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Abstract
Pain assessment in patients who are unable to verbally communicate is a challenging problem. The
fundamental limitations in pain assessment in neonates stem from subjective assessment criteria,
rather than quantifiable and measurable data. This often results in poor quality and inconsistent
treatment of patient pain management. Recent advancements in pattern recognition techniques
using relevance vector machine (RVM) learning techniques can assist medical staff in assessing
pain by constantly monitoring the patient and providing the clinician with quantifiable data for
pain management. The RVM classification technique is a Bayesian extension of the support vector
machine (SVM) algorithm, which achieves comparable performance to SVM while providing
posterior probabilities for class memberships and a sparser model. If classes represent “pure”
facial expressions (i.e., extreme expressions that an observer can identify with a high degree of
confidence), then the posterior probability of the membership of some intermediate facial
expression to a class can provide an estimate of the intensity of such an expression. In this paper,
we use the RVM classification technique to distinguish pain from nonpain in neonates as well as
assess their pain intensity levels. We also correlate our results with the pain intensity assessed by
expert and nonexpert human examiners.

Index Terms
Digital imaging; facial expression recognition; neonates; pain assessment; relevance vector
machine (RVM); support vector machine (SVM)

I. Introduction
Pain assessment in patients who are unable to verbally communicate is a challenging
problem in patient critical care. This problem is most prominently encountered in sedated
patients in the intensive care unit (ICU) recovering from trauma and major surgery, as well
as infant patients and patients with brain injuries [1]–[3]. Current practice in patient critical
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care requires the nursing staff in assessing the pain experienced by the patient, and taking
appropriate action to ameliorate the patient's anxiety and discomfort.

Individuals in pain manifest their condition through “pain behavior” [4], [5], which includes
facial expressions. The significance of a facial expression as an indicator of pain is discussed
and advances in pain assessment using facial expressions are reviewed in [5]. Clinicians
regard the patient's facial expression as a valid indicator for pain and pain intensity [6].
Hence, correct interpretation of the facial expressions of the patient and its correlation with
pain is a fundamental step in designing an automated pain assessment management system.
Of course, other pain behaviors, including head movement and the movement of other body
parts, along with physiological indicators of pain, such as heart rate, blood pressure, and
respiratory rate responses should also be included in such a system.

Depending on the patient group (e.g., neonates, children, adults, etc.) pain assessment
criteria have been developed, and indicators of pain in each group might be different. For
example, while the behavioral pain scale for adults focuses on facial expressions, upper
limbs, and compliance with ventilation [7], the face, legs, activity, cry, and consolability
(FLACC) [8] behavioral pain scale focuses on slightly different set of indicators for
postoperative young children. Similarly, the premature infant pain profile (PIPP) [9]
considers a special set of pain indicators, including physiological and behavioral indicators
for pain assessment in premature infants.

Infants are unable to directly report their level of pain, and hence, medical staff are
responsible for pain assessment for neonates. Pain and distress behaviors in neonates,
include facial expression, cry, and body movement, and a series of methods have been
suggested to objectively assess pain in neonates based on the aforementioned behaviors [5],
[8], [9]. In this paper, we focus on the problem of pain assessment in infants using facial
expressions.

Although there is a vast potential for using computer vision for agitation and pain
assessment, there are very few articles in the computer vision literature addressing this issue.
Bonroy et al. [10] have used computer vision for pain assessment in demented elderly
patients. An agitation assessment scheme is proposed for patients in the ICU in [11]. The
approach of [11] is based on the hypothesis that facial grimacing induced by pain results in
additional “wrinkles” (equivalent to edges in the processed image) on the face of the patient,
and this is the only factor they use in assessing pain. Although this approach is
computationally inexpensive, and especially, appealing for a real-time decision support
system, it can be limiting, since it does not account for other facial actions (e.g., smiling,
crying, etc.), which may not necessarily correspond to pain. Brahnam et al. [12]–[15] use
various face classification techniques, including support vector machines (SVM) and neural
networks (NN) to classify facial expressions in neonates into “pain” and “nonpain” classes.
Such classification techniques were shown to have reasonable accuracy.

In this paper, we extend the classification technique addressed in [12]–[15] to distinguish
pain from nonpain in neonates as well as assess their pain intensity using a relevance vector
machine (RVM) classification technique [16]. The RVM classification technique is a
Bayesian extension of SVM, which achieves comparable performance to SVM while
providing posterior probabilities for class memberships and a sparser model. In a Bayesian
interpretation of probability, as opposed to the classical interpretation, the probability of an
event is an indication of the uncertainty associated with the event rather than its frequency
[17]. If data classes represent “pure” facial expressions, that is, extreme expressions, which
an observer can identify with a high degree of confidence, the posterior probability of the
membership of some intermediate facial expression to a class can provide an estimate of the
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intensity of such an expression. This, along with other pain behaviors, can be translated into
one of the scoring systems currently being used for assessing pain (e.g., FLACC or PIPP).

