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Abstract
This paper develops a ridge procedure for structural equation modeling (SEM) with ordinal and
continuous data by modeling polychoric/polyserial/product-moment correlation matrix R. Rather
than directly fitting R, the procedure fits a structural model to Ra = R + aI by minimizing the
normal-distribution-based discrepancy function, where a > 0. Statistical properties of the
parameter estimates are obtained. Four statistics for overall model evaluation are proposed.
Empirical results indicate that the ridge procedure for SEM with ordinal data has better
convergence rate, smaller bias, smaller mean square error and better overall model evaluation than
the widely used maximum likelihood procedure.
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1. Introduction
In social science research data are typically obtained by questionnaires in which respondents
are asked to choose one of a few categories on each of many items. Measurements are
obtained by coding the categories using 0 and 1 for dichotomized items or 1 to m for items
with m categories. Because the difference between 1 and 2 cannot be regarded as equivalent
to the difference between m − 1 and m, such obtained measurements only possess ordinal
properties. Pearson product-moment correlations cannot reflect the proper association for
items with ordinal data. Polychoric correlations are more appropriate if the ordinal variables
can be regarded as categorization from an underlying continuous normal distribution. Under
such an assumption, each observed ordinal random variable x is related to an underlying
continuous random variable z according to
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where τ0 = −∞ < τ1 < … < τm−1 < τm = ∞ are thresholds. All the continuous variables
together form a vector z = (z1, z2, …, zp)′ that follows a multivariate normal distribution
Np(μ, Σ), where μ = 0 and Σ = (ρij) is a correlation matrix due to identification
considerations. When such an assumption holds, polychoric correlations are consistent,
asymptotically normally distributed and their standard errors (SE) can also be consistently
estimated (Olsson, 1979; Poon & Lee, 1987). On the other hand, the Pearson product-
moment correlation is generally biased, especially when the number of categories is small
and the observed frequencies of the marginal distributions are skewed. Simulation studies
imply that polychoric correlations also possess certain robust properties when the underlying
continuous distribution departs from normality (see e.g., Quiroga, 1992).

Because item level data in social sciences are typically ordinal, structural equation modeling
(SEM) for such data has long been developed. Bock and Lieberman (1970) developed a
maximum likelihood (ML) approach to factor analysis with dichotomous data and a single
factor. Lee, Poon and Bentler (1990) extended this approach to general SEM with
polytomous variables. Because the ML approach involves the evaluation of multiple
integrals, it is computationally intensive. Instead of ML, Christoffersson (1975) and Muthén
(1978) proposed procedures of fitting a multiple-factor model using pairwise frequencies for
dichotomous data by generalized least squares with an asymptotically correct weight matrix
(AGLS). Muthén (1984) further formulated a general procedure for SEM with ordinal and
continuous data using AGLS, which forms the basis of LISCOMP (an early version of
Mplus, Muthén & Muthén, 2007). An AGLS approach for SEM with ordinal and continuous
data was developed in Lee, Poon and Bentler (1992), where thresholds, polychoric,
polyserial and product-moment correlations were estimated by ML. Lee, Poon and Bentler
(1995) further formulated another AGLS approach in which thresholds, polychoric,
polyserial and product-moment correlations are estimated by ML using different subsets of
variables; they named the procedure partition ML (see also Poon & Lee, 1987). The
approach of Lee et al. (1995) has been implemented in EQS (Bentler, 1995) with various
extensions for better statistical inference. Jöreskog (1994) also gave the technical details to
SEM with ordinal variables, where thresholds are estimated using marginal frequencies and
followed by the estimation of polychoric correlations using pairwise frequencies and holding
the estimated thresholds constant. Jöreskog’s development formed the basis for ordinal data
in LISREL1 (see e.g., Jöreskog 1990; Jöreskog & Sörbom, 1996). Technical details of the
development in Muthén (1984) were provided by Muthén and Satorra (1995). Recently,
Bollen and Maydeu-Olivares (2007) proposed a procedure using polychoric instrumental
variables. In summary, various technical developments have been made for SEM with
ordinal data, emphasizing AGLS.

