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Abstract

The disease processes underlying inherited retinal disease are complex and are not completely understood. Many of the
corrective gene therapies designed to treat diseases linked to mutations in genes specifically expressed in photoreceptor
cells restore function to these cells but fail to stop progression of the disease. There is growing consensus that effective
treatments for these diseases will require delivery of multiple therapeutic proteins that will be selected to treat specific
aspects of the disease process. The purpose of this study was to design a lentiviral transgene that reliably expresses all of
the proteins it encodes and does so in a consistent manner among infected cells. We show, using both in vitro and in vivo
analyses, that bicistronic lentiviral transgenes encoding two fluorescent proteins fused to a viral 2A-like cleavage peptide
meet these expression criteria. To determine if this transgene design is suitable for therapeutic applications, we replaced
one of the fluorescent protein genes with the gene encoding guanylate cyclase -1 (GC1) and delivered lentivirus carrying
this transgene to the retinas of the GUCY1*B avian model of Leber congenital amaurosis – 1 (LCA1). GUCY1*B chickens carry
a null mutation in the GC1 gene that disrupts photoreceptor function and causes blindness at hatching, a phenotype that
closely matches that observed in humans with LCA1. We found that treatment of these animals with the 2A lentivector
encoding GC1 restored vision to these animals as evidenced by the presence of optokinetic reflexes. We conclude that 2A-
like peptides, with proper optimization, can be successfully incorporated into therapeutic vectors designed to deliver
multiple proteins to neural retinal. These results highlight the potential of this vector design to serve as a platform for the
development of combination therapies designed to enhance or prolong the benefits of corrective gene therapies.
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Introduction

Development of effective, long-lasting therapies for the

treatment of progressive autosomal recessive retinal diseases that

cause blindness early in life remains a challenge. Many of these

diseases are caused by mutations in genes expressed exclusively in

photoreceptor cells that disrupt their structure and function. There

have been numerous studies showing that the effects of these

mutant genes on photoreceptor cells can be reversed by delivering

a normal copy of the mutated gene to these cells; however, in most

cases these corrective gene therapies only provide a temporary

reprieve from photoreceptor degeneration and the ensuing

blindness that defines these diseases [1–3]. Because many of these

aggressive photoreceptor diseases cause blindness early in life, it is

desirable to develop treatment strategies that provide lifelong

therapeutic benefits.

The most straightforward approach to achieving this treatment

goal is to ensure that every photoreceptor in the diseased retina

receives a copy of the corrective gene required to restore function

to the cell before it has irreversibly committed itself to die. This

strategy, while biologically sound, is currently unrealistic given the

limitations of existing gene delivery methods. An alternate strategy

to achieve this goal is suggested by examining the long-term

therapeutic successes recently achieved using corrective gene

therapy to treat Leber congenital amaurosis – 2 (LCA2) [4–7].

The gene mutated in LCA2 encodes retinal pigment epithelium-

specific protein 65-kDa (RPE65), a protein that is specifically

expressed in pigment epithelial cells and is critical for processing

the vitamin A chromophore that photoreceptors need to

regenerate their visual pigments following light stimulation [8,9].

In the absence of this chromophore, photoreceptors are unable to

respond to light and eventually degenerate [9]. In human retina,

the ratio of retinal pigment epithelial cells to photoreceptor cells is

approximately 1:22 [10], one pigment epithelial cell supporting

the function of about 22 photoreceptors. Thus, for every retinal

pigment epithelial cell treated, approximately 22 photoreceptor

cells regain function, a relationship that essentially amplifies the

therapeutic benefits of the RPE65 therapy. In addition to

amplifying the effect of RPE65 therapy, the relationship between

the pigment epithelium and the adjacent photoreceptors also

serves to minimize the number of untreated photoreceptor cells

within treated areas which could positively influence the efficacy of
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the treatment if degeneration of untreated cells compromises

survival of treated cells.

Unfortunately, unlike LCA2 therapies, the effects of corrective

gene therapies designed to restore function to photoreceptors

affected by genetic mutations located in photoreceptor genes are

not amplified by retinal physiology or structure. Thus, developing

methods to maximize the number of photoreceptor cells that

receive corrective gene therapy remains a priority in developing

treatments for these diseases. In addition to increasing the

numbers of treated photoreceptors, can we prolong survival of

these cells? One method to accomplish this would be to pair

delivery of the corrective gene with delivery of additional

therapeutic proteins that would enhance survival of photorecep-

tors. The results of our work on LCA1 have led us to consider this

possible treatment route.

LCA1 is caused by null mutations in the GUCY2D gene

(NC_000017.10) that encodes guanylate cyclase-1 (GC1), an

enzyme that is expressed in photoreceptor cells [11]. GC1 plays a

critical role in the ability of photoreceptor cells to recover from

light stimulation [12] and its absence in humans [13] and in the

GUCY1*B avian model of LCA1 [14] results in severely

compromised vision or blindness at birth. We found that treatment

of the retinas of these animals with a lentivirus carrying a normal

copy of the GC1 gene restored function to the infected

photoreceptor cells, as evidenced by measureable electroretino-

grams and visual behaviors including the optokinetic nystagmus

(OKN) reflex [15]. The benefits of this therapy, which were clearly

detectable in young animals, slowed but did not halt photoreceptor

degeneration. We concluded from these results that corrective

GC1 gene therapy is sufficient to restore function to photorecep-

tors lacking this enzyme and that, if we could prevent the treated

photoreceptor population from degenerating, then we may be able

to reach our current therapeutic goal of inducing lifelong sight in

the GUCY1*B model of LCA1.

Over the past few years, we have been working to develop

lentiviral-based, gene delivery strategies that would allow us to carry

out meaningful studies of the effects of combination gene therapies

on GUCY1*B photoreceptor function and survival. Ideally, the

relative amounts of the proteins generated from these vectors should

be highly consistent among infected cells. Our studies thus far have

revealed that strategies involving delivery of either a mixture of two

lentiviruses [16] or of lentiviruses carrying bicistronic transgenes

constructed using a polio internal ribosome entry site (IRES) [15]

fail to meet our protein expression criterion. Retinas treated with

mixtures of two viruses contained very few infected cells that co-

expressed the proteins encoded by the viruses in the mixture, a

pattern that would be predicted if cells infected by one virus became

refractory to additional infection [17]. In retinas treated with viruses

carrying bicistronic IRES transgenes, the levels of protein produced

from the cistron downstream of the polio IRES were often

undetected in infected cells, a protein expression pattern that has

been observed by others [18,19]. We also examined the protein

expression characteristics of lenitiviral transgenes carrying two

internal promoters, each driving the expression of a single cistron

[16,20]. In general, both of the proteins encoded by the cistrons

were detected in infected cells, but the relative amounts of these

proteins among infected cells were highly variable.