The contents of the paper are as follows. In Sections II and III, we review the SVM and
RVM classification techniques for pain recognition using facial expressions. Then, in
Section IV, we present the results of these classification techniques applied to the infant
classification of pain expression (COPE) database [12]. The pain intensity assessment given
by the computer classifier shows a strong correlation with the pain intensity assessed by
expert and nonexpert human examiners. Finally, we draw conclusions and point to some
future research directions in Section V, including opportunities for sedation and agitation
assessment using digital imaging in the ICU.

II. Support Vector Machines
As we see in Section IV, the problem of pain and pain intensity assessment using facial
images involves a standard problem in machine learning called data classification [17].
Given a series of input variables x1, x2, …, xN in ℝD and their corresponding class labels 1,

2, …, p, where p ≤ N, the data classification problem involves assigning the correct class
label to a new input variable x. Kernel-based methods are typically used for data
classification and regression [17]. A key limitation of many kernel-based learning
algorithms is the computational intensity involved in the training, prediction, and decision-
making stages of the algorithm. This is due to the fact that the kernel function, which adds a
dimension to the data in order to obtain an optimal classification, has to be computed for all
pairs of data points. In sparse kernel machine algorithms, however, only a subset of the
training data is used, providing a sparse solution. Sparse kernel machines are faster in the
training, and the prediction and decision-making stages. In this paper, we consider two
sparse kernel-based classification algorithms, namely, SVMs and RVMs.

SVMs [18] involve sparse kernel algorithms used in classification and regression problems,
and have their origin in statistical learning theory. Here, we consider the classification
problem involving two data classes, namely, 1 and 2. The framework can be generalized to
a multiclass label problem using a similar approach as outlined later [17]. Let the training
set be given by {x1, x2, …, xN}, with target values given by z1, z2, …, zN, respectively,
where xn ∈ ℝD and zn ∈ {−1, 1}, n = 1, …, N, and with xn ∈ 1 if zn = −1, and xn ∈ 2 if zn
= 1. To classify a new data point x ∈ ℝD, define the classifier function

(1)

where ϕ : ℝD → ℝM is a continuous fixed feature-space transformation, w ∈ ℝM is a weight
vector, and b ∈ ℝ is a bias parameter. The sign of the classifier function y(x) determines the
class of x. More specifically, for a new input variable x, the target value is given by z =
sgn(y(x)), where sgn y ≜ y/|y|, y ≠ 0 and sgn(0) ≜ 0.

Next, assume that the training set is linearly separable in the feature space ℝM, that is, there
exist a weight vector w ∈ ℝM and a bias parameter b ∈ ℝ, such that y(xn) > 0 for xn ∈ ℝD

and zn = 1, and y(xn) < 0 for xn ∈ ℝD and zn = −1, or equivalently, zny(xn) > 0 for all xn ∈
ℝD and zn ∈ {−1, 1}. Later, we will relax the linear separability assumption and consider the
more general case of overlapping classes.

Note that the classifier function y(·) separates the feature space ℝM into two disjoint regions
characterized by y(x) > 0 and y(x) < 0 for x ∈ ℝD. The affine hyperplane separating the two
disjoint regions, namely y(x) = 0, is called the decision boundary and is denoted by . Note
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that ϕ(·) can be a nonlinear transformation, which would correspond to a nonlinear decision
boundary in the original input space ℝD. The minimum distance between the training set and
the decision boundary  is called the margin. The distance of a point xn ∈ ℝD to the
decision boundary  is given by

(2)

where ‖ · ‖ denotes the Euclidean norm on ℝM and dist(x, ) ≜ infs∈D ‖x − s‖. Hence, the
margin is given by

(3)

As in all classification methods, the goal of the SVM algorithm is to classify a new input
variable x ∈ ℝD based on the information provided by the training set and the target values.
The SVM framework addresses this problem by choosing the decision boundary in such a
way so that the margin is maximized. The following problem presents the SVM algorithm as
an optimization problem.

Maximum Margin Classification Problem
Consider the training set given by {x1, x2, …, xN} ⊂ ℝD and let the classifier function y : ℝD

→ ℝ be given by (1). Find the weight vector w ∈ ℝM and the bias parameter b ∈ ℝ such that
(3) is maximized.

