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Abstract

Background: Intrinsically disordered proteins (IDPs) or proteins with disordered regions (IDRs) do not have a well-defined
tertiary structure, but perform a multitude of functions, often relying on their native disorder to achieve the binding
flexibility through changing to alternative conformations. Intrinsic disorder is frequently found in all three kingdoms of life,
and may occur in short stretches or span whole proteins. To date most studies contrasting the differences between ordered
and disordered proteins focused on simple summary statistics. Here, we propose an evolutionary approach to study IDPs,
and contrast patterns specific to ordered protein regions and the corresponding IDRs.

Results: Two empirical Markov models of amino acid substitutions were estimated, based on a large set of multiple
sequence alignments with experimentally verified annotations of disordered regions from the DisProt database of IDPs. We
applied new methods to detect differences in Markovian evolution and evolutionary rates between IDRs and the
corresponding ordered protein regions. Further, we investigated the distribution of IDPs among functional categories,
biochemical pathways and their preponderance to contain tandem repeats.

Conclusions: We find significant differences in the evolution between ordered and disordered regions of proteins. Most
importantly we find that disorder promoting amino acids are more conserved in IDRs, indicating that in some cases not only
amino acid composition but the specific sequence is important for function. This conjecture is also reinforced by the
observation that for 27% of our data set IDRs evolve more slowly than the ordered parts of the proteins, while we still
support the common view that IDRs in general evolve more quickly. The improvement in model fit indicates a possible
improvement for various types of analyses e.g. de novo disorder prediction using a phylogenetic Hidden Markov Model
based on our matrices showed a performance similar to other disorder predictors.
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Eidgenössische Technische Hochschule (ETH) Zürich. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: adam.szalkowski@inf.ethz.ch

Introduction

Contrary to the traditional sequence-structure-function para-

digm, the function of a protein is not determined solely by its stable

3D structure. Today it is known that naturally unfolded or so

called intrinsically disordered proteins (IDPs) fulfill a multitude of

functions, such as signaling and regulation. While some proteins

are completely unstructured, others may contain only short

disordered regions. Current estimates suggest that more than

30% of eukaryotic proteins contain long intrinsically disordered

regions (IDRs), but IDRs are also frequently found in prokaryotes

[1]. According to estimates from Ward et al. [2], on average 10%
of proteins are fully unstructured, while half of all proteins contain

at least one long IDR. IDPs (or proteins with IDRs) often depend

on structure instability for their function [3–5]. The absence of a

stable 3D or secondary structure makes IDPs more flexible when

binding and forming protein complexes, providing important

advantages over ordered proteins [6]. Compared to ordered

proteins, IDPs often participate in molecular recognition, signaling

processes, cell-cycle regulation and modulating gene expression or

chaperone activity [7]. Due to their flexibility, IDPs are more

resistant to perturbations in the molecular interactions environ-

ment and tend to act as hubs in molecular interaction networks

[8]. Proteins with IDRs are increasingly associated with diseases

such as cancer and neurodegeneration [7]. For example, the

CREB transcription factor is crucial in neuronal plasticity and

long-term memory formation in the brain; malfunctions of CREB

may contribute to the development of Huntington’s disease and

some types of cancers. Other famous examples include prion

protein and tumor suppressor proteins p53 and BRCA1 [7,9].

To date most studies contrasting the differences between

ordered and disordered proteins focused on simple summary

statistics, such as sequence complexity and amino acid composi-

tion [10,11]. For example, regions of low sequence complexity are

likely to be disordered [10]. IDRs usually have few large

hydrophobic residues but favor polar and charged amino acids.

Such sequence composition properties are often used by

computational methods of disorder prediction (see [12]).

Brown et al. [11] estimated separate Markov amino acid

substitution models for ordered and (wholly) intrinsically disordered
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proteins at three levels of sequence similarity. These models were

used to compare amino acid frequencies and average rates of

evolution. The authors concluded disordered proteins having a

generally higher rate of evolution than ordered. Midic et al. [13]

published a scoring matrix for the alignment of protein sequences

with disordered regions. This study also confirms a higher rate of

evolution in IDRs and shows differences in amino acid substitution

patterns between ordered and disordered parts of proteins.