In the present study, we sought to resolve the problems

encountered with these approaches by 1) using two identical

promoters in our dual-promoter lentivectors, 2) inserting an

additional WPRE element between cistrons in our dual-promoter

vectors, and 3) developing vectors carrying bicistronic transgenes

containing the pTV1 viral 2A-like cleavage sequence. Viral 2A-like

cleavage sequences, which were first identified in studies of the foot

and mouth disease virus [21], are short peptide sequences that,

when fused in frame between two cistrons, trigger co-translational

‘ribosomal skipping’, a process that produces equimolar quantities

of the proteins encoded by the transcript. Inclusion of viral 2A-like

cleavage sequences in viral transgenes has been shown to be an

efficient approach for obtaining multiple, functional proteins from a

single vector in vitro and in vivo [22–24]. Our results show that the

protein expression characteristics of the 2A-containing vectors are

superior to those obtained using the other approaches examined in

this study in terms of protein level and the reproducibility of the

protein expression pattern among infected cells. Importantly, we

also show that GC1, delivered to GUCY1*B photoreceptors in the

context of a 2A fusion peptide, is able to restore function to these

cells as evidenced by the appearance of OKN reflexes in the treated

animals. Based on these results, we conclude that 2A-like cleavage

peptides, while not a panacea for all gene therapies, can, with

proper optimization, be used to create bicistronic transgenes that

reliably express both of their encoded proteins. Additionally, these

peptides are small. For these reasons, they should prove to be useful

in the context of many of the viral vectors currently being used in

gene therapy applications.

Results

Design of Bicistronic Lentiviral Vectors
Three different bicistronic transgenes, each encoding GFP and

hemagglutinin (HA)-tagged mCherry (mCherH) fluorescent re-

porter proteins, were cloned into our pFIN lentivector backbone

[20]. The first bicistronic transgene carries two identical

internal EF1 promoters (pFIN-EF1-GFP-EF1-mCherH-WPRE,

Figure 1A), each driving expression of one of the fluorescent

proteins. This transgene was constructed with a promoter that is

ubiquitously expressed and exhibits relatively high activity. It has

been suggested that use of the same promoter in constructing dual-

promoter vectors could lead to inadvertent DNA recombination

during either viral packaging or processing of the viral RNA in the

infected cells [25]; however, we did not see evidence of these

problems when testing dual-promoter vectors carrying identical

photoreceptor-specific promoters [16]. Thus, we chose to examine

the performance of the EF1 dual-promoter transgene, a construct

that would be useful in applications requiring higher protein

expression levels. The second bicistronic transgene was construct-

ed by inserting a second Woodchuck hepatitis posttranscriptional

regulatory element (WPRE) between the upstream cistron and the

second EF1 promoter of the dual EF1 promoter vector (pFIN-

EF1-GFP-WPRE-EF1-mCherH-WPRE, Figure 1B). This modifi-

cation has been shown to improve expression of dual-promoter

vectors carrying two identical promoters [26]. Finally, the third

bicistronic transgene was constructed using the well-characterized

porcine Teschovirus (pTV1) 2A-like cleavage peptide. This peptide

sequence produces two proteins from a single transcript by

inducing co-translational ‘‘ribosomal skipping’’ [27]. During the

‘‘cleavage’’ process, 18 of the 19 amino acids comprising the 2A

peptide, save the C-terminus proline, remain fused to the

upstream peptide. The C-terminus proline remains attached to

the N-terminus of the downstream peptide. This transgene was

created by fusing the cDNAs encoding GFP and mCherH in

frame with the pTV1(2A) sequence (pFIN-EF1-GFP-2A-mCherH-

WPRE, Figure 1C).

Expression of the Bicistronic Transgenes in Transiently
Transfected HEK 293FT Cell Cultures

In this series of experiments, we examined the expression

characteristics of the three bicistronic transgenes in transiently

Lentiviral Delivery of Proteins Using 2A Peptides
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transfected HEK 293FT cells by monitoring expression of GFP

and mCherH using both fluorescent microscopy and western

blot. Fluorescent imaging of live cells was used to determine if

GFP and mCherH could be detected in transfected cells and if

the relative amounts of these two proteins were uniform among

transfected cells. Comparisons of GFP (Figure 1D,H,L) and

mCherH (Figure 1E,I,M) expression in transfected cultures

indicated that the levels of GFP in cultured cells expressing the

EF1-GFP-EF1-mCherH transgene were significantly lower than

those expressing the other two transgenes while expression of

mCherH from all three transgenes appeared to be similar.

Examination of the merged GFP and mCherH images

(Figure 1F,J,N) revealed that expression of GFP and mCherH

was most uniform across cells in cultures expressing the EF1-

GFP-2A-mCherH transgene; nearly all of the transfected cells

appeared yellow (Figure 1N). In cultures expressing the EF1-

GFP-W-EF1-mCherH transgene, expression of GFP and

mCherH across cells was moderately uniform; transfected cells

were either green or yellow (Figure 1J). Expression of GFP and

mCherH was least uniform across cells in cultures expressing the

EF1-GFP-EF1-mCherH; in these cultures, transfected cells

ranged from green to red (Figure 1F).

Figure 1. Evaluation of bicistronic transgene expression in transiently transfected HEK 293FT cell cultures. (A–C) Diagrams of the
three bicistronic reporter transgenes analyzed in this study. The solid lines below each transgene indicate predicted mRNA transcripts. Abbreviations:
W - WPRE; H - hemagglutinin tag; EF1 – elongation factor 1 promoter; GFP – green fluorescent protein; mCher – cherry fluorescent protein; 2A -
porcine teschovirus (pTV1) 2A-like cleavage peptide. (D–G), (H–K) and (L–O) are representative images taken of HEK 293FT cell cultures that were
transiently transfected with the lentivector plasmids carrying the indicated transgenes 48 h post-transfection. Image exposure times: GFP images in
panels D,H and L = 17 ms; mCherH images in panels E, I and M = 4 ms; Hoechst images in panels G, K and O = 5 ms. Scale bar in panel D = 100 mm.
(P–S) Western blot analyses of the expression of the GFP and mCherH reporter proteins encoded by the bicistronic transgenes. Three replicate HEK
293FT cultures were analyzed for each transgene and one culture was analyzed for each of the control vectors, EF1-mCherH (CH) and EF1-GFP (GFP).
Four identical western blots containing the protein samples were generated and each was probed with an antibody recognizing either
hemagglutinin (P), GFP (Q), 2A (R), or GAPDH (S). GAPDH was used as a protein loading control. (T) Densitometric analyses of GFP and mCherH
protein levels produced from each transgene Significant differences (*p,.05) between the normalized mean GFP and mCherH values are indicated
with brackets. (U) The cleavage efficiency of GFP-2A-mCherH was estimated by expressing the intensities of the cleaved GFP-2A (Q) or mCherH (P)
protein bands as a percentage of total GFP or mCherH immunoreactivity (intensity of the cleaved plus uncleaved protein bands), respectively. Each
estimate is the mean6SD of three samples.
doi:10.1371/journal.pone.0020553.g001
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The expression of each transgene was also analyzed using

