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Abstract

Folate coenzymes function as one-carbon group carriers in intracellular metabolic pathways.
Folate-dependent reactions are compartmentalized within the cell and are catalyzed by two distinct
groups of enzymes, cytosolic and mitochondrial. Some folate enzymes are present in both
compartments and are likely the products of gene duplications. A well-characterized cytosolic
folate enzyme, FDH (10-formyltetrahydrofolate dehydrogenase, ALDH1L1), contains a domain
with significant sequence similarity to aldehyde dehydrogenases. This domain enables FDH to
catalyze the NADP*-dependent conversion of short-chain aldehydes to corresponding acids in
vitro. The aldehyde dehydrogenase-like reaction is the final step in the overall FDH mechanism,
by which a tetrahydrofolate-bound formyl group is oxidized to CO5 in an NADP*-dependent
fashion. We have recently cloned and characterized another folate enzyme containing an ALDH
domain, a mitochondrial FDH. Here the biological roles of the two enzymes, a comparison of the
respective genes, and some potential evolutionary implications are discussed. The phylogenic
analysis suggests that the vertebrate ALDH1L2 gene arose from a duplication event of the
ALDH1L1 gene prior to the emergence of osseous fish >500 millions years ago.
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1. Introduction

In the cell, folate coenzymes participate in numerous reactions of one-carbon transfer (Fig.
1, reviewed in [1-3]), including de novo nucleotide biosynthesis, conversions of several
amino acids and the incorporation of formate-derived carbon into folate pool. Another group
of biochemical reactions of folate involve interconversions of different forms of the
coenzyme, in which one-carbon groups remain folate-bound but alter their oxidation state.
Additional folate reactions, which do not involve the conversion of one-carbon groups, are:
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(i) the reduction of folic acid to dihydrofolate and then to tetrahydrofolate, and (ii) the
addition of glutamic acid residues to folate monoglutamate to form folate polyglutamates.
These reactions are required to produce the active form of the coenzyme (via dihydrofolate
reductase) and to retain folate within the cell (via folylpolyglutamate synthetase). Finally, a
reaction catalyzed by 10-formyltetrahydrofolate dehydrogenase (ALDH1L1, FDH)
irreversibly removes carbon groups from the folate pool in the form of CO [4]. This
pathway is distinct from other folate-dependent reactions in terms of the utilization of a one-
carbon group: instead of being used in a biosynthetic pathway it is diverted toward energy
production coupled with the final step of carbon oxidation, from the level of formate to the
level of CO».

Folate metabolism is highly compartmentalized in the cell with the major pathways being
localized to either the cytoplasm or mitochondria [3]. Mitochondrial folate metabolism is
generally viewed as a supplier of one-carbon groups for cytosolic folate-dependent
biosynthetic reactions [5,6]. In addition, recent studies have indicated a nuclear
compartmentation for some folate-dependent reactions as well [2,3,7,8]. The nucleus-related
aspects of folate metabolism, however, are less studied than the cytosolic and mitochondrial
folate pathways. The cytosolic and mitochondrial compartmentation of folate metabolism
occurs at two levels. First, there are two different folate pools, which are not easily
interchangeable since folate cannot freely traverse mitochondrial membrane [3]. Transport
of folate into mitochondria is carried out by a specific transporter, which is homologous to
several inner mitochondrial wall transporters [9]. Second, there are separate sets of folate
enzymes residing in the cytosol or mitochondria that define the specificity of folate
pathways in each compartment [2,3]. Some folate enzymes and corresponding reactions are
unique to a single compartment, either cytosolic or mitochondrial. Several enzymes,
however, are present in both compartments, and FDH belongs to this group (Table 1).

FDH converts 10-formyl-THF to THF and CO, in a NADP*-dependent dehydrogenase
reaction (Fig. 2 inset). The cytosolic form of this enzyme, ALDH1L1, has been known for a
long time and is a well-characterized protein [4,15]. ALDH1L1 appears to be a natural fusion
of three unrelated genes that determines a complex domain structure of the protein. The
functional domains, which compose the protein, are an aldehyde dehydrogenase (carboxyl-
terminal), a folate-binding/hydrolase (amino-terminal), and an acyl carrier protein-like
intermediate domain [34—36]. The conversion of 10-formyl-THF to THF and CO5 includes
three steps, two catalytic and one transfer step. In the first step, the formyl group is removed
from the folate molecule in a hydrolase reaction; in the second step, this group, covalently
attached to a 4'-phosphopantetheine moiety of the intermediate domain, is transferred to the
carboxyl-terminal domain where it undergoes oxidation through an ALDH-like mechanism
as the third step [4]. The presence of the ALDH domain enables the enzyme to perform the
aldehyde dehydrogenase catalysis as well [15]. It is not clear, however, whether this reaction
has an independent physiological significance and what would be a substrate for the enzyme
in such a reaction in vivo.

