysed by ELISA. Data represent mean6SE (n = 5–6)
expressed as fold change in VEGF protein levels as compared to CON. *P,0.01 (t test).
doi:10.1371/journal.pone.0020198.g003
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reduction in GR was also observed in frontal cortex of mice

treated with CORT for 7 weeks (Fig. 6B; t = 4.05, df = 8,

p = 0.015). Pretreatment with RU486 (a GR antagonist) prevented

GR downregulation by CORT in neurons (Fig. 6C; F(3, 16) =

12.70, p,0.01). In addition, CORT-induced reduction in Flk1

was not observed when neurons were treated with CORT and

RU486 (Fig. 6D; F(3, 16) = 8.616, p,0.05). These results suggest

that the downregulation of Flk1 following chronic CORT

exposure is mediated through GR. Since we found a significant

reduction in GR following CORT exposure, we examined the

possible interaction between GR and Flk1 in neurons. We found

coprecipitated Flk1 following immunoprecipitation with anti-GR

antibody (Fig. 6E). Next, we examined coprecipitated GR after

immunoprecipitation with anti-Flk1 antibody. We found signifi-

cant coprecipitated GR in cortical neurons following immunopre-

cipitation with anti-Flk1 antibody (Fig. 6F). Chronic CORT

treatment significantly reduced the coprecipitated GR as com-

pared to vehicle treatment (Fig. 6G; t = 2.92, df = 6, p = 0.038).

Reduced Flk1 and GR Protein Levels in Prefrontal Cortex
of Schizophrenia Subjects

Studies were also carried out using postmortem prefrontal

cortex samples from schizophrenia and control subjects. Western

blot analysis showed a significant reduction in Flk1 protein levels

in prefrontal cortex of schizophrenia subjects as compared to

controls (Fig. 7A; t = 2.282, df = 16, p = 0.0365). In addition, we

found a significant reduction in GR protein levels in samples from

schizophrenia subjects (Fig. 7B; t = 3.795, df = 16, p = 0.001).

Collectively, these results extend our findings on Flk1-GR

interaction in cortical neurons following CORT exposure.

CORT Treatment Did Not Change Body Weight and
Water Intake in Mice

There were no differences in relative body weight gain during

the experiment or water intake in mice treated with vehicle or

CORT (data not shown).

Discussion

Our data report the inhibitory effects of long-term continuous

CORT treatment on Flk1 expression in mouse frontal cortex.

Chronic stress and exogenous glucocorticoid exposure are known

to result in neurochemical and behavioral abnormalities in

rodents. Our studies have used 1 mM CORT in the in vitro

studies and the above concentration has been shown to produce

neuroprotective effects when the neurons are exposed to CORT

for shorter time periods such as 5 to 15 min [1]. Although acute

CORT treatment was found to be neuroprotective, the chronic

treatment of CORT has been shown to cause adverse effects in

central nervous system [7]. The dose and duration of CORT used

(5 g/kg) in our in vivo study has previously been shown to cause

anxiety and depression-like behavior in mice [5]. Our studies show

that long-term continuous CORT exposure dramatically reduces

Flk1 protein levels in cortical neurons in vitro, and frontal cortex

and serum in vivo. Although we did not find any neuronal cell

death even at 72 h following CORT exposure, the changes in Flk1

protein levels observed in our study may have a direct impact on

the neuronal cell proliferation. It is well known that Flk1 plays an

important role in neurogenesis [8]. A recent study has reported

inhibition of neurogenesis following 5 mg/kg CORT administra-

tion for 7 weeks [5]. In the present study, we found a decrease in

serum CORT levels in mice treated with CORT for 7 weeks. It is

known that the circulating glucocorticoids exert ‘feedback’ to the

HPA axis to turn off the glucocorticoid secretion and maintain the

right range of glucocorticoids [39]. In addition, exogenous CORT

treatment has been shown to flatten the diurnal CORT rhythm

rather than an absolute increase in circulating CORT levels [40].

In the present study, the blood samples were collected between 3

p.m. and 4 p.m. It has been reported that CORT treatment

inhibits the normal p.m. rise in peripheral CORT levels in

rodents, whereas control animals demonstrate a normal circadian

rhythm of CORT [41].