western blot (Figure 1P-S). Blots were prepared in quadruplicate

and were probed with antibodies against either the HA tag

(Figure 1P), GFP (Figure 1Q), 2A (Figure 1R) or glyceraldehydes

3-phosphate dehydrogenase (GAPDH) (Figure 1S). Examination

of the blots probed with either the HA tag or the GFP antibody

showed that each antibody specifically recognized either mCherH

or GFP, respectively, in protein samples prepared from cultures

expressing either the EF1-GFP-EF1-mCherH or the EF1-GFP-W-

EF1-mCherH transgene. In samples isolated from cultures

expressing the EF1-GFP-2A-mCherH transgene, these antibodies

detected both cleaved and uncleaved GFP-2A-mCherH. Cleaved

GFP-2A was also readily detected using the 2A antibody, which

has been reported to bind to 2A in the context of the cleaved

peptide but not in the context of uncleaved peptide [28]. The

relative amounts of GFP and mCherH produced from each

transgene were determined using a scanning densitometer and the

GFP and mCherH values were normalized to the highest value

obtained for each protein, respectively (Figure 1T). Uncleaved

GFP-2A-mCherH was not included in the determination of the

amount of GFP and mCherH produced in cells expressing the

EF1-GFP-2A-mCherH transgene. An analyses of variance re-

vealed significant differences between transgenes in terms of GFP

expression (F(2,6) = 8.92, p = 0.016); post hoc analyses using

Tukey tests showed that the relative amount of GFP produced by

the EF1-GFP-EF1-mCherH transgene (M = 0.53, SD = 0.17) was

significantly lower than that produced from either the EF1-GFP-

WPRE-EF1-mCherH (M = 0.94, SD = 0.10) or the EF1-GFP-2A-

mCherH (M = 0.88, SD = 0.11) transgene. No differences were

observed in relative mCherH expression between transgenes

(F(2,6) = 3.515, p = 0.098). Estimates of the cleavage efficiency of

GFP-2A-mCherH were calculated by expressing the intensities of

the cleaved mCherH (Figure 1P) or GFP-2A (Figure 1Q) protein

bands as a percentage of total HA-tag or GFP immunoreactivity,

respectively. The estimates produced from these calculations were

69%64 (GFP, M6SD; n = 3) and 77%63 (HA, M6SD; n = 3).

Thus, conservatively the cleavage efficiency of the GFP-2A-

mCherH protein expressed in the HEK 293FT cells was

approximately 73% (Figure 1U).

Expression of the Packaged Viral Bicistronic Transgenes
in 293FT Cell Cultures

This series of experiments was carried out to determine if viral

delivery of the bicistronic transgenes alters the expression

characteristics of the transgenes. HEK 293FT cell cultures were

infected with lentiviruses that carried one of the three bicistronic

transgenes and expression of GFP and mCherH were analyzed

using fluorescent microscopy and western blot. Comparisons of

cultures infected with these viruses showed that the levels of GFP

produced from the EF1-GFP-EF1-mCherH (Figure 2A) and EF1-

GFP-W-EF1-mCherH (Figure 2E) transgenes were significantly

lower than those produced from the EF1-GFP-2A-mCherH

Figure 2. Expression characteristics of lentiviruses carrying the bicistronic transgenes in transduced HEK 293FT cells. (A–D), (E–H)
and (I–L) are representative images of HEK 293FT cell cultures transduced with the indicated lentiviruses 96 h post-transduction. Image exposure
times: GFP images in panels A, E, and I = 500 ms; mCher images in panels B, F, and J = 180 ms; Hoechst images in panels D, H, and L = 5 ms. Scale bar
in A = 100 mm. (M–P) Western blot analyses of the expression of the GFP and mCherH reporter proteins in HEK293FT cells transduced with the
lentiviruses. Three replicate HEK 293FT cultures were analyzed for each virus and one culture was analyzed for each of the control viruses, EF1-
mCherH (CH) and EF1-GFP (GFP). Four identical western blots containing the protein samples were generated and each was probed with an antibody
recognizing either hemagglutinin (M), GFP (N), 2A (O), or GAPDH (P). GAPDH was used as a protein loading control. (Q) Densitometric analyses of GFP
and mCherH protein levels produced from each transgene. Normalized mean GFP and mCherH values were compared using paired T-tests and
significant differences between samples (**p,.01, ***p,.001) are indicated with brackets. (R) The cleavage efficiency of GFP-2A-mCherH was
estimated by expressing the intensities of the cleaved GFP-2A (N) or mCherH (M) protein bands as a percentage of total GFP or mCherH
immunoreactivity (intensity of the cleaved plus uncleaved protein bands), respectively. Each estimate is the mean6SD of three samples.
doi:10.1371/journal.pone.0020553.g002
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transgene (Figure 2I). Relative levels of mCherH produced from

all three transgenes were similar (Figure 2B, F, J). Merged GFP

and mCherH images (Figure 2C, G, K) were examined to

determine if the levels of expression of these proteins was uniform

across infected cells. Cells infected with pFIN-EF1-GFP-EF1-

mCherH-WPRE virus contained high levels of mCherH and very

little to no detectable GFP (Figure 2C), while those infected with

pFIN-EF1-GFP-2A-mCherH-WPRE virus contained high levels

of both proteins. The few cells infected with pFIN-EF1-GFP-EF1-

mCherH-WPRE virus that did contain trace amounts of GFP did

not appear to express mCherH. Expression of GFP and mCherH

was the least uniform in cultures transduced with pFIN-EF1-GFP-

W-EF1-mCherH-WPRE virus (Figure 2G). The majority of the

cells in these cultures expressed either GFP or mCherH; however,

a subpopulation of the cells was present that co-expressed GFP

and mCherH as evidenced by their yellow hue in the merged

image (Figure 2G, arrows).

The expression of each transgene was also analyzed using

western blot (Figure 2M–P). Blots were prepared in quadruplicate

and were probed with antibodies against either the HA tag

(Figure 2M), GFP (Figure 2N), 2A (Figure 2O) or GAPDH

(Figure 2P). The relative amounts of GFP and mCherH produced

from each transgene were determined using a scanning densitom-

eter and the values were normalized to the highest value obtained

for each protein, respectively (Figure 2Q). Uncleaved GFP-2A-

mCherH was not included in the determination of the amount of

GFP and mCherH produced in cells expressing the EF1-GFP-2A-

mCherH transgene. An analyses of variance revealed significant

differences between transgenes in terms of the amount of GFP

expressed (F(2,6) = 315.13, p,0.001); post hoc analyses using

Tukey tests showed that the level of GFP produced by EF1-GFP-

W-EF1-mCherH (M = 0.25, SD = 0.05) was significantly lower

than that produced by EF1-GFP-2A-mCherH (M = 0.95,

SD = 0.06). The levels of GFP produced by EF1-GFP-EF1-

mCherH were not detectable on western blots but very low levels

of this protein could be detected in a small minority of the

transduced cultured cells (Figure 2A). No differences were

observed in the levels of mCherH produced by the three

transgenes (F(2,6) = 4.22, p = 0.072). Estimates of the cleavage

efficiency of GFP-2A-mCherH were calculated by expressing the

intensities of the cleaved mCherH (Figure 2M) or GFP-2A

(Figure 2N) protein bands as a percentage of total HA or GFP

immunoreactivity, respectively. The estimates produced from

these calculations were 96%60.6 (GFP, M6SD; n = 3) and

62%62.3 (HA, M6SD; n = 3) (Figure 2R).