Here, we take an evolutionary approach and study multiple

sequence alignments of homologous proteins with IDRs using

Markov amino acid substitution models in the maximum

likelihood (ML) framework. Based on a large set of homologous

groups with experimentally annotated IDRs, we estimate two

empirical amino acid substitution models, each describing the

evolution either in ordered or disordered regions. An expectation-

maximization (EM) algorithm is used to obtain ML estimates of

model parameters [14]. A new method is suggested to evaluate

whether components of two inferred substitution models are

significantly different. This test shows that our models are indeed

significantly different and capture the essential features of ordered

and disordered regions. As using the new model with a priori

known IDRs significantly improves the fit to data, the new model

may be recommended for other downstream evolutionary

analyses. For example, using the new two component order-

disorder model we define a phylogenetic Hidden Markov Model

(phylo-HMM) and apply it as a de novo predictor of intrinsic

disorder in multiple sequence alignments of homologous proteins.

Our predictor demonstrates the potential of achieving a

competitive accuracy-power balance compared to other disorder

prediction methods.

Further, the estimated empirical models were used to contrast

patterns and rates of the evolution in disordered and the corres-

ponding ordered protein regions. It is typically thought that

disordered regions are in general faster evolving than structured

regions of the same protein. While we confirm that IDRs tend to

have a higher rate of evolution compared to the rest of the protein,

we find a significant number of protein groups where the reverse is

the case. We present examples of proteins where the evolutionary

rates at IDRs are significantly slower (or faster) compared to the

corresponding ordered regions. Finally, we discuss other properties

of IDPs such as their distribution among functional categories and

biochemical pathways and their preponderance to contain repeats

in tandem (another important property correlating with enhanced

protein binding [15]).

Materials and Methods

Assembling homologous protein groups with IDRs
Previous analyses [16] relied on the computational prediction of

intrinsic disorder [13,17–21]. Here, we decided not to use

computational prediction methods. One one hand this drastically

reduces the amount of data available for model estimation. On the

other hand we avoid introducing unforeseeable biases due to

prediction inaccuracies.

Instead our analyses were based on the DisProt database [22] as

a starting point of data acquisition. This database comprises about

500 proteins annotated with a total of about 1000 experimentally

verified intrinsically disordered regions.

DisProt was scanned for the presence of homologous proteins

using the BLASTCLUST program, which finds pairs of sequences

with statistically significant matches (using the BLAST algorithm)

and groups them based on single-linkage clustering. This program

is part of the BLAST suite [23]. We found that the DisProt

database contains very few homologs. Consequently, we expanded

the set of IDPs through further searches for homologous proteins

in SwissProt and Pfam-based PANDIT databases. The similarity

threshold was set to be sufficiently stringent to assume structural

homology so that disorder annotations could be propagated to all

homologous positions. A more detailed description of this

procedure is provided below.

PANDIT data set
Each DisProt sequence entry was mapped to a representative

homologous group in the PANDIT database [24] based on

pairwise local alignment [25] score with BLOSUM62 [26]. The

score threshold was set to 100 which corresponds to an E-value of

10{6. PANDIT consists of Pfam protein families [27] together

with multiple sequence alignments and inferred phylogenetic trees

based on protein-coding DNA and amino acid sequences.

When multiple DisProt sequences mapped onto a single

homologous group in PANDIT, the group was successively

bisected by its longest branch until the mapping became injective,

so that there was only one disorder annotation per group. Groups

with no mapping or with v3 taxa were discarded. The

corresponding multiple sequence alignments were restricted to

the homologous sites as determined by the pairwise alignments to

the reference sequence from DisProt. To avoid noise in the matrix

estimation, distant sequences were filtered out based on the

alignment score. The final set contained 223 homologous groups

with a total of 1805 sequences with 54233 disordered and 254308
ordered residues.

The PANDIT data comprises a set of reliable alignments but

due to its limited size it imposes considerable uncertainty on model

estimation. Thus we use this data set mainly for verification of our

results and for functional analyses.

SwissProt data set
To improve the reliability of our model estimation, we

constructed a second larger data set of homologous protein groups

with IDRs based on the SwissProt database [28]. For each DisProt

entry an initial homologous group from SwissProt sequences was

built from pairwise alignments. Multiple sequence alignments were

constructed from pairwise homologies and trimmed to sites present

in the reference sequence. Further, the groups were refined by

removing distant sequences so that each sequence had a distance

v100 PAM to the reference sequence. The resulting data set

included 373 homologous protein groups with a total of 15490
sequences with 1043845 disordered and 3986493 ordered residues

and was used as the main source for the estimation of our Markov

model of evolution. To overcome potential biases due to errors in

the group-wise multiple sequence alignments and estimated

phylogenies, we compare the separate model estimates for both

data sets.