Figure 4. PI3K signaling is not involved in long-term contin-
uous CORT-induced increases in VEGF protein levels. (A) VEGF
protein levels were determined by western blotting analysis in neuronal
cell lysates treated with LY294002 (LY; 20 mM) for 48 h. CON means
DMSO treatment. Data represent mean6SE (n = 6) expressed as fold
change in VEGF protein levels as compared to CON. *P,0.05
(Bonferroni’s test). (B) Pretreatment with LY did not prevent CORT-
induced induction in VEGF protein levels in neurons. Cortical neurons at
DIV 5 were treated with LY (20 mM) for 30 min followed by CORT (1 mM)
exposure for 48 h. VEGF protein levels were determined in cell lysates
by western blot analysis. CON means DMSO treatment. Data represent
mean6SE (n = 6) expressed as fold change in VEGF protein levels as
compared to CON. *P,0.05 (Bonferroni’s test).
doi:10.1371/journal.pone.0020198.g004
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Because CORT significantly decreased Flk1 protein levels in

cortex, we investigated the effects of CORT on signaling proteins

downstream of Flk-1. The binding of VEGF to its tyrosine kinase

receptors induces dimerization and autophosphorylation of the

tyrosine residues [42]. Two high affinity tyrosine kinase receptors

of VEGF, Flt-1 and KDR/Flk-1, are expressed on the cell

membrane of neurons [10]. Most of the VEGF effects on

neuroplasticity including neurogenesis and cognition are mediated

by interaction with KDR/Flk-1 [11]. As the major downstream

target of KDR/Flk-1, Akt signaling pathway is an important

mediator of neuroplasticity [14]. Following treatment with

CORT, a reduction in phosphoAkt (ser273) levels was found in

cortical neurons. The changes in Akt signaling following CORT

treatment was further confirmed by a significant reduction in

phospho-mTOR levels, one of Akt’s downstream effector

molecules. We also found a significant increase in phospho-PTEN

levels, an upstream regulator of PI3K/Akt signaling. PTEN is one

of the most studied regulators of Akt activity. PTEN regulates the

PI3K/Akt signaling by controlling the levels of phosphatidylino-

sitol-3,4,5-trisphosphate (PIP3). The balance between PI3K and

Figure 5. Chronic CORT-induced Flk1 regulation is mediated through calcium. (A) Calcium chelator BAPTA-AM blocked CORT (CORT)-
induced reduction in Flk1 protein levels. BAPTA-AM (50 mM) was applied 30 min before CORT (1 mM) treatment to cultured neurons at DIV 5. Cell
lysates were collected at 48 h after CORT treatment and Flk1 protein levels were determined by western blot analysis. CON means DMSO treatment.
Data represent mean6SE (n = 5) expressed as fold change in Flk1 protein levels as compared to CON. *P,0.01 versus CON; #P,0.01 versus CORT
(Bonferroni’s test). (B) Chronic CORT treatment increases NCS-1 protein levels in neurons. CORT (CORT; 1 mM) was applied to mouse primary cortical
neurons at DIV 5. NCS-1 protein levels were determined by western blotting analysis at 48 h following CORT treatment. CON means DMSO treatment.
Data represent mean6SE (n = 5) expressed as fold change in NCS-1 protein levels as compared to CON. *P,0.01 (Bonferroni’s test). (C) Chronic CORT
treatment increases NCS-1 protein levels in mouse frontal cortex. NCS-1 protein levels in frontal cortex of mice treated with CORT (5 mg/kg) or vehicle
control (CON; 0.45% hydroxypropyl-b-cyclodextrin) for 7 weeks were determined by western blot analysis. Data represent mean6SE (n = 6) expressed
as fold change in NCS-1 protein levels as compared to CON. b-actin is the loading control.*P,0.05 (Bonferroni’s test).
doi:10.1371/journal.pone.0020198.g005
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PTEN activity determines the intracellular levels of PIP3 and

downstream activity of Akt. Activation of PTEN has been shown

to result in the inhibition of Akt and other downstream targets

including mTOR. This serine–threonine-kinase member of the

PI3K-family recently gained major interest as therapeutic target

due to its key regulatory role in various cellular functions [43].

Thus, long-term continuous CORT treatment inhibits a complex

pathway comprised of PI3K, Akt and mTOR kinases, which

regulates a number of cellular functions in CNS [44]. Interestingly,

a recent study has shown that the blockade of mTOR signaling

completely blocked ketamine induction of synaptogenesis and

behavioral responses in animal models of depression [45].