Methods currently available in software are two-stage procedures where polychoric,
polyserial and product-moment correlations are obtained first. This correlation matrix is then
modeled with SEM using ML, AGLS, the normal-distribution-based GLS (NGLS), least

1In LISREL, the AGLS procedure is called weighted least squares (WLS) while GLS is reserved for the GLS procedure when the
weight matrix is obtained using the normal distribution assumption as in covariance structure analysis (Browne, 1974). We will further
discuss the normal-distribution-based GLS in the concluding section.
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squares (LS), and diagonally-weighted least squares (DWLS), as implemented in EQS,
LISREL and Mplus. We need to note that the ML procedure in software fits a structural
model to a polychoric/polyserial/product-moment correlation matrix by minimizing the
normal distribution based discrepancy function, treating the correlation matrix as a sample
covariance matrix from a normally distributed sample, which is totally different from the
ML procedure considered by Lee et al. (1990). We will refer to this ML method in SEM
software as the ML method from now on. The main purpose of this paper is to develop a
ridge procedure for SEM with ordinal and continuous data that has a better convergence
rate, smaller bias, smaller mean square error (MSE) and better overall model evaluation than
ML. We next briefly review studies on the empirical behavior of several procedures to
identify the limitation and strength of each method and to motivate our study and
development.

Babakus, Ferguson and Jöreskog (1987) studied the procedure of ML with modeling four
different kinds of correlations (product-moment, polychoric, Spearman’s rho, and Kendall’s
tau-b) and found that ML with polychoric correlations provides the most accurate estimates
of parameters with respect to bias and MSE, but it is also associated with most
nonconvergences. Rigdon and Ferguson (1991) studied modeling polychoric correlation
matrices with several discrepancy functions and found that distribution shape of the ordinal
data, sample size and fitting function all affect convergence rate. In particular, AGLS has the
most serious problem of convergence and improper solutions, especially when the sample
size is small. ML generates the most accurate estimates at sample size n = 500; ML almost
generates the most accurate parameter estimates at n = 300, as reported in Table 2 of the
paper. Potthast (1993) only studied AGLS estimators and found that the resulting SEs are
substantially underestimated while the associated chi-square statistic is substantially
inflated. Potthast also found that AGLS estimators contain positive biases. Dolan (1994)
studied ML and AGLS with polychoric correlations and found that ML with polychoric
correlations produces the least biased parameter estimates while AGLS estimators contain
substantial biases. DiStefano (2002) studied the performance of AGLS and also found that
the resulting SEs are substantially underestimated while the associated chi-square statistic is
substantially inflated. There also exist many nonconvergence problems and improper
solutions. The literature also shows that, for ML with polychoric correlations, the resulting
SEs and test statistic behave badly, because without correction the formula for SEs and test
statistics are not correct. Currently, when modeling polychoric/polyserial correlation
matrices, software has the option of calculating SEs based on a sandwich-type covariance
matrix and using rescaled or adjusted statistics for overall model evaluation (e.g., EQS,
LISREL, Mplus). These corrected versions are often called robust procedures in the
literature. A recent study by Lei (2009) on ML in EQS and DWLS in Mplus found that
DWLS has a better convergence rate than ML. She also found that relative biases of ML and
DWLS parameter estimates were similar conditioned on the study factors. She concluded (p.
505)

ML performed slightly better in standard error estimation (at smaller sample sizes
before it started to over-correct) while robust WLS provided slightly better overall
Type I error control and higher power in detecting omitted paths. In cases when
sample size is adequately large for the model size, especially when the model is
also correctly specified, it would matter little whether ML of EQS6 or robust WLS
of Mplus3.1 is chosen. However, when sample sizes are very small for the model
and the ordinal variables are moderately skewed, ML with Satorra-Bentler scaled
statistics may be recommended if proper solutions are obtainable.