Theorem 2.1—w* ∈ ℝM and b* ∈ ℝ solve the maximum margin classification problem if
and only if w* and b* are the solutions to the optimization problem

(4)

Proof—The proof is a direct consequence of the definition of a margin given by (3).

The solution to the nonconvex optimization problem (4) is not unique. To see this, note that
scaling the weight vector w ∈ ℝM and the bias parameter b ∈ ℝ by a positive scalar does not
change the value of the function to be maximized. The following theorem presents an
alternative characterization to the maximum margin classification problem.

Theorem 2.2—w* ∈ ℝM and b* ∈ ℝ solve the maximum margin classification problem if
and only if w* and b* are the solutions to the optimization problem

(5)

subject to
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(6)

where xn ∈ ℝD, zn ∈ {−1, 1}, and n = 1, …, N.

Proof—Since rescaling the weight vector w ∈ ℝM and the bias parameter b ∈ ℝ in (4) by a
positive scalar does not change the value of the function to be maximized, the optimization
problem (4) has a continuum of solutions corresponding to the same optimal value. Hence,
introducing the new constraint

(7)

where n* = arg minn∈{1, …, N} dist(ϕ(xn), ) does not change the optimal value of the
optimization problem (4). Thus, the inequality constraint (6) holds for all xn ∈ ℝD, zn ∈ {−1,
1}, and n = 1, …, N. The proof now follows by noting that the optimization problem (4)
subject to (7) is equivalent to the optimization problem (5) subject to (6).

The constrained optimization problem given by (5) and (6) is convex and can be solved
using Lagrange multiplier methods. Specifically, introducing the Lagrange multipliers λn ∈
ℝ, n = 1, …, N, and forming the Lagrangian

(8)

where λ = [λ1, λ2, …, λn]T, it follows from the first-order necessary conditions for optimality
that

(9)

(10)

Note that (9) and (10) can be used to eliminate w and b from the Lagrangian (8) leading to a
dual representation of the optimization problem (4). Namely,

(11)

subject to
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(12)

(13)

where

(14)

and

(15)

is the kernel function. Here, we introduced an alternative formulation of the optimization
problem (4) in terms of the kernel function k : ℝD × ℝD → ℝ, which allows us to avoid
working explicitly in the feature space. Note that the classifier function (1) can be rewritten
using the kernel function as follows:

(16)

The Kuhn–Tucker (KT) necessary conditions for optimality for the constrained optimization
problem (11)–(13) are given by

(17)

(18)

(19)

where n = 1, …, N. Now, it follows from (19) that either λn = 0 or zny(xn) = 1. The input
variables xn ∈ ℝD, n = 1, …, N, for which the corresponding Lagrange multiplier λn ∈ ℝ
vanishes, do not contribute to the classifier function (16), and hence, can be omitted. The
remaining input variables are called support vectors, and by definition, lie on the maximum
margin affine hyperplanes w*T ϕ(xn) + b* = ±1, n = 1, …, N. Hence, only the support
vectors play a role in the classification of the new input variables and the rest of the training
set can be discarded.
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Next, we consider the case of overlapping classes. For this case, the SVM algorithm
considered earlier identifies the decision boundary so that the training set is separated into
two data classes with no input variables being misclassified. This results in poor class
assignments for new input variables. The SVM algorithm, however, can be modified by
allowing input variables in the training set to lie on the “wrong side” of the margin boundary
and penalizing such constraint violations. Specifically, for every input variable xn ∈ ℝD, n =
1, …, N, define the slack variable ξn ≥ 0 such that ξn = 0 if (6) is satisfied, that is, for n ∈
{1, …, N}, xn is on or inside the correct margin boundary, and ξn = |zn − y(xn)| otherwise.

The modified SVM algorithm is given by the following optimization problem:

(20)

subject to

(21)

(22)

where ξ = [ξ1, ξ2, …, ξN]T and  > 0 is a complexity parameter controlling the tradeoff
between the margin and the slack variable penalty. It can be shown that if ξn = 0, then (21)
reduces to (6) and the corresponding input variable xn ∈ ℝD will be correctly classified.
Moreover, if 0 < ξn ≤ 1, then the input variable xn ∈ ℝD is correctly classified while lying
inside the margin boundary, whereas if ξn > 1, then the input variable is misclassified.

Lagrange multiplier methods can be used to solve the optimization problem (20)–(22) by
introducing the Lagrange multipliers λn ∈ ℝ and μn ∈ ℝ, n = 1, …, N, corresponding to the
constraints (21) and (22), respectively. In this case, the Lagrangian is given by

(23)

where λ = [λ1, λ2, …, λN]T. Now, it follows from the first-order necessary conditions for
optimality that

(24)

(25)
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(26)

and the KT necessary conditions give

(27)

(28)

(29)

(30)

(31)

(32)

where n = 1, …, N. The dual representation of the optimization problem (20) subject to (21)
and (22) is given by

(33)

subject to

(34)

(35)

where ˜ (λ) is given by (14), the kernel function is given by (15), and where we have used
(24)–(32).