Since we found a significant inhibitory effect of CORT on Flk1

signaling in neurons, we next examined the mechanisms of Flk1

regulation under long-term continuous CORT exposure. Our

studies on VEGF protein levels found a significant increase in

VEGF protein levels both in vivo and in vitro following CORT

exposure in frontal cortex. However, we found a significant

reduction in serum VEGF protein levels in mice treated with

CORT for 7 weeks. These data suggest that a feedback

mechanism may operate to increase VEGF production in cortex

in response to inhibition of the VEGF signaling pathway.

However, the possibility of increase in VEGF in cortex as a

response to reduction in peripheral VEGF protein levels following

CORT treatment can not be ruled out. Such an increase in VEGF

in cortex could result in inhibition of Flk1 signaling and reduction

in Flk1 levels in periphery. But, further studies are warranted to

understand the above possible mechanisms. It is important to note

that PI3K signaling also plays an important role on VEGF

regulation [46]. To determine whether the changes observed in

PI3K pathway following CORT exposure is upstream to VEGF

we conducted studies using specific inhibitors of the above

Figure 6. GR downregulation is involved in chronic CORT-induced downregulation of Flk1. (A) GR downregulation following chronic
CORT exposure in neurons. CORT (CORT; 1 mM) was applied to mouse primary cortical neurons at DIV 5. GR protein levels were determined by
western blotting analysis at 48 h following CORT treatment. CON means DMSO treatment. Data represent mean6SE (n = 5) expressed as fold change
in GR protein levels as compared to CON. *P,0.05 (t test). (B) Chronic CORT treatment increases GR protein levels in mouse frontal cortex. GR protein
levels in frontal cortex of mice treated with CORT (5 mg/kg) or vehicle control (CON; 0.45% hydroxypropyl-b-cyclodextrin) for 7 weeks were
determined by western blot analysis. Data represent mean6SE (n = 5) expressed as fold change in GR protein levels as compared to CON. b-actin is
the loading control.*P,0.05 (t test). (C) RU486 (RU, a GR antagonist) blocked CORT-induced reduction in GR protein levels. RU (1 mM) was applied
30 min before CORT (1 mM) treatment to cultured neurons at DIV5. Cell lysates were collected at 48 h after CORT treatment and GR protein levels
were determined by western blot analysis. CON means DMSO treatment. Data represent mean6SE (n = 5) expressed as fold change in GR protein
levels as compared to CON. *P,0.01 versus CON; #P,0.01 versus CORT (Bonferroni’s test). (D) RU486 (RU, a GR antagonist) blocked CORT-induced
reduction in Flk1 protein levels. Data represent mean6SE (n = 5) expressed as fold change in Flk1 protein levels as compared to CON. *P,0.01 versus
CON; #P,0.01 versus CORT (Bonferroni’s test). (E) Western blot analysis of Flk1 protein expression after immunoprecipitation with GR antibody in
lysates collected from DIV6 neurons. NoAb: no anti-GR antibody; total: 10% input from total cell lysates. (F) Western blot analysis of GR protein
expression after immunoprecipitation with Flk1 antibody in lysates collected from DIV6 neurons. NoAb: no anti-Flk1 antibody. (G)
Immunoprecipitation of Flk1 in cell lysates from corticosterone (CORT) or vehicle control (CON; DMSO) treated for 48 h. Western blotting was
performed with anti-GR and anti-Flk1 antibodies. Data represent mean6SE (n = 4) expressed as fold change in GR protein levels (normalized to Flk1
protein levels) as compared to CON. *P,0.05 versus CON (t test).
doi:10.1371/journal.pone.0020198.g006
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pathway in cortical neurons. Our results did not show any

significant effect of PI3K inhibitor on VEGF protein levels in

CORT-treated cells. These results suggest that PI3K signaling

may not be involved in the regulation of VEGF expression under

CORT exposure.

Ca2+ is an important intracellular messenger in neurons,

regulating a variety of neuronal processes such as neurotransmis-

sion and signal transduction. At the cellular level, glucocorticoid-

induced elevations in [Ca2+] result in changes in synaptic plasticity

and neuronal excitability [47,48]. NCS-1 is one of the members of

a large family of EF-hand Ca2+-binding proteins, which may act as

Ca2+ sensors or Ca2+ buffers in mediating the actions of Ca2+ [49].

The increased expression of NCS-1 protein as well as the

inhibition of CORT-induced reduction in Flk1 protein levels by

BAPTA-AM in our study suggests that Ca2+ may be in involved in

mediating CORT effects on Flk1 expression. However, the caveat

exists that the increased expression of NCS-1 may be in response

to neuronal damages induced by CORT exposure. In accordance

with this, we found little loss of cells in CORT-treated cortical

neurons. This lack of cell death would be the result of the

increased expression level of endogenous NCS-1 in the neurons.