Expression of the Packaged Viral Bicistronic Transgenes
in Chicken Retina

In this series of experiments, the three bicistronic lentiviruses

were injected into chicken embryos to determine if their expression

characteristics in neural retina were similar to those observed in

HEK 293FT cells. Retinal whole mounts and cryosections were

examined using fluorescent microscopy to determine if GFP and

mCherH could be detected in infected cells and if the relative

amounts of these proteins were uniform among these cells.

Examination of whole mounts (Figure 3A–C) and sections

(Figure 3D–F) of retinas transduced with pFIN-EF1-GFP-EF1-

mCher-WPRE revealed that the relative expression levels of

mCherH were much higher than GFP in these retinas; the few

cells that expressed detectable levels of GFP did not appear to be

co-expressing mCher. Both reporter proteins were detected in

retinas transduced with pFIN-EF1-GFP-WPRE-EF1-mCher-

WPRE; however, the vast majority of the cells expressing this

bicistronic transgene were positive for either GFP or mCher

(Figure 3G–I). We were able to identify scattered groups of cells in

retinal sections that expressed both reporter proteins, but they

were rare and the relative amounts of each protein in these cells

were highly variable (Figure 3J–L). Finally, examination of retinas

transduced with the pFIN-EF1-GFP-2A-mCher-WPRE virus

showed that both of the reporter proteins encoded by this virus

were robustly expressed in these retinas (Figure 3M–R) and that

the relative amounts of these proteins in infected cells were similar.

Together, these results indicate that the expression characteristics

of these three viruses are similar in HEK 293FT and chicken

neural retinal cells.

The variability in the percent of the total area of the retinas of

embryos transduced by the bicistronic viruses precluded the use of

western blot analyses of homogenates of these retinas to determine

the relative expression levels of GFP and mCherH generated from

each of the viral transgenes. However, we were able to examine

the cleavage efficiency of the GFP-2A-mCherH peptide within

individual retinas transduced with pFIN-EF1a-GFP-2A-mCherH-

WPRE virus using western blot (Figure 3S–V). Blots containing

proteins isolated from the retinas of four chickens that had been

treated with pFIN-EF1a-GFP-2A-mCherH-WPRE virus and one

untreated control retina (WT) were probed with antibodies

recognizing either the HA tag (Figure 3S), GFP (Figure 3T), 2A

(Figure 3U) or GAPDH (Figure 3V). Examination of the HA tag

and GFP staining patterns suggested that cleavage of the GFP-2A-

mCherH peptides in infected retinal cells was efficient, results that

were corroborated by the 2A staining pattern (Figure 3U).

Estimates of the cleavage efficiency of GFP-2A-mCherH were

calculated by expressing the intensities of the cleaved mCherH

(Figure 3S) or GFP-2A (Figure 3T) protein bands as a percentage

of total HA or GFP immunoreactivity, respectively (Figure 3W).

The estimates produced from these calculations were 99%60.4

(GFP, M6SD; n = 4) and 91%62.6 (HA, M6SD; n = 4). These

data show that our bicistronic transgene carrying a 2A cleavage

sequence can be properly transcribed and translated in retinal cells

in vivo.

Expression of 2A Bicistronic Transgenes Encoding
Guanylate Cyclase-1 in Transiently Transfected HEK
293FT Cell Cultures

Prompted by the excellent expression characteristics exhibited

by the 2A containing reporter lentiviruses in vitro and in vivo, we

constructed a therapeutic 2A vector encoding guanylate cyclase -1

(GC1) and examined its expression in transiently transfected HEK

293FT cells. The transgene we constructed encoded GFP, which

was used to identify transfected or transduced cells, and the gene

encoding GC1that was fused in frame to the 2A peptide

downstream of GFP (Figure 4A). GC1 is a transmembrane protein

that is normally trafficked to the photoreceptor outer segments

where it plays a critical role in recovery of these cells from light

stimulation [12]. We have previously shown that delivery of

bovine GC1 to the photoreceptors of the GUCY1*B chicken

model of LCA1 in the context of an IRES-containing lentiviral

transgene (pTYF-EF1-GC1-IRES-GFP) temporarily reversed

blindness in these animals [15]. In this experiment, we evaluated

the expression of EF1-GFP-2A-GC1 in transiently transfected

293FT cells using fluorescent microscopy and western blot.

Examination of HEK 293FT cell cultures transfected with

pFIN-EF1-GFP-2A-GC1-WPRE DNA (Figure 4B–I) revealed

that all transfected cells expressed GFP and GC1. In normal

photoreceptor cells, GC1 is localized to the membranes of the

outer segments. Thus, we expected that the GC1 produced from

the GFP-2A-GC1 peptide would localize to the membranes of the

transfected cells, which was found to be the case. Immunostained

Lentiviral Delivery of Proteins Using 2A Peptides
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GC1 was localized primarily to the cell membranes (Figure 4G,H)

while GFP filled the cell bodies (Figure 4F,H), locations consistent

with the expected subcellular trafficking of these proteins.

Western blot analyses of cells transfected with pFIN-EF1-GFP-

2A-GC1-WPRE showed that the cell lysates contained cleaved

GC1 (Figure 4J) and GFP-2A (Figure 4K,L). Uncleaved GFP-2A-

GC1 peptide was detected but only when the blots probed with the

GFP antibody were highly overexposed. Quantification of the

cleavage efficiency of the GFP-2A-GC1 peptide revealed that it

was 95.3%61.3 (GFP, M6SD; n = 3) (Figure 4N).