The estimation of Markov amino acid substitution
models

The evolution of amino acids was described by a Markov

process with the generator matrix Q~(qij) defining the instanta-

neous rates of changes from amino acid i to j. As usual, the

substitution process was assumed to be reversible so that

piqij~pjqji, where pi are the equilibrium amino-acid frequencies. For

a reversible process the instantaneous rates of change from i to j
can be expressed as qij~sijpj , a product of equilibrium (or

stationary) amino acid frequency pj and the exchangeability sij

between residues i and j. We further refer to the matrix S~(sij) as

the amino acid exchangeability matrix. For a multiple sequence

alignment the substitution process flows along a phylogeny relating

Models for Intrinsically Disordered Proteins
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the sequences in a sample. The transition probability matrix over

time t is computed as P(t)~eQt. On this basis a likelihood function

can be constructed for each site for a given tree. The total

likelihood of the alignment is calculated as a product of site

likelihoods based on the site-independence assumption (for

computational reasons).

We estimated separate amino acid substitution models for

ordered and disordered regions, each described with instantaneous

substitution matrices D and O, respectively. Overall, the mixed

DO model describes the evolution of a priori annotated IDRs using

matrix D, while structured regions are described using matrix O.

Model parameters were estimated using an EM algorithm [14]

on our two assembled training sets. The EM approach finds the

ML estimates of substitution model parameters, with the

substitution histories and counts being unobserved latent variables.

The EM iteratively estimates parameters and latent variables in an

alternating manner until convergence. Each model (both for

ordered and disordered regions) required estimating 190 ex-

changeability and 19 amino acid frequency parameters.

For the training set based on PANDIT groups we used

phylogenies provided by the PANDIT database. For the SwissProt

data set phylogenies were built using PhyML3.0 [29] with

LGzC4zI [30,31], thereby estimating evolutionary rates per site.

We followed the procedure described by Le et al. [30] and

separated the alignment columns by their most likely rate class, as

estimated by PhyML, to normalize for among-site heterogeneity of

evolutionary rates.

Evaluating the significance of differences between
models estimated for ordered and disordered regions

The significance of differences in estimated amino acid

frequencies was evaluated using two likelihood-ratio tests on the

estimated amino acid counts computed by XRate [14]: Pearson’s

x2-test and the G-test. Both tests compare the null hypothesis that

the two count vectors arose from a common distribution against

the alternative hypothesis where each vector originates from a

distinct distribution. Similarly, exchangeability rates were com-

pared using the estimated substitution counts.

In addition to Pearson’s x2 and the G tests, confidence intervals

for model estimates were computed by a bootstrapping technique.

For each homologous group replicate data sets were generated by

bootstrap on alignment columns and by jackknife on rows. For

each replicate, substitution models for ordered and disordered

regions were re-estimated using the EM-based procedure identical

to that applied to the original data. The resulting distributions of

model estimates were used to estimate empirical variances for

exchangeabilities and amino acid frequencies (Figure 1).

In particular, we investigated whether the IDRs may be

characterized only by the bias in amino acid composition, or if a

bias in exchangeability between different classes of amino acids

(order and disorder promoting) may also be observed. To achieve

this we computed the substitution rates between order and

disorder promoting residues for ordered and disordered regions

separately:

s’SO~
X

i[SO

X

j[SO,i=j

piqij

s’SD~
X

i[SD

X

j[SD,i=j

piqij

where SO~fC,F ,I ,L,V ,W ,Yg and SD~fA,E,G,K,P,Q,R,Sg

are the sets of order promoting and disorder promoting amino

acids, respectively. In order to compare these terms between

ordered and disordered regions we normalized the terms by

frequencies of occurrences of amino acids in sets SO and SD:

sSO~
s’SO

(
X

i[O pi)
2

and sSD~
s’SD

(
X

i[SD
pi)

2

which rendered these terms independent of the target and source

amino acid frequencies. To detect bias in exchangeabilities with

regard to order and disorder promoting residues, we compared the

ratios sSD=sSO between ordered and disordered regions.

Comparison of evolutionary rates in ordered and
disordered regions

To compare average rates of evolution we computed the group-

wise total tree lengths (sum of branch lengths) for the SwissProt

data set from pairwise distances and least-squares distance trees

estimated with Darwin [32], because for a given set of taxa tree

lengths are expected to be proportional to the average rates of

evolution. We will refer to the estimated evolutionary rates as rD

for IDRs and rO for ordered regions.

The ordered and disordered portions of multiple alignments

were bootstrapped separately, and the significance was computed

with the Mann-Whitney-U-Test.