Because evidence indicates that chronic stress leads to upregula-

tion of multiple antiapoptotic molecules as an adaptive response

[50], it is possible that the neuronal insults induced by long-term

continuous CORT exposure upregulates NCS-1 expression and

promotes cellular survival in neurons. Interestingly, an up-

regulation of NCS-1 has also been reported in the cortex of

schizophrenic and bipolar patients, demonstrating the involve-

ment of NCS-1 in neuropsychiatric disorders [51]. Although the

underlying mechanism of changes in NCS-1 expression in

schizophrenia and bipolar disorder is not known, it might be

associated with the altered Ca2+ signaling reported in these

disorders [52].

A reduction in GR-Flk1 interaction was found in cortical

neurons following CORT exposure. The reduction in GR-Flk1

interaction might be as a result of the downregulation of GR

protein levels by CORT. Chronic glucocorticoid has been shown

to downregulate the interaction of GR with TrkB, another tyrosine

kinase receptor in neurons [53]. The reduction in Flk1 protein

levels following CORT was inhibited by GR antagonist, RU486.

Flk1 might be part of a protein complex with GR, and the

reduction in GR following CORT exposure might result in the

dissociation of Flk1 from GR and Flk1 signaling is thus inhibited.

Similar mechanisms have been suggested for GR-TrkB interaction

in neurons [53] and GR-TCR interaction in T-cells [54].

Together, our data suggest the possible role of GR in mediating

CORT effects on Flk1.

We found a significant reduction in Flk1 and GR protein levels

in prefrontal cortex samples from schizophrenia subjects. Al-

though the schizophrenia and control subjects in our sample set

are not well matched in their demographic variables we did not

find any significant difference between controls and schizophrenia

subjects in any of the confounding variables, such age at death,

PMI, brain weight, refrigeration interval, gender and duration of

illness. In addition, no significant correlation was found between

the protein levels of either GR or Flk1 levels and the above

confounding variables (data not shown). However, we can not rule

out the possible influence of pH on the above protein levels [55].

Unfortunately, the sample cohort used in the present study lack

the information on pH.

In conclusion, this study demonstrates altered Flk1 expression in

the frontal cortex in response to long-term continuous CORT

treatment (Fig. 8). This could have relevance in understanding

neurobiological effects of glucocorticoids and of chronic stress.

Materials and Methods

Animals
All in vivo experiments were conducted in adult male CD1 mice

(Charles River Laboratories, Wilmington, MA, USA). All CORT-

treated mice were 7–8 weeks old and weighed 25–30 g at the

beginning of the treatment. Mice were maintained on a 12-h light–

dark cycle with the lights on at 0700 hours, and were housed four

per cage. Food and water were provided ad libitum. All in vitro

experiments were done in cerebral cortical neuronal cultures from

embryonic day 16 mouse fetuses. Animal use procedures were

performed after being reviewed and approved by Medical College

of Georgia, Committee on Animal Use for Research and Veterans

Affairs Medical Center Subcommittee on Animal Use. Procedures

were consistent with the Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC) guidelines

as per Public Health Service Policy on Humane Care and Use of

Laboratory Animals.

Figure 7. Reduced Flk1 and GR protein levels in prefrontal
cortex of schizophrenia subjects. (A) Reduced Flk1 protein levels in
prefrontal cortex samples from schizophrenia subjects. Flk1 protein
levels in the prefrontal cortex of schizophrenia (SZ; n = 10) and control
(CON; n = 8) subjects were determined by western blot analysis. Data
represent mean6SE expressed as fold change in Flk1 protein levels as
compared to CON. *P,0.05 versus CON (t test). (B) Reduced GR protein
levels in prefrontal cortex samples from schizophrenia subjects (SZ;
n = 10) as compared to control subjects (CON; n = 8). Data represent
mean6SE expressed as fold change in GR protein levels as compared to
CON. *P,0.05 versus CON (t test).
doi:10.1371/journal.pone.0020198.g007