We have recently identified and characterized a homolog of ALDH1L1, ALDH1L2, which
is the product of a separate gene. ALDH1L2 is a mitochondrial enzyme with high sequence
similarity to ALDH1L1 [16]. An additional sequence at its amino-terminus is unique to
ALDHI1L?2 and is a functional mitochondrial leader sequence which is absent in ALDH1L1.
In the present study, we have evaluated the presence of both ALDH1L1 and ALDH1L2 genes
in the genomes of several species and examined the organization and appearance of these
genes during vertebrate and invertebrate evolution.
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2. Materials and Methods
2.1. ALDH1L1 and ALDH1L2 gene and protein identification

BLAST (Basic Local Alignment Search Tool) studies were undertaken using web tools from
the National Center for Biotechnology Information (NCBI)
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) [37]. Protein BLAST analyses used ALDH1L1
amino acid sequences. Non-redundant protein sequence databases for several vertebrate and
invertebrate genomes were examined using the BLASTP algorithm, including human (Homo
sapiens), chimpanzee (Pan troglodytes), orangutan (Pongo abelii), rhesus monkey (Macaca
mulata), cow (Bos Taurus), horse (Equus caballus), mouse (Mus musculus), rat (Rattus
norvegicus), opossum (Monodelphis domestica), platypus (Ornithorhynchus anatinus),
chicken (Gallus gallus), frog (Xenopus tropicalis), zebrafish (Danio rerio), tetraodon fish
(Tetraodon nigroviridis), fruit fly (Drosophila melanogaster) and nematode
(Caenorhabditid elegans). This procedure produced multiple BLAST “hits’ for each of the
protein databases which were individually examined and retained in FASTA format, and a
record was kept of the sequences for predicted MRNASs and encoded ALDH1L-like proteins.
These records were derived from annotated genomic sequences using the gene prediction
method: GNOMON and predicted sequences with high similarity scores. Predicted
ALDH1L-like protein sequences were obtained in each case and subjected to analyses of
predicted protein and gene structures. BLAT analyses were subsequently undertaken for
each of the predicted ALDH1L amino acid sequences using the UC Santa Cruz genome
browser [http://genome.ucsc.edu/cgi-bin/hgBlat] [38] with the default settings to obtain the
predicted locations for each of the ALDH1L genes, including predicted exon boundary
locations and gene sizes. BLAT analyses were similarly undertaken for other human ALDH
genes (Table 2).

2.2. Predicted Mitochondrial Targeting Sequences for Vertebrate ALDH1L2 Proteins

MitoProt web tools were used to predict the N-terminal protein region that can support a
mitochondrial targeting sequence and the cleavage site for each of the predicted vertebrate
ALDH1L2 sequences (http://ihg2.helmholtz-muenchen.de/ihg/mitoprot.html) [39].

2.3. Phylogeny Studies and Sequence Divergence

3. Results

Alignments of vertebrate ALDH-like protein sequences for ALDH1L (eg. residues 417-902
for human ALDH1L1 and residues 428-923 for human ALDH1L2) and human ALDH1A1,
ALDH1A2, ALDH1A3, ALDH1B1, ALDH2, ALDH3A1, ALDH3A2 and ALDH3B1
sequences (see Table 2 for sources) were assembled using BioEdit v.5.0.1 with the default
settings [40]. Alignment of ambiguous regions, including the amino and carboxyl termini,
were excluded prior to phylogenetic analysis yielding alignments of 396 residues for
comparisons of vertebrate ALDH1L and human ALDH sequences with the fruit fly
(Drosophila melanogaster) and nematode (Caenorhabditis elegans) ALDH1L1 sequences
(Table 2). Evolutionary distances were calculated using the Kimura option [41] in
TREECON [42]. Phylogenetic trees were constructed from evolutionary distances using the
neighbor-joining method [43]. Tree topology was reexamined by the boot-strap method (100
bootstraps were applied) of resampling and only values that were highly significant (=90)
are shown [44].