Prediction of IDRs using phylogenetic Hidden Markov
Models (phylo-HMMs)

The estimated empirical models for ordered and disordered

regions may be used to define a phylo-HMM for predicting IDRs.

We applied XRate [14] in annotation mode to obtain a prediction

of order/disorder for each alignment column in the testing set

compiled from PANDIT. This was done using the model estimates

for order and disorder trained on either the PANDIT or the

SwissProt sets. The HMM consists of 4 hidden states: start, end,

and states for emitting ordered and disordered alignment columns.

The emission probabilities are defined by the estimated evolu-

tionary model and the transition probabilities were trained

simultaneously from data. To correct for the differences in group

size we divided the error statistics by the corresponding number of

sequences in the homologous group.

The quality of prediction of intrinsic disorder for our phylo-

HMM was compared with the quality of two sequence-based

disorder predictors: VSL2 [20] and iupred [21]. VSL2 was used

with two different parameter sets. One version of VSL2 uses

auxiliary information from PSI-Blast PSSM and PSI-Pred

secondary structure prediction, while the ‘‘fast’’ version is executed

without this additional data. Iupred was used with its ‘‘long’’ and

‘‘short’’ presets.

Results

The new DO model requires twice as many parameters to be

estimated from data compared to a standard empirical amino acid

model that does not distinguish between order and disorder.

Despite this, the model significantly improved the model fit to data

with a priori annotated IDRs. For example, for the SwissProt data

set the AIC decreased by 1916 (with an increase in log-likelihood

of Dl~1167). Consequently, we used the DO model to analyze

differences between ordered and disordered regions in terms of

amino acid composition and exchangeabilities, evolutionary rates,

and content of tandem repeats. We also tested whether the two

Models for Intrinsically Disordered Proteins
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components of DO may be used for disorder prediction from

multiple alignments of homologous protein sequences.

Comparison of model estimates
We compared the ML estimates for the disorder and order

components of the DO model in the PANDIT and SwissProt data

sets. The majority of the ML estimates were similar between the

two data sets. Only for a few amino acids the estimated

equilibrium frequencies differed significantly between the data

sets, based on variances estimated with bootstrap and jackknife

resampling (Supplementary Figure S1). This may reflect a

heterogeneity of gene and lineage composition. On the other

hand, no significant differences were observed between exchange-

ability estimates in the two training sets. Such stability of our

estimates is reassuring.

The uncertainty in model estimates for the SwissProt training

set was lower compared to that for the PANDIT set. Moreover, we

observed a lower variance in the estimates for the ordered regions

compared to the disordered model. This may be explained by the

amount of data available for each estimation, since the SwissProt

set is larger than the PANDIT set, and since we have more

residues in ordered regions compared with IDRs. Consistent with

this explanation, we observe high variance in exchangeabilities

between rare amino acids.

Next, we contrasted model estimates for ordered and disordered

regions in the SwissProt data set. The estimates of model

parameters for IDRs are shown in figure 2 and can be downloaded

as supplementary datasets S3 and S4 in a format compatible with

PAML [33]. The amino acid equilibrium frequencies and

exchangeabilities are displayed and compared separately. The

components of O and D matrices for ordered and disordered

models were found to be significantly different based on Pearson’s

x2-test and the G-test (pv0:01 for both tests) applied to estimated

substitution counts.

Based on the estimates of amino acid frequencies for ordered

and disordered regions (Figure 2), we observed that order-

promoting amino acids I, L, V (large and hydrophobic) and W,

Y, F (aromatic) appeared in IDRs at a lower frequency. In

addition, IDRs contained a low frequency of the non-polar amino

acid C. On the other hand, IDRs contained high frequencies of

disorder-promoting amino acids: positively charged R and K,

polar E and Q, and small A, G, S and P. Our estimates of amino

acid frequencies were largely in agreement with other empirical

observations [10,11]. Our observations held for both data sets with

only minor differences.

We clearly observed that IDRs are enriched with disorder-

promoting amino acids while ordered regions are enriched with

order-promoting amino acids. Further, significant differences in

the amino acid exchangeability patterns between the models

inferred for ordered and disordered regions were found (Figure 1).

In IDRs we observed relatively fewer substitutions between

disorder promoting residues compared to ordered regions

(sSD=sSO~0:41 in IDRs and 0:66 in ordered regions). In

addition, in IDRs the exchangeability rates are higher between

order-promoting residues, whereas in the ordered regions the

exchangeability rates tend to be higher between disorder-

promoting residues and between residues from the two classes

(order or disorder promoting). Thus, it may be concluded that

IDRs are characterized not only by the compositional bias but

also by exchangeability biases between the classes of order and

disorder-promoting residues.