Corticosterone Treatment on Flk1 Expression

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e20198



Tissue sample preparation
At the end of 7 week-treatment, mice were killed by

decapitation, and the frontal cortex from experimental and

control mice were separately dissected. The dissection level for

the frontal cortex, 2.34 mm anterior to bregma, was chosen

according to the mouse brain stereotaxic coordinates [26]. The

tissue samples were homogenized in radioimmune precipitation

assay (RIPA) buffer (10 mM Tris-HCl, pH 7.5, 150 mM NaCl,

0.1% sodium dodecyl sulfate (SDS), 1% Nonidet P-40, and 1%

sodium deoxycholate) for western blotting. RIPA buffer enables

efficient cell lysis and protein solubilization while avoiding protein

degradation and interference with immunoreactivity. This buffer

was supplemented with a protease inhibitor cocktail (Sigma)

containing 104 mM 4-(2-Aminoethyl) benzenesulfonyl fluoride

hydrochloride (AEBSF), 0.08 mM aprotinin, 2 mM leupeptin,

4 mM bestatin, 1.5 mM pepstatin A and 1.4 mM E-64. After

15 min incubation on ice, the extracts were clarified by

centrifugation at 15,000 g for 15 min at 4uC and stored at

270uC. Protein concentration was determined by the bicincho-

ninic acid method (BCA Protein Assay Kit, Sigma).

Cerebral Cortical Neuronal Cultures
Mouse cortical neurons were cultured as described previously

[26]. Briefly, cerebral cortices from CD-1 murine embryos (E16)

were aseptically dissected and plated at 3.5 6105 cells per well on

polyethyleneimine-coated 6-well plates. Neurons were cultured in

Neurobasal medium supplemented with B27, 2 mM L-glutamine,

and antibiotics (Invitrogen). On the third day in vitro (DIV3), media

was replaced with Neurobasal supplemented with B27 minus

antioxidants, glutamine, and antibiotics. Purified neuronal cultures

were routinely .97% neurons, as assessed by MAP-2 immuno-

staining. Neurons were used for treatments between DIV 5 and 7.

Following treatments in culture, cells were washed in Phosphate

Buffered Saline (PBS) and collected in ice-cold RIPA buffer.

Protein concentration was determined by the BCA method.

Drug Treatment
In vivo studies. CORT (4-pregnen-11b-diol-3 20-dione 21-

hemisuccinate; Sigma, St Louis, MO, USA) was dissolved in

vehicle (0.45% hydroxypropyl-b-cyclodextrin, Sigma, St Louis,

MO, USA). CORT (35 mg/mL, equivalent to 5 mg/kg/day) was

delivered ad libitum in the drinking water. The dose and duration of

CORT treatment in mice were selected based on an earlier study

[5] where the above dose and duration of treatment with CORT

induced anxiety and depression-like behaviors in mice. Control

mice received 0.45% hydroxypropyl-b-cyclodextrin as vehicle.

In vitro studies. Primary cortical neurons were treated with

CORT (1 mM) or vehicle (DMSO). CORT concentration for in

vitro study was selected based on an earlier study [1] where acute

exposure with above dose was found neuroprotective in primary

cortical neurons. The treatment was carried out with a single

application of CORT or vehicle in 48 h treatment group whereas

the solutions were replenished after 48 h in the 72 h treatment

groups. Neuronal cell viability was assessed at 48, 72 and 96 h

following CORT exposure and Flk1 expression was examined at

12, 24, 48 and 72 h after CORT treatment. The analyses of other

proteins were carried out at 48 and/or 72 h following CORT

exposure.

Determination of neuronal cell viability in culture
Neuronal cell viability in culture was assessed using the 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) re-

duction assay [27]. Briefly, following treatments, 3-(4,5-di-

methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide [5 mg/mL

in phenol-red free Roswell Park Memorial Institute medium

(RPMI)-1640] was added to each well for 4 h at 37uC. Following

incubation, formazan salts were dissolved in acidic isopropanol

and absorbance was measured using a VERSAmax microplate

reader (Molecular Devices, Sunnyvale, CA, USA) at 540 nm using

a reference wavelength of 690 nm. All readings were compared

with the control treatment group.

Western blot analysis
Equal amounts of protein were resolved in SDS–polyacrylamide

gels and transferred electrophoretically onto a nitrocellulose

membrane. The membrane was blocked for 1 h in PBS solution

with the detergent Tween 20 (PBST; 3.2 mM Na2HPO4,

0.5 mM KH2PO4, 1.3 mM KCl, 135 mM NaCl, 0.05% Tween

20, pH 7.4.) and 5% non-fat milk or 5% BSA. The membranes

were incubated overnight with the indicated primary antibodies.