In summary, ML and AGLS are the most widely studied procedures, and the latter cannot be
trusted with not large enough sample sizes although conditional on the correlation matrix it
is asymptotically the best procedure. These studies indicate that robust ML and robust
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DWLS are promising procedures for SEM with ordinal data. Comparing robust ML and
robust DWLS, the former uses a weight matrix that is determined by the normal distribution
assumption while the latter uses a diagonal weight matrix that treats all the correlations as
independent. The ridge procedure to be studied can be regarded as a combination of ML and
LS.

One problem with ML is its convergence rate. This is partially because the polychoric/
polyserial correlations are obtained from different marginals, and the resulting correlation
matrix may not be positive definite, especially when the sample size is not large enough and
there are many items. As a matter of fact, the normal-distribution-based discrepancy
function cannot take a correlation matrix that is not positive definite because the involved
logarithm function cannot take non-positive values. When the correlation matrix is near
singular and is still positive definite, the model implied matrix will need to mimic the near
singular correlation (data) matrix so that the estimation problem becomes ill-conditioned
(see e.g., Kelley, 1995), which results not only in slower or nonconvergence but also
unstable parameter estimates and unstable test statistics (Yuan & Chan, 2008). Such a
phenomenon can also happen to the sample covariance matrix when the sample size is small
or when the elements of the covariance matrix are obtained by ad-hoc procedures (see e.g.,
Wothke, 1993). Although smoothing the eigenvalues and imposing a constraint of positive
definitiveness is possible (e.g., Knol & ten Berge, 1989), the statistical consequences have
not been worked out and remain unknown.

When a covariance matrix S is near singular, the matrix Sa = S+aI with a positive scalar a
will be positive definite and well-conditioned. Yuan and Chan (2008) proposed to model Sa
rather than S, using the normal distribution based discrepancy function. They showed that
the procedure results in consistent parameter estimates. Empirical results indicate that the
procedure not only converges better, at small sample sizes the resulting parameter estimates
are more accurate than the ML estimator (MLE) even when data are normally distributed.
Compared to modeling sample covariance matrices, modeling correlations typically
encounters more problems of convergence with smaller sample sizes, especially for ordinal
data that are skew distributed. Actually, both EQS and LISREL contain warnings about
proper application of modeling polychoric correlations when sample size is small. Thus, the
methodology in Yuan and Chan (2008) may be even more relevant to the analysis of
polychoric/polyserial correlation matrices than to sample covariance matrices. The aim of
this paper is to extend the procedure in Yuan and Chan (2008) to SEM with ordinal and
continuous data by modeling polychoric/polyserial/product-moment correlation matrices.

When a p × p sample covariance matrix S = (sij) is singular, the program LISREL provides
an option of modeling S + a diag(s11, ···, spp), which is called the ridge option (Jöreskog &
Sörbom, 1996, p. 24). With a correlation matrix R, the ridge option in LISREL fits the
structural model to R + aI, which is the same as extending the procedure in Yuan and Chan
(2008) to correlation matrices. Thus, ridge SEM with ordinal data has already been
implemented in LISREL. However, it is not clear how to properly apply this procedure in
practice, due to lack of studies of its properties. Actually, McQuitty (1997) conducted
empirical studies on the ridge option in LISREL 8 and concluded that (p. 251) “there
appears to be ample evidence that structural equation models should not be estimated with
LISREL’s ridge option unless the estimation of unstandardized factor loadings is the only
goal.” One of the contributions of this paper is to obtain statistical properties of ridge SEM
with ordinal data and to make it a statistically sound procedure. We will show that ridge
SEM with ordinal data enjoys consistent parameter estimates and consistent SEs. We will
also propose four statistics for overall model evaluation. Because ridge SEM is most useful
when the polychoric/polyserial/product-moment correlation matrix is near singular, which
tends to occur with smaller sample sizes, we will conduct Monte Carlo study to see how
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ridge SEM performs with respect to bias and efficiency of parameter estimates. We will also
empirically identify the most reliable statistics for overall model evaluation and evaluate the
performance of formula-based SEs.