Performance of HMMs for de novo disorder prediction
Using a test data set compiled from PANDIT, we compared the

performance of our phylo-HMM based disorder predictor with

two well established sequence-based predictors. Table 1 summa-

rizes the numbers of correctly and incorrectly annotated sites with

different methods tested. In our tests, VSL2 exposed the best

performance in marking sites as disordered, while Iupred was too

conservative, annotating too many sites as ordered. According to

precision and recall values (Table 1), our phylo-HMMs outper-

formed the simple sequence based Hidden Markov Models based

only on amino acid frequencies and yield results comparable to

iupred and VSL2. It should be noted that VSL2 and iupred

preformed similar or even better on the test set compared to

predictions on DISPROT (results not shown).

Figure 1. Scatter plot for amino acid frequencies (A) and exchangeablilities (B) in SwissProt data set. Error bars are 1:96 standard
deviations. Order promoting amino acids are green, disorder promoting ones yellow. Exchangeabilities between order and disorder promoting
residues are gray.
doi:10.1371/journal.pone.0020488.g001
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Comparison of evolutionary rates in ordered and
disordered protein regions

It is typically thought that IDRs evolve at a higher rate

compared to proteins with stable 3D structure [11,34]. Here, we

tested this consensus view using the rate estimates from our

inferred models.

For about 60% of the PANDIT data set the evolutionary rates were

significantly higher in IDRs compared to rates in ordered regions

(Table 2). For example, the tumor suppressor protein p53 (PF00870)

was found to evolve significantly faster in its IDR (rD=rO~4:2).

Another example from this class is discussed below in more detail.

However, for 25% of our homologous groups the estimated rate of

evolution in IDRs was significantly lower than in respective ordered

regions (pv0:05). The full results are available in supplementary

dataset S1 (rDwrO) and S2 (rDvrO). This may indicate that the

contribution of IDRs to the overall function of the protein may vary

significantly, and which is confounded with a multitude of other

factors including the properties of the primary sequence.

Further we explored the distribution of functional categories

among groups with either significantly higher or lower evolution-

ary rates between ordered and disordered residues. For this task

we used the PANDIT dataset since the information on functional

categories (GO [35] terms) and biochemical pathways (KEGG

[36]) was already available from PanditPlus [37]. For each protein

group we parsed GO terms from the highest hierarchical level

down to collect all relevant ancestral terms. The class with higher

rate in IDRs (rDwrO) was enriched with proteins from the

functional categories ‘nucleotide binding’ (p~0:0162, p-values before

multiple testing correction), and especially ‘adenyl nucleotide binding’

(p~0:0423) and ‘ATP binding’ (p~0:0569).

In the other class with rDvrO the cellular component ‘membrane

part’ (p~0:0241) and the biological process ‘regulation of nucleobase,

nucleoside, nucleotide and nucleic acid metabolic process’ (p~0:0671) were

overrepresented. Due to the small number of homologous groups

we had, these were the only terms close to a significant level.

However, functional categories such as binding and regulation

Figure 2. Amino acid exchangeability matrices and amino acid frequencies for ordered and disordered regions derived from the
SwissProt data set: here, the area of each bubble represents the rate of a substitution or the amino acid frequency. (A) Model
estimates for IDRs. (B) Model estimates for ordered regions. (C) Relative difference (rD{rO

rO
) between the corresponding values for disordered and

ordered models (plots A and B). rO and rD stand for the relative evolutionary rates in ordered and disordered regions, respectively. Order promoting
amino acids are green, disorder promoting ones yellow. Exchangeabilities between order and disorder promoting residues are gray. Bubbles with red
border correspond to negative values, i.e. have a lower frequency in IDRs.
doi:10.1371/journal.pone.0020488.g002

Table 1. Comparison of disorder prediction.

Tool TP TN FP FN accuracy recall

VSL2 fast 3003 9209 3309 1237 0:2459 0:7083

VSL2 3268 8822 3696 973 0:2703 0:7706

iupred long 2175 11287 1230 2065 0:1616 0:5130

iupred short 2074 11092 1426 2166 0:1575 0:4892

phyHMM SwissProt 2728 9430 3217 1598 0:2244 0:6306

phyHMM PANDIT 3123 10136 2511 1203 0:2355 0:7219

HMM SwissProt 2313:1 11803:6 715:346 1928:08 0:1639 0:5454

HMM PANDIT 2113:29 11667:1 851:875 2127:89 0:1534 0:4983

Comparison of phylo-HMM based disorder prediction using the models estimated from the PANDIT or the SwissProt data set with other sequence based predictors.
Shown are true positives (TP), true negatives (TN), false positives (FP), false negatives (FN) for different parameter configurations of each method.
doi:10.1371/journal.pone.0020488.t001
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were reported to be enriched in other studies, which used disorder

predictors for such analyses [38,39].