3.1. Gene Locations and Exonic Structures for Vertebrate and Invertebrate ALDH1L Genes

Table 2 summarizes the predicted locations for vertebrate and invertebrate ALDH1L-like
genes based upon BLAT interrogations of several genomes using the reported sequences for
human/mouse [45] and rat [15,46] and the predicted sequences for other vertebrate genes
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and the UC Santa Cruz genome browser [38]. Predicted primate ALDH1L1 and ALDH1L?2
genes were predominantly transcribed on the negative strand, with the exception of the
orangutan (Pongo abelii) ALDH1L1 gene, which was transcribed on the positive strand.
Vertebrate ALDH1L1 genes examined contain between 21 and 25 exons and ALDH1L2
genes contain between 22 and 25 exons (Table 2). Within the same species, the number of
exons between the two genes can be equal or not. While this variability could be attributed
to incomplete annotation of some genomes at present, in most genomes the first exon
encodes the 5’-non-translatable mRNA region in ALDH1L1 genes and for the N-terminal
mitochondrial targeting sequence in ALDH1L2 genes. The invertebrate genomes examined
(fruit fly and nematode) exhibited only a single ALDH1L-like sequence which lacked the N-
terminal mitochondrial targeting sequence in each case. Fewer exons were observed for the
invertebrate ALDH1L1 genes examined, with the fruit fly (Drosophila melanogaster) and
nematode (Caenorhabditid elegans) genes exhibiting 2 and 7 exons respectively. It is
apparent however that the fused nature of ALDH1L1 and ALDH1L2 genes and proteins,
previously reported for mammalian enzymes [4], have been retained for all of the
invertebrate and other vertebrate genes and enzymes examined.

3.2. Phylogeny and Divergence of ALDH1L and Human ALDH1, ALDH2 and ALDHS3

Sequences

A phylogenetic tree (Figure 2) was calculated by the progressive alignment of 24 vertebrate
ALDHI1L1 and ALDH1L2 amino acid sequences with human ALDH1A1, ALDH1A2,
ALDH1A3, ALDH1B1, ALDH2, ALDH3A1, ALDH3A2 and ALDH3B1 sequences with
the fruit fly (Drosophila melanogaster) and nematode (Caenorhabditis elegans) ALDH1L1
sequences (Table 2). The phylogram showed clustering of the ALDH sequences into groups
which were consistent with their evolutionary relatedness as well as groups for vertebrate
ALDL1L1 and ALDH1L2 sequences, which were distinct from the human ALDH1-,
ALDH2- and ALDH3-like sequences. The ALDH1L1 and ALDH1L2 groups were
significantly different from each other (with bootstrap values of 99-100/100) supporting a
hypothesis that these are distinct but related family groups. It is apparent from this study of
vertebrate ALDH1L genes and proteins that this is an ancient protein for which a proposed
common gene ancestor has predated the appearance of osseous fish > 500 million years ago
[47]. In addition, the ALDL1L1 gene, which encodes the cytoplasmic form of this enzyme,
may have served as the ancestral gene, given that both fruit fly and nematode genomes
exhibited only a single ALDH1L1-like gene. Genetic distances for human, cow, mouse and
rat ALDH1L1 and ALDH1L2 sequences calculated from the corresponding zebrafish
sequences were 0.846+0.006 and 0.858+0.008, respectively, which suggests that these
sequences are diverging at similar rates during vertebrate evolution.

4. Discussion

FDH, a multidomain enzyme, is the product of a fusion of three unrelated genes [4,15,36].
The two catalytic modules of the enzyme, the amino-terminal hydrolase and the carboxyl-
terminal aldehyde dehydrogenase, retain their respective catalytic activities when expressed
as individual proteins [46,48]. The third module, an acyl carrier-like domain, couples the
two catalytic domains together that produces a new catalytic activity, the 10-
formyltetrahydrofolate dehydrogenase [36]. Several molecular mechanisms, including exon
shuffling and gene duplication/fusion, must underlie the origin of such new chimeric genes
from more simple ancient ones [49-51]. In fact, the complex domain organization seen in
the FDH molecule is a common phenomenon in nature [52-54]. The presence of different
functionalities within one protein molecule can be beneficial for several reasons. In the case
of multifunctional enzymes, the combination of catalytic activities from the same metabolic
pathway allows for substrate channeling, a process protecting unstable short-living
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intermediates, preventing the loss of a substrate due to diffusion and eliminating side-
reactions [53,55]. The expected effect of substrate channeling would be more efficient
catalysis. Such multifunctional enzymes encoded by a single gene are found in several
biochemical pathways including lipid metabolism [56], de novo purine and pyrimydine
biosynthesis [20,57], and folate metabolism [2,58]. In some other proteins resulting from
gene fusion or exon shuffling, the combination of domains could create a new function, and
FDH is an outstanding example of this phenomenon.