Evaluation of the Therapeutic Potential of
pFIN-EF1-GFP-2A-GC1-WPRE

In our final experiment, we set out to determine if the integrated

EF1-GFP-2A-GC1 transgene would produce sufficient levels of

GC1 to restore function to the photoreceptors of GUCY1*B

chickens. To be effective, the 2A fusion peptide expressed in

photoreceptors needed to be cleaved efficiently and the resulting

GC1 enzyme had to be properly trafficked to the outer segments of

the photoreceptors. Stage 8–10 GUCY1*B embryos were injected

with pFIN-EF1-GFP-2A-GC1-WPRE, hatched, and tested weekly

for the presence of the optokinetic visual response (OKN) until

they reached 5 weeks-of-age. The OKN responses of 7 treated

animals were evaluated once a week for five weeks by holding the

animals in the center of rotating platform that supported high

contrast, visual stimuli consisting of vertical square wave gratings

with spatial frequencies of 0.065 or 0.26 cycles?degree21 that

corresponded to bar widths of 5 or 1.25 cm, respectively

(Figure 5A). These responses were compared to those obtained

from wild-type and untreated GUCY1*B animals. OKN responses

are driven primarily by the peripheral regions of the retina

[29,30], and unlike mammalian OKN responses, these responses

in chickens are monocularly driven, the responses to clock-wise

and counter-clockwise rotation of the visual stimuli being driven

by the left and right eyes, respectively [31]. The OKN responses of

the wild-type chickens were robust, characterized by well-defined

lateral head movements synchronized with the speed of rotation of

the visual stimulus (Video S1), while the untreated GUCY1*B

Figure 3. Expression characteristics of bicistronic lentiviruses in chicken retina. Lentiviruses were injected and retinal whole mounts and
sections were imaged as described in the methods. (A–C) Whole mount and (D–F) representative section of a retina treated with pFIN-EF1-GFP-EF1-
mCher-WPRE virus show robust expression of the downstream reporter (mCher). The upstream reporter (GFP) was either weakly expressed (A) or not
detected (D). (G–I) Whole mount and (J–L) representative section of a retina treated with pFIN-EF1-GFP-WPRE-EF1-mCher-WPRE virus revealed that
both reporter proteins were expressed in the treated retina but that only one of the reporter proteins could be detected in the majority of cells
expressing the transgene. (M-O) Whole mount and (P–R) representative section of a retina treated with pFIN-EF1-GFP-2A-mCher-WPRE show robust
co-expression of both reporter proteins in transduced cells. Scale bars in A and D = 50 mm. (S–V) Western blot analyses of the retinas of four chickens
treated with pFIN-EF1-GFP-2A-mCher(H)-WPRE virus. Four replicate blots containing proteins extracted from the retinas were probed with antibodies
to either hemagglutinin (S), GFP (T), 2A (U), or GAPDH (V). (W) The cleavage efficiency of GFP-2A-mCherH was estimated by expressing the intensities
of the cleaved GFP-2A (T) or mCherH (S) protein bands as a percentage of total GFP or mCherH immunoreactivity (intensity of the cleaved plus
uncleaved protein bands), respectively. Each estimate is the mean6SD of three samples.
doi:10.1371/journal.pone.0020553.g003
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chickens failed to respond to the stimuli (Video S2). All of the

treated embryos that hatched produced OKN responses

(Figure 5B; Video S3). A repeated measures ANOVA was used

to examine the effects of stimulus type on the magnitude of the

OKN responses over time. The results indicated that the response

magnitude significantly decreased over the course of the 5-week

test period (F(5,60) = 5.0; p = 0.0007), in the absence of a main

effect of stimulus type.

At the end of the 5-week testing period, we analyzed whole

mounts of treated animal’s retinas to obtain an estimate of the

efficiency of our viral treatment. Our viral delivery method leads

to infection of progenitor cells in the developing neural tube, some

of which generate the neural retina. Examples of the viral

transduction patterns produced in the retinas of our treated

animals are shown in Figure 5 (C,D). Unlike the transduction

pattern produced following subretinal delivery of viral vectors that

is characterized by one large, contiguous population of infected

cells, the transduction pattern produced following neural tube

delivery of viral vectors is characterized by numerous scattered

groups of infected cells that are distributed across the entire retina.

The estimates of the total area transduced by the virus in the

retinas shown in Figure 5 were 7% and 16%. These retinas

belonged to the animal in the treated group whose OKN responses

were assigned a rating of 3 throughout the entire 5-week test

Figure 4. Evaluation of the expression characteristics of the EF1-GFP-2A-GC1 transgene in transiently transfected HEK 293FT cells.
(A) Diagram of the EF1-GFP-2A-GC1 transgene. (B–E and F–I) Representative images of transiently transfected HEK 293FT cell cultures expressing
EF1-GFP-2A-GC1 imaged 48 h post-transfection. Scale bars shown in B and F equal 100 and 50 mm, respectively. (J–M) Western blot analyses of HEK
293FT cells transiently transfected with pFIN-EF1-GFP-2A-GC1-WPRE (n = 3) probed for GC1 (J), GFP (K), 2A (L), and GAPDH (M). Non-transfected HEK
293FT cells (NT), HEK 293FT cells transfected with pFIN-EF1-GC1-IRES-GFP (IRES), and HEK 293FT cells transfected with pFIN-EF1-GFP-WPRE served as
controls. GAPDH served as a loading control. (N) The cleavage efficiency of GFP-2A-GC1 was estimated by expressing the intensities of the cleaved
GFP-2A (K) protein bands as a percentage of total GFP immunoreactivity (intensity of the cleaved plus uncleaved protein bands). The estimate is the
mean6SD of three samples.
doi:10.1371/journal.pone.0020553.g004
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period. The estimated total area transduced in the retinas of

animals whose OKN responses declined over the test period

ranged from 3–7%. The strength and stability of these responses

over time were very similar to those that we observed in animals

treated with our IRES GC1 bicistronic vectors [15]. Overall, the

results of the current study are encouraging because they show

that the GC1 encoded by the 2A transgene is functional and that

visual responses can be generated by a relatively small number of

functioning photoreceptor cells. Importantly, they also suggest that

relatively small increases in the total number of transduced

photoreceptors in treated retinas could significantly increase the

strength and stability of visual responses in treated animals.

Discussion

The results of this study clearly show that it is possible to obtain

consistent expression of two proteins from viral transgenes

consisting of two cistrons joined in frame by the pTV1 viral 2A-

like cleavage sequence. Importantly, the results of our study

establish the therapeutic potential of this specific vector design. We

found that we were able to reverse blindness in GUCY1*B

chickens by treating them with pFIN-EF1-GFP-2A-GC1-WPRE

virus, a finding that indicates that the GC1 encoded by this

transgene was properly processed and was expressed in sufficient

amounts in photoreceptor cells expressing the transgene to support

the function of these cells. Together, these results highlight the

potential of this vector design to serve as a platform for

development of combination therapies designed to enhance or

prolong the benefits of corrective gene therapies.

The cleavage characteristics and small sizes of 2A-like cleavage

sequences make them particularly useful in developing multi-

cistronic viral vectors [22]. Since the proteins encoded by

transgenes containing 2A sequences are translated from one

transcript, co-translational cleavage of these polypeptides is

expected to produce equimolar quantities of the proteins [32–

34]; however, proper cleavage and post-translational processing of

the proteins does not always occur as expected. The cleavage

efficiency of the polypeptide can be influenced by the nucleotide

sequences flanking 2A and the order of the cistrons in the

transgene relative to the 2A sequence [23,28,35–37]. The order of

the cistrons relative to the 2A sequence can also alter post-

translational processing and intracellular trafficking of the proteins

encoded by the cistrons [28,36,37]. The small size of the 2A

sequence is a second advantage of this technology, a feature that is

particularly attractive when constructing multicistronic transgenes

using viral vectors with limited cargo capacity.