III. Sparse Bayesian Learning
The SVM framework is a powerful classifier, but has a number of limitations. A key
deficiency of the approach is the fact that the output of the SVM is the binary classification
decision and not the class membership posterior probability. As will be discussed in Section
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IV, methods which possess an inherent Bayesian structure are more powerful and can
provide more information. Such methods not only classify a new input variable, but can also
provide a degree of uncertainty (in terms of posterior probabilities) for such a classification.
The RVM [16], which is a special case of the sparse Bayesian learning algorithm, can be
regarded as the Bayesian extension of the SVM approach.

In this section, we consider a classification problem involving two data classes, namely 1
and 2, using the sparse Bayesian learning approach. The framework can be generalized to a
multiclass classification problem using a similar approach as outlined later [16]. Consider
the Laplace approximation method [17] involving the random variable υ ∈ ℝM with
associated probability density function given by p : ℝM → ℝ. Assume that p(υ) = f(υ)/V,
where f : ℝM → ℝ is a function defined on υ ∈ ℝM and V = ∫ℝM f(υ)dυ is the normalization
coefficient. The probability density function p(υ) is approximated by a multivariate Gaussian
(normal) distribution (υ; υ0, Σ) with mean υ0 ∈ ℝM and covariance matrix Σ ∈ ℝM×M,
where υ0 = arg maxυ∈ℝM p(υ) and Σ= −∂2/∂υ2 ln f(υ)∣υ=0. The normalization coefficient V
can be approximated by [17]

(36)

where det(·) denotes the determinant operator.

Next, let the training set be given by {x1, x2, …, xN} ⊂ ℝD, with target values given by z1,
z2, …, zN, respectively, where xn ∈ ℝD and zn ∈ {0, 1}, n = 1, …, N, and with xn ∈ 1 if zn =
1, and xn ∈ 2 if zn = 0. For a new input variable x ∈ ℝD, we predict the associated class
membership posterior probability distribution p( k∣x, X, Z), k = 1, 2, where p( k∣x, X, Z) is
the class membership conditional probability of the data class k given x ∈ ℝD, X = [x1, x2,
…, xN], and Z = [z1, z2, …, zN]T. Note that, in contrast to the SVM approach, the sparse
Bayesian learning method separates the prediction stage (i.e., finding the posterior class
membership probabilities for the new input variable x) from the decision-making stage (i.e.,
assigning the new input variable x to the appropriate class). This separation is particularly
useful when dealing with asymmetric classification costs, where misclassification of input
variables belonging to a certain class is more costly [16]. For example, for the problem
involving the classification of facial images of patients to pain and nonpain classes discussed
in Section IV, the cost of misclassification of a patient in pain to the nonpain class (false
negative) is higher than that of a patient with no pain to the pain class (false positive). One
of the key advantages of the sparse Bayesian learning approach is its ability to deal with
such asymmetric costs.

Define the classifier function

(37)

where ϕ: ℝD → ℝM is a continuous feature-space transformation and w = [w1, w2, …, wM]T

∈ ℝM is a weight vector. Note that the RVM algorithm is a special case of the sparse
Bayesian learning method. Specifically, in the RVM, wTϕ(x) in (37) has the special form

(similar to the SVM algorithm) given by , where k(·, ·) is the kernel
function. In the sequel, we consider the general formulation (37).
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Following standard statistical practice, we assume that the posterior probability of the target
value of an input variable corresponding to the class 1 is given by p(zn = 1∣xn, w) = σ(y(xn)),
n = 1, …, N, where σ(·) is the logistic sigmoidal function defined by σ(s) ≜ 1/(1 + e−s) [16],
[17]. Note that, since there are only two classes, p(zn = 0∣xn, w) = 1 − σ(y(xn)). Assuming
that the input variables xn, n = 1, …, N, are independent, the likelihood function is given by

(38)

Each weight parameter wn, n = 1, …, M, in (37) is assumed to have a zero-mean Gaussian
distribution, and hence, the weight prior distribution is given by

(39)

where αn, n = 1, …, M, is the precision (inverse of the variance of the Gaussian distribution)
corresponding to wn and α = [α1, α2, …, αM]T ∈ ℝM. The parameters αn, n = 1, …, M, in the
prior distribution (39) are called the hyperparameters. Note that, in contrast to other
Bayesian classifiers, each weight parameter wn, n = 1, …, M, has a separate hyperparameter
αn.