For KEGG pathways we found that proteins with less conserved

IDRs (rDwrO) tend to be involved in ‘proteasome’ (p~0:0370),‘ap-

apoptosis’ (p~0:0569) and ‘colorectal cancer’ (p~0:0906) pathways.

Proteins with conserved IDRs (rDvrO) were found to be highly

significantly overrepresented in ‘tyrosine metabolism’ (p~0:00765) as

well as ‘pyruvate metabolism’ (p~0:0242), ‘valine, leucine and isoleucine

degradation (p~0:0188), ‘urea cycle and metabolism of amino groups’

(p~0:0188), ‘1- and 2-methylnaphthalene degradation’ (p~0:0290),
‘fatty acid biosynthesis’ (p~0:0290), and ‘3-chloroacrylic acid degradation’

(p~0:0241) pathways. Interestingly, according to KEGG most of

these pathways fall into the same larger category or/and are

related.

Note that the estimates of tree lengths were robust to the model

choice (estimates for new model DO and LG differed by only

+5%), and thus had little influence on our conclusions regarding

the comparisons of the evolutionary rates rD and rO (Table 3).

Relationship between intrinsic disorder and protein
repeats in tandem

It has been suggested that about 50% of the protein regions with

tandem repeats may be intrinsically disordered [40–42], implying

a higher incidence of IDRs in proteins with tandem repeats

compared to their average frequency among all proteins. Here, we

examined whether the reverse observation may be made, i.e.

proteins with IDRs are more likely to contain tandem repeats. To

assess whether IDPs are enriched with tandem repeats, we

examined the frequency of tandem repeats in our homologous

groups. For each group in our SwissProt data set and for each

DisProt sequence, protein repeats were detected using a recent

algorithm based on a k-means clustering approach [43]. We found

that 69% (362=522) of the sequences in DisProt contained

predicted repeats and that 76% (285=373) of our SwissProt groups

contained at least one sequence with tandem repeats. This is

significantly higher than what is typically observed among all

proteins (reportedly 9% in SwissProt and 14% in a GenBank-based

protein census [44]).

This analysis demonstrated that tandem repeats tend to occur

more frequently in intrinsically disordered regions (pv0:05;

Table 4). Furthermore, in our data proteins with tandem repeats

tended to have higher rates of evolution in IDRs (rDwrO) more

frequently compared to proteins without tandem repeats (Table 4).

Examples of proteins with IDRs
rDwrO in mouse SOCS3. Significantly higher rate of

evolution in the IDR compared to the ordered portion of the

protein was found in the homologous protein group constructed

for the DISPROT sequence DP00446. This protein is a

suppressor of cytokine signaling (SOCS3) in mouse. The IDR

between the SH2 domain and the C-terminal SOCS box (Figure 3)

is believed to be a PEST-like sequence and is not required for

primary function (phosphothyrosine binding) [45]. Instead it is

likely to have an enhancing effect in protein degradation.

SOCS3 is involved in the following GO biological processes:

‘branching involved in embryonic placenta morphogenesis’, ‘negative regulation

of insulin receptor signaling pathway’, ‘negative regulation of signal

transduction’, ‘placenta blood vessel development’, ‘positive regulation of cell

differentiation’, ‘regulation of growth’, ‘regulation of protein phosphorylation’,

‘spongiotrophoblast differentiation’, ‘trophoblast giant cell differentiation’.

Further it is annotated with the molecular function ‘protein binding’.

The protein is part of the following KEGG pathways: ‘Ubiquitin

mediated proteolysis’, ‘Osteoclast differentiation’, ‘Jak-STAT signaling

pathway’, ‘Insulin signaling pathway’, ‘Adipocytokine signaling pathway’,

‘Type II diabetes mellitus’, ‘Hepatitis C’.