Two counter indications to using 2A peptides are poor cleavage

efficiency of the translated polypeptide and disruption of function

of the upstream protein by the residual 2A peptide that remains

fused to its C-terminus. Poor cleavage efficiency could lead to

accumulation of significant amounts of uncleaved protein and the

formation of toxic protein aggregates in cells expressing the

transgene. Strategies that have been reported to significantly

improve cleavage efficiency of 2A polypeptides include insertion of

Figure 5. Analyses of the optokinetic (OKN) reflex responses of GUCY1*B chickens treated with pFIN-EF1-GFP-2A-GC1-WPRE virus.
(A) Frame of OKN video showing the optokinetic testing apparatus. Videos of the OKN responses obtained from wild-type (Video S1), untreated
GUCY1*B (Video S2) and treated GUCY1*B chickens (Video S3) are provided as supplemental data. (B) Summary of OKN responses obtained from
seven treated GUCY1*B animals. The plotted values are the means6SEM of the average OKN responses obtained in response to either the large bar
(LB) or small bar (SB) stimuli. (C, D) Whole mounts of the left (C) and right (D) retinas of a 5-week-old animal that had been treated with the virus. The
percentage of the total retinal area infected by the virus was estimated using ImageJ software. The orientation of the retinas (D-dorsal; T-temporal) is
indicated in panel C.
doi:10.1371/journal.pone.0020553.g005

Lentiviral Delivery of Proteins Using 2A Peptides

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e20553



either a furin protease cleavage site or a furin site plus an amino

acid spacer upstream of the GSG linker- 2A sequence [38,39]. To

determine if addition of a furin site to our EF1-GFP-2A-mCher

transgene could increase cleavage of the 2A polypeptide, we

constructed and compared the cleavage efficiency of GFP-furin-

2A-mCher to that of GFP-2A-mCher. EF1-GFP-Furin-2A-mCher

was constructed by inserting nucleotides encoding furin binding

site (RAKR) upstream of the GSG-2A sequence. Western blot

analyses of HEK 293FT cells expressing these transgenes revealed

that addition of the furin site interfered with 2A cleavage (Figure

S1). Very little of the polypeptide translated from the EF1-GFP-

Furin-2A-mChe transgene was successfully cleaved compared to

that translated from the EF1-GFP-2A-mCher transgene. It is

possible that inclusion of an additional amino acid spacer between

the furin site and the GSG linker-2A site would improve cleavage

efficiency of our transgenes. We have not examined this possibility.

Addition of a furin cleavage site upstream of the 2A peptide, the

cleavage of which would effectively remove the 2A peptide

sequence from the C-terminus of the protein encoded by the

upstream cistron, has also been reported to improve the function

of this protein [38]. To minimize disruption of function of the

upstream protein we routinely place cistrons that encode proteins

amenable to C-terminus modifications upstream of the 2A peptide

sequence in our vectors. Our and other investigators experiences

with 2A sequences clearly indicate that it is important to examine

the performance of each 2A construct in the cellular context in

which they will be used.

In addition to the 2A transgenes examined in this study, we also

examined the expression characteristics of bicistronic transgenes

that were constructed using two independent EF1 promoters. Our

decision to construct and examine the expression characteristics of

the pFIN-EF1-GFP-EF1-mCher-WPRE vector in this study was

prompted by the results of a previous study in which we found that

the expression levels of two proteins encoded by dual-promoter

vectors carrying two identical copies of a single photoreceptor-

specific promoter, while not equal, were much higher than those

obtained from IRES-containing transgenes [16]. The results of our

analyses of the expression of pFIN-EF1-GFP-EF1-mCher-WPRE

lentivirus in transduced HEK 293FT cells (Figure 2A–D) and in

retinas (Figure 3A–F) were surprising because very little to no GFP

expression was detected in infected cells. In retina, the GFP that

was detected was not co-localized with mCher. Interestingly,

inclusion of an additional WPRE element immediately after the

upstream cistron (EF1-GFP-WPRE-EF1-mCher) did not signifi-

cantly improve expression of GFP in transduced cells (Figure 2E–

H) or retinas (Figure 3G–L). In fact, in our hands this

modification, which was previously reported to enhance expres-

sion of both cistrons in a dual-promoter lentivector carrying

identical hSynapsin promoters [26], produced a lentivirus that

expressed only one or the other cistron in the vast majority of the

infected cells. This unique protein expression pattern appeared to

be observed only when the vectors were delivered in viral form.

Both reporter proteins were co-expressed in HEK 293FT cells

transfected with either plasmid DNA. One possible explanation for

this observation is suggested by the expression characteristics of

two of our dual-promoter lentivectors. When the EF1 promoters

(1446 bp) used in this study to construct the EF1-GFP-EF1-

mCher-WPRE transgene are replaced with either two rhodopsin

kinase (297 bp) or interphotoreceptor retinol binding protein

(262 bp) promoters, the reporter proteins are co-expressed in the

retinal photoreceptors infected by the lentiviruses [16]. While

untested, it is possible that the size of the EF1 promoter, which is

approximately 5 times larger than either of the photoreceptor

promoters, increases the probability of deletion of one of the

cistrons during either viral packaging or reverse transcription of

the viral RNA genome in infected cells prior to integration via

homologous recombination [40–42]. Although the results obtained

from our EF1 dual-promoter lentiviruses were undesired in our

experiments, exclusive expression of either cistron of a bicistronic

vector in transduced cells may be useful in some experimental or

therapeutic applications.

One of the major focuses of our research program is to develop

therapies for human LCA1. The animal model that we use in our

studies is the GUCY1*B chicken, which is currently the only

animal model for this disease that models both the genotype and

phenotype of human LCA1. We have previously demonstrated

that GC1 corrective gene therapy is sufficient to restore function to

photoreceptor cells and reverse blindness in these animals [15], a

finding corroborated by the results of this study. The primary

difference between the lentiviral vectors used in these two studies

was in the design of the bicistronic GC1 transgenes they carried.

The bicistronic transgene used in our previous study contained an

IRES element. In the current study, this element was replaced

with a 2A-like cleavage sequence. Both bicistronic vectors

produced sufficient amounts of GC1 to restore function to

GUCY1*B photoreceptors and visual behavior to treated animals,

but only the 2A transgene consistently expressed both of the

encoded proteins. Importantly, our results indicate that the proline

residue retained on the N-terminus of GC1 following co-

translational ‘cleavage’ of the 2A peptide does not negatively

affect the activity of the GC1 protein encoded by the GFP-2A-

GC1 transgene.

To date, we have not yet achieved permanent vision restoration

in GUCY1*B animals using corrective gene therapy alone, a

problem that plagues many investigators working to design

therapies to treat aggressive inherited photoreceptor diseases

caused by mutations in genes expressed in these cells [3,43,44]. In

the current study, we noted that higher percentages of retinal

transduction with our GC1 vector were positively correlated with

the strength of the visual responses exhibited by the animal and the

duration of the benefits of the treatment. Our successes using

corrective GC1 therapy alone suggest that it might be possible to

achieve life-long restoration of vision in our model system by

simply increasing the number of photoreceptors expressing the

GC1 transgene. The fraction of the photoreceptor cell population

that must be treated to achieve this outcome is unknown, but it is

likely that the spatial relationships of the treated cells to other

treated and untreated cells in the retina will have an impact on this

value. We are interested in determining this value since it would

provide a useful benchmark for comparing the effectiveness of

different treatment strategies. A second approach that may lead to

life-long vision restoration in our model would be to combine

delivery of GC1 to the photoreceptors with delivery of additional

therapeutic molecules (e.g. neurotrophic or anti-apoptotic factors)

to enhance survival of the photoreceptors. The results of this study

show that we will be able to successfully deliver combination

therapies to photoreceptors and other retinal cells using bicistronic

transgenes carrying 2A-like cleavage sequences. Efforts are

currently underway to determine if combination therapies can

improve treatment outcomes in our model of LCA1.