Section 2 provides the details of the development for model inference, including consistent
parameter estimates and SEs as well as rescaled and adjusted statistic for overall model
evaluation. Monte Carlo results are presented in section 3. Section 4 contains a real data
example. Conclusion and discussion are offered at the end of the paper.

2. Model Inference
Let R be a p×p correlation matrix, including polychoric, polyserial and Pearson product-
moment correlations for ordinal and continuous variables. Let r be the vector of all the
correlations formed by the below-diagonal elements of R and ρ be the population
counterpart of r. Then it follows from Jöreskog (1994), Lee et al. (1995) or Muthén and
Satorra (1995) that,

(1)

where  denotes convergence in distribution and ϒ is the asymptotic covariance matrix of
 that can be consistently estimated. For SEM with ordinal data, we will have a

correlation structure Σ(θ). As mentioned in the introduction, popular SEM software has the
option of modeling R by minimizing

(2)

for parameter estimates θ̂. Such a procedure is just to replace the sample covariance matrix S
by the correlation matrix R in the most commonly used ML procedure for SEM. Equations
(1) and (2) can be compared to covariance structure analysis when S is based on a sample
from an unknown distribution. Actually, the same amount of information is provided in both
cases, where ϒ’s need to be estimated using fourth-order moments. Similar to modeling
covariance matrices, (2) needs R to be positive definite. Otherwise, the term log |RΣ−1(θ)| is
not defined.

For a positive a, let Ra = R + aI. Instead of minimizing (2), ridge SEM minimizes

(3)

for parameter estimates θ̂a, where Σa(θa) = Σ(θa) + aI. We will show that θ̂a is consistent and
asymptotically normally distributed. Notice that corresponding to Ra is a population
covariance matrix Σa = Σ + aI, which has identical off-diagonal elements with Σ. Although
minimizing (2) for θ̂ with a = 0 for categorical data is available in software, we cannot find
any documentation of its statistical properties. Our development will be for an arbitrary
positive a, including the ML procedure when a = 0. Parallel to Yuan and Chan (2008), the
following technical development will be within the context of LISREL models.

2.1 Consistency
Let z = (x*′, y*′)′ be the underlying standardized population. Using LISREL notation, the
“measurement model2” is given by
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where μx = E(x*), μy = E(y*), Λx and Λy are factor loading matrices; ξ and η are vectors of
latent constructs with E(ξ) = 0 and E(η) = 0; and δ and ε are vectors of measurement errors
with E(δ) = 0, E(ε) = 0, Θδ = E(δδ′), Θε = E(εε′). The structural model that describes
interrelations of η and ξ is

where ζ is a vector of prediction errors with E(ζ) = 0 and Ψ = E(ζζ′). Let Φ = E(ξξ′), the
resulting covariance structure of z is (see Jöreskog & Sörbom, 1996, pp. 1–3)

Recall that μ = E(z) = 0 and that Σ = Cov(z) is a correlation matrix when modeling
polychoric/polyserial/product-moment correlations. We have μx = 0, μy = 0,

and

where diag(A) means the diagonal matrix formed by the diagonal elements of A, and Iδ and
Iε are identity matrices with the same dimension as Θδ and Θε, respectively. Thus, the
diagonal elements of Θδ and Θε are not part of the free parameters but part of the model of
Σ(θ) through the functions of free parameters in Λx, Λy, B, Γ, Φ, Ψ, offdiag(Θδ) and
offdiag(Θε), where offdiag(A) implies the off-diagonal elements of A.