We conducted a more thorough analysis of this protein and

assembled a superset of this homologous group from the OMA

project [46]. By doing so we obtained a group of 27 sequences and

a total alignment length of 225 amino acids with 36 disordered

columns. Babon et al. [45] note that the IDR of this protein is

highly conserved in mammals. Despite this, our analysis confirmed

a significantly higher substitution rate in the IDR compared to the

rest of the protein. For this data set the estimated average tree

length measured in expected substitutions per site was 1:2 in

ordered regions but 8:4 for the IDR, with highly significant Mann-

Whitney-U-Test. Further, protein-coding DNA sequences were

analyzed using codon models with variable selection pressure over

sites (models M0, M1, M2, M3, M7 and M7 in PAML [33]). No

positive selection was detected on this protein, but the purifying

selection pressure was less stringent in the IDR compared to the

ordered part of the protein - the trend consistent with our

observation of rDwrO.

rDvrO in rat GNMP. The Glycine N-methyltransferase

(GNMP) is an example of a protein where the rate of evolution is

significantly lower in the IDR compared with the ordered regions

of the protein - contrary to the predominant view. This protein

creates a tetrameric complex shaping a molecular basket. The 40

unstructured N-terminal residues of each subunit regulate access

to the active site by filling the core of this basket (Figure 4). In

presence of AdoHcy these IDRs unclog the core and give access to

the active site [47].

GNMP is involved in the following GO biological processes:

‘adenosylhomocysteine metabolic process’, ‘S-adenosylmethionine metabolic

process’, ‘folic acid metabolic process’, ‘protein homotetramerization’. Further

it is annotated with the molecular functions ‘folic acid binding’,

‘glycine N-methyltransferase activity’, and ‘glycine binding’. The protein is

part of the KEGG pathway ‘Glycine, serine and threonine metabolism’.

Similar to SOCS3, we expanded the original homologous group

containing GNMP (around the DisProt sequence DP00031) with

additional sequences from OMA. Thus this group was extended

Table 3. Overlaps between rate estimate classes.

; LG/DO ? rDwrO rDvrO rD&rO

rDwrO 176 5 7

rDvrO 5 75 5

rD&rO 5 2 40

Overlaps between different rate estimate classes based on the LG and the DO
models. Especially the overlaps between the opposing classes are within the
targeted level of confidence (pv0:05). The estimates based on the LG and DO
models are not significantly different. Thus, using a single model for rate
estimation is considered sufficient.
doi:10.1371/journal.pone.0020488.t003

Table 2. Comparison of evolutionary rates.

rDwrO rDvrO rD&rO

LG 188 85 47

DO 186 82 52

Comparison of evolutionary rates between ordered and disordered columns in
the SwissProt data set. Each cell contains the number of homologous groups
which pass a test of significance at pv0:05 or the number of those with
indistinguishable rates.
doi:10.1371/journal.pone.0020488.t002
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from 5 (originally) to 43 taxa and a total alignment length of 292
amino acids with 40 disordered columns.

The analysis of the extended dataset resulted in the estimated

average tree length of 4:7 for the ordered regions versus 2:0 for the

IDR, with highly significant Mann-Whitney-U-Test. The analyses

with codon models (as for SOCS3) reported higher purifying

selective pressure in the IDR. This again confirms our previous

result suggesting that the IDR in GNMP protein is more

conserved although it does not contain the active site.

Discussion

Here we estimated an empirical Markov amino acid substitution

model for IDRs and ordered regions of proteins, which provided a

significant improvement in model fit to data (as measured by AIC).

Based on the a priori annotated alignments, the mixed DO model

succeeded at detecting several significant distinctions between

evolutionary patterns in IDRs and the corresponding structured

parts of the protein. First, the stationary amino acid distribution

was found to be significantly skewed towards disorder promoting

amino acids, which confirmed previous empirical observations

[10,11]. Moreover, the exchangeability rates in IDPs were also

biased, with significantly higher rates between order promoting

residues. At the same time, the exchangeability rates for other

types of changes were lower compared to what was observed in

ordered regions. Probably, in IDRs disorder promoting amino

acids are under higher functional constraints than order

promoting residues. As a result, the DO model may better reflect

the biological reality for IDPs and therefore may improve the

accuracy of inferences for various types of analyses, such as

maximum likelihood phylogeny inference with mixture models

[48], ancestral reconstruction, and sequence alignment. As an

example, we used our model to construct a phylo-HMM to predict

intrinsic disorder from a multiple sequence alignment of IDPs

based on the difference in evolutionary patterns. The phylo-HMM

based on the estimated models was shown to be competitive

compared with other sequence-based predictors. Combining this

approach with the use of summary statistics, such as energy

calculations or the inclusion into a meta-predictor may improve

Figure 3. In murine SOCS3 the IDR (yellow) between the SH2
domain and the SOCS box is little conserved. It presumably just
has an effect in the degradation of the protein. This structure is
available as PDB identifier 2BBU.
doi:10.1371/journal.pone.0020488.g003

Figure 4. In rat GNMP the N-terminal IDRs (yellow) are strongly
conserved. They give access to the active sites (red) in the presence of
AdoHcy. This structure is available as PDB identifier 2IDJ.
doi:10.1371/journal.pone.0020488.g004

Table 4. Intrinsic disorder and tandem repeats.