In summary, we examined the expression of three different

bicistronic lentivectors in HEK 293FT cells and in neural retina

and found that the lentivectors carrying transgenes containing 2A-

like cleavage peptides were the only ones that reliably expressed

both of the proteins encoded by the transgene and expressed them

in a highly reproducible manner among infected cells. Since we

were able to restore vision in GUCY1*B chickens using the 2A

vector encoding GC1, our laboratory has now begun to develop
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2A vectors that will permit us to determine if combining GC1

delivery with delivery of additional therapeutic proteins can

permanently restore vision to these animals. While we use

lentivectors in our studies, 2A-like cleavage peptides should prove

valuable in any therapeutic or biotechnological application

requiring co-expression of multiple proteins in targeted cells.

Methods

Ethics Statement
This study was carried out in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. All

animal protocols were approved by the University of Florida

Institutional Animal Care and Use Committee (Approval

201004563) and adhered to the policies outlined in the Guide

for the Care and Use of Laboratory Animals.

Construction of Vectors
pFIN-EF1-GFP-EF1-mCherH-WPRE. pFIN-WPRE [16] was

digested with NheI. GFP was amplified using PCR and a sense

primer containing NheI and BsiWI and an antisense primer

containing MluI and NheI. The PCR product was ligated into

pFIN-WPRE at the NheI site to create pFIN-GFP-WPRE. This

vector was then linearized using NotI and the EF1 promoter,

which was amplified using sense and antisense primers containing

NotI, was ligated into pFIN-GFP-WPRE to create pFIN-EF1-

GFP-WPRE. A second EF1 promoter was amplified using a sense

primer containing BsiWI and an antisense primer containing

PacI and MluI sites and was ligated into pFIN-EF1-GFP-WPRE

using BsiWI and MluI. Finally, hemagglutinin (HA)-tagged

mCherry (mCherH) was created using PCR primers containing

PacI sites and was ligated into the linearized pFIN-EF1a-GFP-

EF1-WPRE to create the final construct. The antisense primer

included the HA tag that was fused in frame to mCher

immediately upstream of the stop codon. It was necessary to

tag mCher with an epitope to which antibodies exist since we and

others [45] have found that the antibodies that are currently

available for mCher fail to detect this protein on western blots.

pFIN-EF1-GFP-WPRE-EF1-mCherH-WPRE. pFIN-EF1-GFP-

EF1-mCherH-WPRE was linearized using BsiWI. WPRE was

amplified using sense and antisense primers containing BsiWI

sites and WPRE was ligated into the linearized backbone to

create pFIN-EF1-GFP-WPRE-EF1-mCherH-WPRE.

pFIN-EF1-GFP-2A-mCherH-WPRE. pFIN-EF1-GFP-WPRE

[16] was digested with NheI to remove GFP. GFP-2A-mCherH

was created using a three-step PCR strategy described by

Symczak et al [46] that included the addition of a GSG linker

sequence upstream of the PTV1 2A peptide sequence. The final

set of primers used to amplify GFP-2A-mCherH contained NheI

sites that permitted it to be ligated into the NheI site in the pFIN-

EF1a-WPRE backbone to create the final vector.

pFIN-EF1-GFP-Furin-2A-mCher-WPRE. This vector was

created using the same strategy as that used to construct pFIN-

EF1-GFP-2A-mCherH-WPRE except that the primers used to

amplify GFP included sequence encoding the furin cleavage site

(RAKR) that was inserted in frame just upstream of the GSG

linker.

pFIN-EF1-GFP-2A-GC1-WPRE. The cDNA encoding

bovine GC1 was removed from pBSII SK+-GC1 [15] using

SpeI and KpnI and was ligated into our pFIN-WPRE backbone

that had been digested with SpeI and KpnI. EF1 was amplified

using sense and antisense primers containing NotI sites and was

ligated into the NotI site in pFIN-GC1-WPRE. The resulting

vector, pFIN-EF1-GC1-WPRE, was then digested with NheI and

StuI, the StuI site being located approximately 700bp downstream

from the start codon of the GC1 open reading frame. GFP-2A-

GC1 (5’ 700 bp) was amplified using the three-step PCR method.

The final sense and antisense primers used to amplify the GFP-2A-

GC1 (5’ 700 bp) fragment contained NheI and StuI sites,

respectively. GFP-2A-GC1 was then ligated into pFIN-EF1-

GC1-WPRE to create pFIN-EF1-GFP-2A-GC1-WPRE.

Lentiviral Packaging
The lentiviral vectors were packaged into lentivirus pseudotyped

using vesicular stomatitis virus G (VSV-G) glycoprotein using a

three plasmid packaging system as previously described [20]. Viral

titers were estimated using a Lenti-X qRT-PCR kit (Chemicon,

Billerica, MA) and typically averaged 261012 viral genomes per

ml.

Cell Culture and In Vitro Transfection and Transduction
HEK 293FT cells were grown and maintained in Dulbecco’s

Modified Eagle high glucose media containing 4.5 mg/ml D-

glucose, L-glutamine and 0.11 mg/ml sodium pyruvate (Invitro-

gen, Carlsbad, CA) to which was added 10% fetal calf serum,

50 U/ml penicillin G, 50 mg/ml streptomycin, and 500 mg/ml

geneticin. The cells were transiently transfected with plasmid DNA

using Superfect (Qiagen, Valencia, CA) according to the

manufacturer’s instructions. In brief, 200,000 cells were seeded

per well of gelatin-coated 6 well plates 24 h prior to transfection

and were transfected with a mixture of 2.0 mg of DNA and 10 ml

of Superfect per well. The transfected cells were allowed to

proliferate for 48 h. To analyze the performance of the vectors

when delivered as viral particles, HEK 293FT cells were plated as

described above and were exposed to approximately 26109 viral

particles for 72 h prior to analysis. Transfected or transduced cells

were either harvested for Western blot analyses in SDS sample

buffer supplemented with protease inhibitor cocktail (Roche,

Indianapolis, IN) or were examined directly using a Zeiss

AxioCam MRm digital camera system (Carl Zeiss Microimaging,

Inc.,Thornwood, NY). GFP was detected using a narrow-band

GFP filter set 41020 (Chroma Technology Corp, Bellows Falls,

VT) and mCher was detected using a Chroma custom filter set

that consisted of an exciter ET572/35, an emitter ET632/60, and

a beamsplitter (Chroma Technology Corp, Bellows Falls, VT). For

comparison purposes the exposure times used to photograph each

reporter were kept constant between constructs. Hoechst (Molec-

ular Probes Inc., Eugene, OR) was added to live cells for 3 min

before analysis to visualize nuclei.

Viral Injections of Chicken Embryos
All eggs used in this study were obtained from our wild-type

Rhode Island Red and our GUCY1*B breeding colonies that we

maintain at the University of Florida. Lentiviruses were injected

into chicken embryos (stage 8–10) on embryonic day 2 (E2) as

previously described [15]. Approximately 345 nl of virus was

injected into the anterior region of the developing embryonic

neural tube. The treated eggs were then sealed and incubated to

E20 at which time the embryos were either sacrificed and the

retinas were harvested for analyses or were hatched using our

previously described protocol [15].