Given a new input variable x ∈ ℝD, the corresponding target value z ∈ {0, 1} can be
predicted using the predictive distribution p(z∣x, X, Z). The predictive distribution is given
by

(40)

where the distribution is marginalized with respect to the weight vector w ∈ ℝM and the
hyperparameters α ∈ ℝM. Since σ(·) is nonlinear, no closed-form solution exists for (40)
[16]. Here, we use the type-2 maximum likelihood [19]—also known as the evidence
approximation [20]—to approximate (40) by replacing α ∈ ℝM with a constant value α* ∈
ℝM corresponding to the mode (i.e., the maximizer) of the marginal likelihood function
p(Z∣X, α). In particular, an approximation to the predictive distribution p(z∣x, X, Z) is given
by

(41)

The value of α* is found via an iterative process. After initializing α, the posterior
distribution p(w∣x, X, Z, α) is approximated by a Gaussian distribution using the Laplace
approximation method. The mean of the Gaussian distribution corresponds to the mode
(maximizer) of p(w∣x, X, Z, α), which we denote by w*. The maximizer is found using the
iterative reweighted least squares (IRLS) method [17], which uses sequential quadratic
approximations to find the maximizer. Taking the log of the identity [17]
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the maximization problem is equivalent to

(42)

or equivalently

(43)

where yn = σ(y(xn)) ∈ ℝ, A = diag[α] ∈ ℝM×M, c ∈ ℝ is a variable independent of z (and
hence, plays no role in the optimization), and where we have used (38). Note that the
covariance matrix of the Gaussian approximation to the posterior distribution p(w∣x, X, Z, α)
is equal to the negative Hessian of ln p(w∣x, X, Z, α) evaluated at the maximizer w*. The
mean and covariance of the Gaussian approximation are given by

(44)

(45)

where Φ = [Φ(i,j)] ∈ ℝN × M with Φ(i,j) = ϕj(xi) for i = 1, …, N and j = 1, …, M, B = diag[b1,
b2, …, bN] ∈ ℝN × N with bn = yn(1 − yn) ∈ ℝ, n = 1, …, N, and Y = [y1, y2, …, yn]T ∈ ℝN.

Next, using (36), we approximate the marginal likelihood function as follows:

(46)

Following the discussion on the type-2 maximum likelihood method, the value of α* is
found by maximizing the approximate marginal likelihood function given by (46). Hence,
differentiating (46) with respect to αn, n = 1, …, M, and setting the result to zero yields

(47)

Solving (47) for αn, n = 1, …, M, gives the updated estimate for αn as follows:
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(48)

where

n = 1, …, M. Now, using the updated estimate  for α, the
above steps are repeated until a given convergence criterion is met. The algorithm is
summarized in Table I.

As a result of the maximization of the marginal likelihood function, a number of
hyperparameters αn approach infinity, and hence, the corresponding weight parameter wn
will be centered at zero with zero variance. Therefore, the corresponding component of the
feature-space transformation ϕn(·) plays no role in the prediction, resulting in a sparse
predictive model. In the case of the RVM, the input variables xn belonging to the training set
{x1, x2, …, xN}, which have a nonzero weight wn, are called relevance vectors. Only the
relevance vectors play a role in the classification of new input variables and the rest of the
training set can be discarded.

Finally, we note that the posterior probability for the membership of a new input variable x
to the class 1 represented by p( 1 ∣x, X, Z) can be approximated by the logistic sigmoidal
function σ(y(x)) using the calculated value of the weight vector w*. This approximatation
becomes exact as the number of input variables in the training set approaches infinity [16],
[21].

IV. Pain and Pain Intensity Assessment in Neonates
In this section, we use the classification techniques described in Sections II and III, in order
to assess pain and pain intensity in infants using their facial expressions. For our dataset, we
use the infant COPE database [12]. As was shown in [12], the SVM can classify facial
images into two groups of “pain” and “nonpain” with an accuracy between 82% and 88%.
Here, we extend the results of [12] to additionally assess pain intensity using the class
membership posterior probability. Note that although we consider infants, studies have
shown that the pain-induced facial expressions in newborns are similar to those observed in
older children and adults [22]. However, neonatal facial expressions are characterized by
some unique features that are not found in adults, such as “primal face of pain” [23]. In
addition, adults can control nonverbal expressions of pain [24].

Before applying the classification techniques to the facial images, we give a brief
description of the infant COPE database used in our experimental results.