The primary antibodies used were anti-phospho- Akt, anti-Akt,

anti-Flk-1, anti-phospho-mTOR, anti-mTOR, anti-phospho-

PTEN, anti-PTEN (all antibodies were from Cell signaling,

Beverly, MA, USA), anti-GR, anti-NCS-1 (both were from Santa

Cruz Biotech, CA, USA) and anti-b-actin (Sigma, St Louis, MO,

USA). The membranes were washed again with PBST then

incubated with secondary antibody for 1 h. Proteins were

visualized by enhanced chemiluminescence. The films were

subsequently scanned, and band intensity was quantified by

densitometry software (Image J, NIH). The western blot data for

Flk1, GR and NCS-1 were corrected for corresponding b-actin

values. The data for phosphorylated forms of proteins were

corrected for corresponding total protein values. For VEGF, tissue

Figure 8. Proposed model showing the effects of corticoste-
rone on VEGF/Flk1 signaling pathway in mouse frontal cortex.
The signaling events induced by corticosterone (CORT) are mediated
through the Glucocorticoid receptor (GR). The reduction in Flk1 levels
following long-term continuous CORT exposure results in the activation
of PTEN, but inhibition of Akt and mTOR phosphorylation. The effects of
CORT on Flk1 are mediated through calcium (Ca2+). CORT exposure
results in increased levels of VEGF in cortex. The role of VEGF in Flk1
regulation (or vice versa) under CORT exposure remains unknown. Solid
arrows represent activation, whereas dashed arrows represent inhibi-
tion of the pathways.
doi:10.1371/journal.pone.0020198.g008
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or cell lysates were subjected to heparin beads (Sigma-Aldrich) as

described previously [28]. In brief, the beads were pelleted at

5000 g for 1 min, washed in 400 mM NaCl and 20 mM Tris, and

loaded onto a 4 to 20% gradient Tris glycine precast gel (Bio-Rad

Laboratories). After blocking, the membrane was incubated with

VEGF primary antibody (Calbiochem, Gibbstown, NJ, USA). The

band was visualized and quantified as described above.

Serum VEGF assay
Quantification of serum VEGF was performed with a DuoSet

enzyme-linked immunosorbent assay (ELISA) (R&D Systems,

Minneapolis, IN, USA) according to the manufacturer’s specifi-

cations.

Serum CORT assay
At the end of 7-week treatment, mice were killed by

decapitation (1500–1600 h). Trunk blood was harvested and

serum collected for CORT analyses. Serum was assayed for

CORT using a quantitative competitive enzyme immunoassay kit

(Cat # KA0468 V.04) from Abnova, Taipei according to

manufacturer’s instructions. Intra-assay and inter-assay measures

of variability were 4.8% and 7.3% respectively. Serum concen-

trations were determined from a software generated standard

curve and reported in ng/mL.

Serum Flk1 assay
Serum samples were collected as described above and soluble

Flk1 protein levels were determined with a quantitative sandwich

enzyme immunoassay kit (#MVR200B; R&D Systems) according

to the manufacturer’s specifications.

Human prefrontal cortex samples
The prefrontal cortex samples from schizophrenia and control

subjects were obtained from the Human Brain and Spinal Fluid

Resource Center (Los Angeles, California, USA). A description on

the demographic details is given in Table 1. No significant

difference was found between controls and schizophrenia subjects

in any of the confounding variables, such age at death, PMI, brain

weight, refrigeration interval, gender and duration of illness. The

samples were shipped frozen and stored at 2 80uC until analysis.

Grey matter was removed from a 1.5–2.0 cm thick coronal slab of

the frontal cortex anterior to the corpus callosum and the

prefrontal cortex was dissected [29]. Prefrontal cortex tissue was

homogenized in a homogenizing buffer containing 20 mM Tris–

HCl (pH 7.4), 2 mM EGTA, 5 mM EDTA, 1.5 mM pepstatin,

2 mM leupeptin, 0.5 mM phenylmethylsulfonyl fluoride, 0.2 U/

mL aprotinin, and 2 mM dithiothreitol, using a Polytron

homogenizer. The homogenate was centrifuged at 15,000 rpm

for 15 min at 4uC. Protein concentration in the supernatant was

determined with BCA Reagent. Flk1 and GR protein levels were

determined by western blot analysis as described above using b-

actin as a loading control [30].

Statistical Analysis
Data are expressed as mean6SE. Two-way ANOVA followed

by post hoc one-way ANOVA with Bonferroni’s multiple

comparison test was used in analyzing data from time dependent

studies. Comparisons between multiple groups were done by one-

way ANOVA. Individual comparisons between two groups were

performed with Student’s t test. Probability (P) values of less than

5% were considered significant.
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