Behavioral Analyses
The optokinetic nystagmus (OKN) responses, which are

reflexive visual responses driven primarily by visual stimuli

processed by the peripheral regions of the retina, were evaluated
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once a week for each treated chicken using previously published

methods [15]. Two high contrast, vertical square wave grating

stimuli with spatial frequencies of 0.065 or 0.26 cycles?degree21

(bar widths of 5 cm and 1.25 cm, respectively) were used to elicit

the responses. The behaviors were recorded using a digital camera

(Canon Vixia HF20 HD video camera; http://www.usa.canon.

com). The recorded behaviors were analyzed using a zero-three

point scoring system: zero, no OKN response; one, inconsistent or

unidirectional responses to the lower spatial frequency grating;

two, consistent bidirectional responses to the lower spatial

frequency grating; three, consistent bidirectional responses to the

higher spatial frequency grating. The scores of the OKN responses

for the right and left eyes of each animal obtained using the 5 or

1.25 cm bar stimuli were averaged to obtain the OKN response

score for each stimulus on each test day.

Retinal Whole-Mounts and Immunohistochemistry
Retinal whole mounts and immunohistochemistry were carried

out as previously described [20]. The GFP and mCher reporter

proteins were detected using either native fluorescence or

immunohistochemistry. GFP and mCher native fluorescence was

detected in retinal whole mounts and sections using the

appropriate fluorescence filters and documented using a Zeiss

AxioCam MRm digital camera. For immunohistochemistry,

retinal whole mounts or cryosections (10 mm) were probed with

a polyclonal rabbit anti-GFP antibody (1:2000, overnight, kindly

provided by W. Clay Smith, University of Florida, Gainesville, FL)

and counterstained with 49,6-diamidino-2-phenylindole (DAPI)

where indicated. The primary antibody was detected using Alexa

Fluor 488 (1:500, Invitrogen). Zeiss filter set 02 was used to

visualize DAPI-stained cell nuclei. To visualize GFP expression in

retinal whole-mounts, retinas were incubated with a biotinylated,

anti-rabbit secondary antibody and were processed using a

Vectastain ABC kit and a 3,39-diaminobenzidine (DAB) substrate

kit for peroxidase (Vector laboratories, Inc., Burlingame, CA). The

percent transduction of the retinal whole mounts was determined

using the analyze particles feature of ImageJ version 1.44 h.

Western Blot
Western blot analyses of the proteins expressed in transfected or

transduced HEK 293FT cells and in transduced retinas were

performed as previously described [47]. In brief, protein samples

(1 mg of total transfected cell lysate, 15 mg of total transduced cell

lysate, or 30 mg retina lysate) were separated on precast, gradient

4–12% polyacrylamide gels and transferred to PVDF membranes

using an i-Blot transfer apparatus according to the manufacturer’s

instructions (Invitrogen, Carlsbad, CA). The blots were prepared

in quadruplicate permitting each blot to be probed with a single

antibody. Antibodies recognizing GFP, 2A, hemagglutinin, GC1,

or GAPDH were used to probe the blots. After blocking the

membranes in 5% milk/Tris Buffered Saline (TBS) for 1 h, the

blots were incubated with primary antibody overnight at 4uC with

gentle shaking. After three 10 minute washes in TBS, blots were

incubated in secondary antibody diluted 1:5000 in 5% milk/TBS

for two hours at room temperature. The secondary antibodies

used in this study were anti-chicken (GeneTex, Irvine, CA), anti-

rabbit and anti-mouse (Cell Signaling Technology, Inc., Danvers,

MA), and anti-rat (Sigma-Aldrich, St. Louis, MO). The blots were

then washed and signals were visualized with ECL (Amersham,

UK). Films were scanned using a GS-800 calibrated densitometer

(BioRad, Hercules, CA) and the signals were quantified using

Scion Image software (Scion Corp., Frederick, MD). For each

bicistronic transgene, the densities of the mCherH and GFP-2A

protein bands detected in the samples were determined and then

normalized to the highest mCherH or GFP-2A sample value,

respectively, which was assigned a value of 1.0. The relative levels

of GFP-2A and mCherH produced by the transgenes were

compared using analyses of variance and Tukey post hoc tests

when appropriate (SigmaStat v2.03, Aspire Software Internation-

al, Ashburn, VA). Graphs were generated using GraphPad Prism

5.0 (GraphPad Software, Inc., La Jolla, CA).

Primary Antibodies
The primary antibodies used in the western blot experiments

were chicken anti-GFP (1:3000, Abcam, Cambridge, MA,

Western blot analysis), rabbit anti-2A (1:2000, Millipore, Billerica,

MA), rabbit anti-GC1 (1:500, kind gift from Dr. A. Yamazaki), rat

anti-hemagglutinin, High Affinity (1:5000, Roche, Indianapolis,

IN), and mouse anti-GAPDH (1:5000, Encor, Gainesville, FL).

Rabbit anti-GFP (1:2000, kind gift from Dr. W. Clay Smith) was

used to stain retinal whole mounts.

Supporting Information

Figure S1 Cleavage of GFP-2A-mCher and GFP-furin-2A-

mCher polypeptides in transfected HEK 293FT cells. (A, B)
Diagrams of the EF1-GFP-2A-mCher and EF1-GFP-furin (F)-2A-

mCher transgenes. (C) Western blot showing cleavage of EF1-

GFP-2A-mCher (-F) and EF1-GFP-F-2A-mCher (+F) transgenes.

The blot was probed with an antibody against GFP that

recognized both the cleaved and uncleaved polypeptides. The

amount of total protein loaded per lane was either 20 or 50 mg.

(TIF)

Video S1 Optokinetic behavior of 8-day-old wild-type chicken.

The responses shown were elicited by a high-contrast vertical

square wave grating with a spatial frequency of 0.26 cycles?de-

gree21 (bar width 1.25 cm). Reflexive head movements charac-

teristic of the optokinetic response in birds were observed when the

stimulus was rotated either clockwise or counter clockwise. No

optokinetic responses were elicited by the white control stimulus

(MP4)

Video S2 Optokinetic behavior of 8-day-old untreated GU-

CY1*B chicken. No responses were elicited by either of the high-

contrast vertical square wave grating stimuli. The stimuli used in

this particular test were a high-contrast vertical square wave

grating with a spatial frequency of 0.26 cycles?degree21 (bar width

1.25 cm) and a solid white stimulus.

(MP4)

Video S3 Optokinetic behavior of 8-day-old GUCY1*B chicken

that had been treated with pFIN-EF1-GFP-2A-GC1-WPRE

lentivirus on embryonic day 2. This treated animal, unlike

untreated animals, exhibited a robust, optokinetic response that

was assigned a score of 3.0. Reflex responses were elicited by the

high-contrast vertical square wave grating (bar width 1.25 cm)

when rotated in either clockwise or counter clockwise. No

responses were elicited by the solid white control stimulus.

(MP4)
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