A. Infant COPE Database
The infant COPE database is composed of 204 RGB color photographs of 26 Caucasian
neonates (13 boys and 13 girls) with a resolution of 120 × 100 per photograph and an infant
age range of 18 h to 3 days. The photographs were taken after a series of stress-inducing
stimuli were administered by a nurse. The stimuli consist of the following [12]:

1. transport from one crib to another;
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2. air stimulus, where the infant's nose was exposed to a puff of air;

3. friction, where the external lateral surface of the heel was rubbed with a cotton
wool soaked in alcohol;

4. pain, where the external surface of the heel was punctured for blood collection.

The facial expressions induced by the first three stimuli are classified as nonpain. Four
photographs of a typical subject are given in Fig. 1. One of the challenges in the recognition
of pain, even for clinicians, is the ability to distinguish an infant's cry induced by pain and
some other nonpainful stimulus.

B. Pain Recognition Using Sparse Kernel Machine Algorithms
The classification techniques discussed in Section II were used to identify the facial
expressions corresponding to pain. A total of 21 subjects from the infant COPE database
were selected such that for each subject at least one photograph corresponded to pain and
one to nonpain. The total number of photographs available for each subject ranged from 5 to
12, with a total of 181 photographs considered. We applied the leave-one-out method for
validation [17]. In particular, the classifier is trained on all photographs of the subject except
for one test photograph, which is used to validate the algorithm. The test photograph
corresponds to either a pain or nonpain condition.

In the preprocessing stage, the faces were standardized for their eye position using a
similarity transformation. Then, a 70 × 93 window was used to crop the facial region of the
image and only the 8-bit grayscale values were used. For each image, a 6510-dimensional
vector was formed by column stacking the matrix of intensity values.

We used the MATLAB version R2008a and the OSU SVM MATLAB Toolbox [25] to run
the SVM classification algorithm. The classification accuracy for the SVM algorithm with a
linear kernel was 90%, where as suggested in [12], we chose the complexity parameter C =
1. The number of support vectors averaged five. Applying the RVM algorithm with a linear
kernel to the same dataset resulted in an almost identical classification accuracy, namely,
91%, whereas the number of relevance vectors was reduced to two. However, in 5 out of the
21 subjects considered, the RVM algorithm did not converge. This is due to the fact that in
contrast to the SVM algorithm, the RVM algorithm involves a nonconvex optimization
problem [17].

C. Pain Intensity Assessment
In addition to classification, the RVM algorithm provides the posterior probability of the
membership of a test image to a class. As discussed in Section I, using a Bayesian
interpretation of probability, the probability of an event can be interpreted as the degree of
the uncertainty associated with such an event. This uncertainty can be used to estimate pain
intensity. In particular, if a classifier is trained with a series of facial images corresponding
to pain and nonpain, then there is some uncertainty for associating the facial image of a
person experiencing moderate pain to the pain class. The efficacy of such an interpretation
of the posterior probability was validated by comparing the algorithm's pain assessment with
that assessed by several experts (intensivists) and nonexperts.

In order to compare the pain intensity assessment given by the RVM algorithm with human
assessment, we compared the subjective measurement of the pain intensity assessed by
expert and nonexpert examiners with the uncertainty in the pain class membership (posterior
probability) given by the RVM algorithm. Actual pain modes for each infant were used to
train the RVM classifier. We chose all 16 infants (out of the total 21) from the COPE
database for which the RVM algorithm converged, and for each subject two photographs of
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the face corresponding to the nonpain and pain conditions were selected. In the selection
process, two training photographs were selected, where the infant's facial expression truly
reflected the pain intensity condition—calm for nonpain and distressed for pain—and a
score of 0 and 100, respectively, was assigned to these photographs to give the human
examiner a fair prior knowledge for the assessment of the pain intensity.

Ten data examiners were asked to provide a score ranging from 0 to 100 for each test
photograph (i.e., nontraining photograph) of the same subject, using a multiple of ten for the
scores. Five examiners with no medical expertise and five examiners with medical expertise
in critical care and pain management were selected for this assessment. The medical experts
were members of the clinical staff at the ICU of the Northeast Georgia Medical Center,
Gainesville, GA, consisting of one medical doctor, one nurse practitioner, and three nurses.
The medical doctor has ten years experience as an anesthesiologist and intensivist in
pediatric hospitals. The nurse practitioner and nurses have 6 months to 1 year pediatric floor
experience in large community hospitals and are also mothers. They were asked to assess the
pain for a series of random photographs of the same subject, with the criterion that a score
above 50 corresponds to pain, and with an increasing score corresponding to a higher pain
intensity. Analogously, a score below 50 corresponds to nonpain, and with a decreasing
score corresponding to a lower level of discomfort. The posterior probability given by the
RVM algorithm with a linear kernel for each corresponding test photograph was rounded off
to the nearest multiple of ten.