The presence of ALDH1L1 gene obviously provided a selective advantage for higher
organisms since it has been retained throughout their evolution. The importance of the new
reaction for the cell, as well as its precise evolutionary advantage, is not completely
understood. More ancient organisms (e.g. bacteria, plants and fungi) do not have a
corresponding enzyme. The loss of Aldh1l1 in mice, while affecting the distribution of
reduced folate pools, is not lethal and did not produce a distinct phenotype when animals are
kept on a folate-rich diet [59]. These mice, however, demonstrated decreased reproductive
efficiency [60]. We suggest that FDH controls the overall flux of one-carbon groups through
the folate pool. In agreement with this hypothesis, it has been shown that the enzyme
regulates the major folate-dependent biosynthetic processes, de novo purine pathways and
regeneration of methionine from homocysteine [61-63]. The key role of FDH is associated
with the fact that it functions as a catabolic enzyme with regard to the one-carbon group
conversion: the enzyme removes these groups, in the form of CO,, from the folate pool thus
counteracting biosynthetic processes. In this sense, FDH could serve to limit excessive
proliferation, which is an unwanted process for most tissues in an adult organism. In support
of this possibility, it has been observed that FDH is strongly and ubiquitously down-
regulated in cancers [61].

It has also been suggested that FDH is a crucial component of the methanol detoxification
pathway [64]. Methanol toxicity is primarily caused by its metabolite, formic acid, which is
responsible for the metabolic acidosis and ocular toxicity observed in methanol-intoxicated
humans [64]. Thus, on a more general note, the enzyme should be considered as a
component of the formate degradation pathway. This pathway converts formate to neutral
CO», through 10-formyltetrahydrofolate as an intermediate. The two steps of this pathway
are catalyzed by cytosolic C1-synthase and ALDH1L1, correspondingly. In the cell, formate
is directly produced in pathways involving the degradation of 3-methyl-branched fatty acids
and the shortening of 2-hydroxy long chain fatty acids [65]. In addition, methanol is
produced during fermentation from the hydrolysis of fruit pectin and thus is present in juices
and alcoholic beverages [66]. Interestingly, the artificial sweetener aspartame also generates
a small amount of methanol [67]. Importantly, it has been demonstrated that the ALDH1L1
pathway is more prominent for the clearance of lower, physiological doses of formate [68].
Bacteria, yeast and plants possess an enzyme, formate dehydrogenase (EC 1.2.1.2), which
directly oxidizes formate to CO, [69], and this enzyme is not found in higher animals. Thus,
it can be speculated that FDH-catalyzed reaction evolved as a compensatory pathway to
clear formate.

The mitochondrial FDH (mtFDH, ALDH1L?2) is structurally very similar to the cytosolic
enzyme [16]. While ALDH1L1 was obviously the natural product of the gene fusion, mtFDH
most likely was the result of a duplication of the ALDH1L1 gene. This point of view is
supported by the fact that mtFDH is seen later on the evolutionary tree than cytosolic FDH
and that the two ALDH1L genes have higher similarity to each other than to the potential
ALDH ancestors. For instance, for the ALDH domain, the similarity between the two
proteins is about 79% while the closest member of ALDH family, retinaldehyde
dehydrogenase, is only about 50% similar to either of the FDH isoforms. Of note, gene
duplication is not uncommon for folate enzymes with at least two other examples known,
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MTHFD and SHMT [2,3,70]. Interestingly, another genetic mechanism that can create
mitochondrial and cytosolic isoforms is through alternative splicing. In this mechanism, the
exon encoding for a mitochondrial leader sequence is spliced out which produces a protein
localized to the cytosol. The two isoforms of FPGS, mitochondrial and cytosolic, are the
result of the alternative splicing of a single gene [18]. Moreover, this mechanism is also
possible for the gene encoding mitochondrial SHMT [8]. Such a mechanism, however, has
not been seen in the ALDH gene family.