# residues in order # residues in disorder rDwrO rDvrO rD&rO

TR 5217 5945 44 5 9

noTR 81207 47759 62 26 16

The first 2 columns contain numbers of ordered or disordered characters in DisProt which are predicted to be inside or outside of tandem repeats. Tandem repeats are
significantly more frequent in disordered regions (pv0:001).
The last 3 columns represent a comparison of evolutionary rates between ordered and disordered columns in the SwissProt data set restricted to groups with or without
tandem repeats, respectively. Each cell contains the number of homologous groups which pass a test of significance at pv0:05 or the number of those with
indistinguishable rates.
doi:10.1371/journal.pone.0020488.t004
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the prediction even further. One limitation of our study was the

relatively small sample of IDPs that are currently known to contain

structural disorder based on experimental work. Recently

however, the natively unfolded proteins have been under spotlight

[49]. The increased attention to IDPs is likely to increase the

amount of structural information available for this kind of

proteins. Larger sets of homologous alignments of IDPs may be

used in the future to re-estimate the two empirical components of

our DO model. Such new estimates should be more accurate and

have smaller variances. However, the composition of IDRs may

depend on their relevance to the function of the protein and the

specifics of performed function. Given sufficient data, different DO

models may be estimated for different classes of IDPs, where IDRs

play different functional roles. At the moment this is not

foreseeable due to lack of both structural and functional data.

Our analyses suggest that for the majority (59%) of IDPs the

unstructured regions are indeed less conserved than the rest of the

protein, as is typically thought. However, this is not a general rule

and many exceptions exist. For 15% of IDPs the rates of evolution

in IDRs and ordered regions were not significantly different.

Moreover, a large proportion of IDPs in our set (27%) had higher

conservation in their disordered parts, contradicting the common

view (one such example, the GNMP protein, was presented

above). Our functional enrichment analyses of this protein class

showed that IDPs with rDvrO tend to be involved in pathways

responsible for amino acid and carbohydrate metabolism or

related. In particular, the amino acid metabolism function

involved the metabolism of order promoting residues (but not

disorder promoting) - namely Tyrosine, Valine, Leucine and

Isoleucine. We hypothesize that this may be related to our

observation of higher exchangeability rates between order-

promoting residues in IDRs compared to ordered regions. Overall,

IDPs with slower evolving IDRs (compared to their structured

parts) seem to exhibit a preferential involvement in certain

biochemical pathways. Indeed, proteins whose IDRs are directly

involved in function, or are crucially important for function, may

be expected to evolve more slowly due to additional functional

constraints. In addition, IDRs abundantly found in alternatively

spliced regions [50,51] may evolve slower with respect to other

regions due to additional constraints for functional proteins in

different alternative frames.

A recent study [42] found that tandem protein repeats are

enriched with IDRs. Here, we found that the reverse statement also

may be made, i.e., proteins with IDRs are enriched in tandem

repeats. So the presence of tandem repeats in a protein should have

strong correlation with the presence of IDRs. This supports the

theory that at least some of IDRs originate via repeat expansion

[40]. This evolutionary mechanism provides a means of interactome

scaling, where certain nodes in the interaction network increase

their fitness by incorporating intrinsic disorder and repeats [9].

Sandhu [52] is also supportive of this view in his study of chromatin

remodeling proteins that frequently contain IDRs. The IDRs

resulting from repeat expansion may enable reversible binding to

different interacting partners, which overall contributes to func-

tional diversity and specialization of chromatin remodeling

complexes. Moreover, Jorda et al. [42] found that the level of

repeat perfection correlates with the amount of intrinsic disorder. If

the repeat perfection is representative of recent evolutionary origin

(rather than due to functional importance), then this finding is in a

perfect agreement with the hypothesis that repeat expansion drives

the origin of new IDRs. With time the repeat perfection should be

decreased, especially that in our study we found that most IDPs with

repeats evolve significantly faster in their IDRs compared to the

structured regions. This may be also indicative that IDPs with

tandem repeats fall into particular functional classes, a premise that

should be studied when more structural and functional data

(especially on IDPs) becomes available.
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Figure S1 Scatter plot of Pandit vs. SwissProt amino
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