The pain scores for five infant subjects are given in Figs. 2–6, where the average score of the
expert and nonexpert human examiners are compared to the score given by the RVM
algorithm. In order to measure the agreement between the human examiners and the RVM
algorithm, we need to quantify the agreement between two raters classifying an observation
into different classes. The kappa coefficient [26] is used to measure the agreement between
two raters classifying the same observation into two classes. A kappa coefficient of 0
represents chance agreement and a coefficient of 1 represents a perfect agreement between
the two raters. The weighted kappa coefficient is an extension of the kappa coefficient to the
case, where there are more than two classes and the classes are ordered [27]. In this case, a
smaller difference between the chosen classes by the two raters indicates less disagreement
between them. The pain intensity assessment can be regarded as a classification process in
which a facial expression of a subject is classified into ten ordered classes, where class 1
corresponds to a pain intensity score of 0–9, class 2 corresponds to a pain intensity score of
10–19, etc. A qualitative evaluation of the observed kappa values is given in Table II [28].

We used the weighted kappa coefficient to measure the agreement in the pain intensity
assessment between the human examiners and the RVM algorithm. This coefficient is 0.47
for human expert examiners (with a 95% confidence interval of 0.37 to 0.57) and 0.46 for
nonexpert examiners (with a 95% confidence interval of 0.36 to 0.55) as compared with the
RVM for the 16 subjects considered in the study. This shows a moderate agreement between
the human expert examiners and human nonexpert examiners as compared with the RVM
algorithm based on the qualitative evaluation of the observed kappa values given by Table
II. It is interesting to note that the weighted kappa coefficient measuring the agreement
between human experts and human nonexperts is 0.78 with a 95% confidence interval of
0.73 to 0.82, which indicates a substantial agreement based on Table II. It is important to
note, however, that proxy ratings of pain is a highly subjective process [30].

The results show an almost identical classification accuracy for a binary classification (with
a score above 50 corresponding to pain). In particular, the nonexpert human examiner, the
expert human examiner, and the RVM classification accuracy is given by 79%, 87%, and
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91%, respectively. Moreover, the results show that the expert human examiners tend to be
more accurate in the binary classification compared to the human nonexperts.

It is worth noting that Fig. 4 shows a poor correlation between the scores given by the RVM
algorithm and the data examiners in the first three photographs. The data examiners assessed
a high level of pain for subject 3, whereas the subject was not in pain. This highlights the
challenge in distinguishing between pain from discomfort, even for human experts. In this
case, the RVM algorithm correctly assessed that the infant has some level of discomfort, but
is not in pain.

Finally, in a repeatability study, the same human expert and nonexpert examiners were
asked to assess the intensity of pain for the five subjects considered in Figs. 2–6, after a
period ranging from 2 weeks to 4 months. Again, we used the weighted kappa coefficient to
measure the agreement between two observations by the same rater. The weighted kappa
coefficient in this case can be regarded as a measure of the ability of the human examiner to
reproduce his or her own pain scores. The weighted kappa coefficient is 0.79 (with a 95%
confidence interval of 0.74 to 0.84) for the human expert examiners and 0.73 (with a 95%
confidence interval of 0.68 to 0.78) for the human nonexpert examiners. Based on this
analysis, the human expert examiners tend to be slightly more reliable in assessing the pain
intensity for the same subjects under the same pain conditions.

V. Conclusion and Opportunities for Future Research
In this paper, the problems of pain and pain intensity assessment using facial expressions in
neonates were addressed. Sparse kernel machine algorithms were used to classify the images
into pain and nonpain classes. The class membership posterior probability given by the
RVM algorithm was interpreted as an estimate of the pain intensity, and this hypothesis was
validated by comparing the results with expert and nonexpert human assessments of pain.
The results provided by the RVM algorithm can potentially be useful in decision support
systems for ICU analgesia, where a reliable objective pain assessment measure is required.

Machine learning techniques, and in particular the RVM algorithm, can potentially be useful
in assessing sedation and agitation in the ICU. The fundamental limitations in sedation and
agitation assessment in the ICU stem from subjective assessment criteria, rather than
quantifiable, measurable data for ICU sedation. This often results in poor quality and
inconsistent treatment of patient agitation. Advances in computer vision techniques can
potentially assist the medical staff in assessing sedation and agitation by constantly
monitoring the patient and providing the clinician with quantifiable data for ICU sedation.
An automatic sedation and pain assessment system can be used within a decision support
system, which can also provide automated sedation and analgesia in the ICU [31]. In order
to achieve closed-loop sedation control in the ICU, a quantifiable feedback signal is required
that reflects some measure of the patient's agitation. A nonsubjective agitation assessment
algorithm can be a key component in developing closed-loop control algorithms for ICU
sedation.