In the case of the ALDHI1L genes, it appears that an opposing mechanism was responsible
for the creation of the mitochondrial enzyme: instead of losing a mitochondrial leader
sequence, its acquisition took place. This has apparently occurred without significant
changes in the ALDH1L1 gene organization. Thus, both genes, ALDH1L1 and ALDH1L2,
have a similar number of exons in all species examined, with some species having identical
number of exons in both genes and others demonstrating the difference of only one or two
exons (Table 2). The first exon of ALDH1L1 is non-translatable, but it encodes for the
mitochondrial leader sequence in the case of ALDH1L2. Evidently, alterations within this
exon allowed for the acquisition of a mitochondrial leader sequence.

It is not clear whether the presence of two ALDH1L genes, and thus two FDH isoforms,
provides a selective advantage for a species or whether it was a random act of a gene
duplication. C. elegans and insects have only the ALDH1L1 gene. Our recent analysis of the
zebrafish genome revealed two FDH-like genes, for which protein products were predicted
to reside in mitochondria. In addition, the combination of these proteins corresponded to a
full-length FDH [16]. However, these two genes have been deleted from the most recent
annotation of the zebrafish genome, and a new annotation of the ALDH1L2 gene encoding
for full-length mitochondrial FDH has been included in the database. Thus, the duplication
of ALDH1L1 gene took place prior to appearance of osseous fish. The present study
identified only a single FDH gene in birds, ALDH1L2, which may be due to the incomplete
annotation of ALDH1L genes and proteins in these species. Alternatively, the two ALDH1L
genes may be redundant in bird species and similar to mitochondrial SHMT in mice [8],
avian ALDH1L2 could produce a cytosolic enzyme through an alternative splicing
mechanism. Whether alternative splicing of ALDH1L2 is possible or not is unclear at
present, but a preliminary analysis of this gene did not indicate such a splice variant.

5. Conclusion

BLAST and BLAT analyses of several vertebrate genome databases were undertaken using
amino acid sequences reported for human ALDH1L1 (cytosolic) and ALDH1L2
(mitochondrial) enzymes for interrogation of vertebrate genomes. Evidence is presented for
ALDHI1L1 and ALDH1L2 genes in all vertebrate genomes examined, with the exception of
opossum, platypus and chicken genomes, for which only ALDH1L2 sequences were
observed. This may be due to an incomplete annotation of ALDH1L1 sequences or to an
alternative mechanism (such as differential splicing of ALDH1L2) in generating a cytosolic
form of ALDHL1L in these species. Predicted amino acid sequences for vertebrate ALDH1L-
like subunits showed a high degree of similarity with the corresponding human enzymes.
Phylogenetic analyses supported a hypothesis concerning the molecular evolution of
vertebrate ALDH1L-like genes: vertebrate ALDH1L1 and ALDH1L2 genes were generated
within a common ancestral genome (for vertebrates) by a duplication of the gene encoding
cytosolic ALDH1L1, prior to the appearance of osseous fish, more than 500 million years
ago [47].
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Fig. 1.

Structure of tetrahydrofolate (THF) and transferred one-carbon groups. The folate molecule
consists of pteridine, p-aminobenzoic acid and glutamate. Inside the cell, reduced folates
exist as polyglutamates with up 8 glutamate residues bound through a-amino and y-carboxyl
groups. One-carbon groups can be bound to N°, N10 or both of these positions in THF
molecule. CH3, methyl; CH,, mehtylene; CH, methenyl; CHO, formyl, CHNH, formimino.
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Fig. 2.

Phylogenetic tree of vertebrate and invertebrate ALDH1L and human ALDH proteins. The
tree is labeled with the ALDH name and the name of the animal. Note the 5 major clusters
corresponding to the vertebrate ALDH1L family; the vertebrate and invertebrate ALDH1L1
family; human class 1 ALDHs (ALDH1A1, ALDH1A2 and ALDH1A3); human ALDH1B1
and ALDH2; and human class 3 ALDHs (ALDH3A1, ALDH3A2 and ALDH1B1). A
genetic distance scale is shown. The numbers of times a clade (sequences common to a node
or branch) occurred in the bootstrap replicates are shown. Only replicate values of 90 or
more which are highly significant are shown with 100 bootstrap replicates performed in each
case. The asterisks (*) refer to significant gene duplication events leading to the divergence
of ALDH1L1 and ALDH1L2 genes, and of ALDH1L and ALDH genes. Inset shows reactions
catalyzed by ALDH1L enzymes (top reaction) and aldehyde dehydrogenases (bottom
reaction). Ry, THF (the aldehyde group is bound to THF through a C-N bond at N°); R,,
broad spectra of moieties (the aldehyde group is bound to R, through a C-C bond).
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