The current clinical standard in the ICU for assessing the level of sedation in adults is an
ordinal scoring system, such as the motor activity and assessment scale (MAAS) [32] or the
Richmond agitation–sedation scale (RASS) [33], which includes the assessment of the level
of agitation of the patient as well as the level of consciousness. For example, the MAAS
system evaluates the level of sedation and agitation on a score of 0–6 as follows: 0–
unresponsive; 1–responsive only to noxious stimuli; 2–responsive to touch or name; 3–calm
and cooperative; 4–restless and cooperative; 5–agitated; and 6–dangerously agitated.
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Assessment of the level of sedation and agitation of a patient is, therefore, subjective and
limited in accuracy and resolution, and hence, prone to error in assessing the level of
sedation, which in turn may lead to oversedation. In particular, oversedation increases risk to
the patient since liberation from mechanical ventilation, one of the most common life-saving
procedures performed in the ICU, may not be possible due to a diminished level of
consciousness and respiratory depression from sedative drugs resulting in prolonged length
of stay in the ICU. Prolonged ventilation is expensive and is associated with known risks,
such as inadvertent extubation, laryngotracheal trauma, and ventilator-associated
pneumonia. Alternatively, undersedation leads to agitation and can result in dangerous
situations for both the patient and the intensivist. Specifically, agitated patients can do
physical harm to themselves by dislodging their endotracheal tube, which can potentially
endanger their life.

While speculative, computer vision techniques offer the possibility to quantify agitation in
sedated ICU patients. In particular, such techniques can be used to develop objective
agitation measurements from patient motion. In the case of paraplegic patients, whole body
movement is not available, and hence, monitoring the whole body motion is not a viable
solution. In this case, measuring head motion and facial grimacing for quantifying patient
agitation and sedation in critical care can be a useful alternative. Of course, patient
occlusions due to medical equipment will need to be accounted for within the machine
learning algorithms.

In future research, we will investigate the use of digital imaging and digital video of a
patient's entire body movement, as well as facial expressions to assess agitation and sedation
in the ICU. In addition, correlations between our objective measurements for agitation and
pain intensity using digital imaging and a clinical standard assessment (e.g., MAAS or
RASS score) will also be investigated. Furthermore, we will develop an expert control
system predicated on digital imaging to emulate a clinician's deductive drug dosing process,
that is, the process whereby a clinician successfully infers drug dosing conclusions based on
the clinical standard of an assessed MAAS or RASS score. This expert control system can
be used within a decision support system to provide closed-loop control for ICU sedation
and analgesia, as well as critical care monitoring and lifesaving interventions.
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Fig. 1.
Four different expressions of a subject. The two left images correspond to nonpain, whereas
the two right images correspond to pain.
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Fig. 2.
Pain score for subject 1.
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Fig. 3.
Pain score for subject 2.
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Fig. 4.
Pain score for subject 3.
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Fig. 5.
Pain score for subject 4.
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Fig. 6.
Pain score for subject 5.
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TABLE I
Sparse Bayesian Learning Algorithm

Step 1. Initial parameter computation.

a. Set Φ(i,j) = ϕj(xi), i = 1, …, N, j = l, …, M.

b. Set Φ = [Φ(i,j)] ∈ ℝN × M.

c. Set bn = yn(1 − yn), n = 1, …, N.

d. Set B = diag[b1, b2, …, bN].

Step 2. Initialize the hyperparameters α = [α1, α2, …, αM]T.

Step 3. Find the Gaussian approximation (w; w*, Σ) to the posterior distribution p(w∣x, X, Z, α).

a. Set A = diag[α].

b. Set w* = A−1 ΦT(Z − Y).

c. Set Σ = (ΦT BΦ + A)−1.

Step 4.

Compute the approximate marginal likelihood function using .

Step 5. Set γn = 1 − αn Σnn, n = 1, …, M.

Step 6.

Update α using .

Step 7. If ‖Δα‖ > Tol1 or ‖Δw*‖ > Tol2, where Δα and Δw* are the changes in the values of α and w* in the current iteration, respectively, and
Tol1 and Tol2 are some prespecified tolerances, then go to Step 3.

Step 8. Set α* = α.
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TABLE II
Qualitative Evaluation of Observed κ-Values [29]

κ Strength of agreement

0.00 Poor

0.00–0.20 Slight

0.21–0.40 Fair

0.41–0.60 Moderate

0.61–0.80 Substantial

0.81–1.00 Almost perfect

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2011 May 28.