When Σ(θ) is a correct model for Σ, there exist matrices , B(0), Γ(0), Φ(0), Ψ(0),

 and  such that Σ = Σ(θ0), where θ0 is the vector containing the
population values of all the free parameters in θ. Let θa0 be the corresponding vector of θa at

, B(a) = B(0), Γ(a) = Γ(0), Φ(a) = Φ(0), Ψ(a) = Ψ(0),

 and . In addition, let

2The model presented here is the standard LISREL model in which δ and ε are not correlated. Results in this paper still hold when δ
and ε correlate.
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(4a)

and

(4b)

Thus, θa0 = θ0 and  and  are functions of θa0 = θ0 and a. Let the functions in (4a)
and (4b) be part of the model of Σa(θa). Then we have Σa = Σa(θa0) = Σa(θ0). Notice that
Σa(θ) is uniquely determined by Σ(θ) and a. This implies that whenever Σ(θ) is a correct
model for modeling Σ, Σa(θa) will be a correct model for modeling Σa. The above result also
implies that for a correctly specified Σ(θ), except for sampling errors, the parameter
estimates for Λx, Λy, B, Γ, Φ, Ψ and the off-diagonal elements of Θδ and Θε when modeling
Ra will be the same as those when modeling R. The resulting estimates for the diagonals of

 and  of modeling Ra are different from those of modeling R by the constant a,
which is up to our choice. Traditionally, the diagonal elements of Θ̂δ and Θ̂ε are estimates of
the variances of measurement errors/uniquenesses. When modeling Ra, these can be
obtained by

(5a)

and

(5b)

The above discussion implies that θ̂a of modeling Ra may be different from θ̂ of modeling R
due to sampling error, but their population counterparts are identical. We have the following
formal result.

Theorem 1—Under the conditions (I) Σ(θ) is correctly specified and identified and (II) θ ∈
Θ and Θ is a compact subset of the Euclidean space , θ̂a is consistent for θ0 regardless of
the value of a.

The proof of the theorem is essentially the same as that for Theorem 1 in Yuan and Chan
(2008) when replacing the sample covariance matrix there by the correlation matrix R. Yuan
and Chan (2008) also discussed the benefit of modeling Sa = S + aI from a computational
perspective using the concept of condition number; the same benefit holds for modeling Ra.
One advantage of estimation with a better condition number is that a small change in the
sample will only cause a small change in θ̂a while a small change in the sample can cause a
great change in θ̂ if R is near singular. Readers who are interested in the details are referred
to Yuan and Chan (2008).

2.2 Asymptotic normality
We will obtain the asymptotic distribution of θ̂a, which allows us to obtain its consistent
SEs. For such a purpose we need to introduce some notation first.

For a symmetric matrix A, let vech(A) be a vector by stacking the columns of A and leaving
out the elements above the diagonal. We define sa = vech(Ra), σa(θ) = vech[Σa(θ)], s =
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vech(R), and σ(θ) = vech[Σ(θ)]. Notice that sa and s are vectors of length p* = p(p + 1)/2
while the r in (1) is a vector of length p* = p(p − 1)/2. The difference between r and sa is
that sa also contains the p elements of a + 1 on the diagonal of Ra, and sa = s when a = 0. Let
Dp be the duplication matrix defined by Magnus and Neudecker (1999, p. 49), and

We will use a dot on top of a function to denote the first derivative or the gradient. For
example, if θ contains q unknown parameters, σ̇a(θ) = ∂σa(θ)/∂θ′ is a p*×q matrix. Under
standard regularity conditions, including that θ0 is an interior point of Θ, θ̂a satisfies

(6)

where

In equation (6), because σa(θ) and σ(θ) only differ by a constant a, σ̇a(θ) = σ̇(θ) and sa −
σa(θ) = s − σ(θ). So the effect of a on θ̂a in (6) is only through

(7)

where

Notice that the constant coefficient 1/[2(a + 1)2] in (7) does not have any effect on θ̂a. It is
Ua that makes a difference. When a = 0, θ̂a = θ̂ is the ML parameter estimate. When a = ∞,

is the weight matrix corresponding to modeling R by least squares. Thus, ridge SEM can be
regarded as a combination of ML and LS. We would expect that it has the merits of both
procedures. That is, ridge SEM will have a better convergence rate and more accurate
parameter estimates than ML and more efficient estimates than LS.

It follows from (6) and a Taylor expansion of ga(θ̂a) at θ0 that

(8)
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where ġa(θ̄) is q ×q matrix and each of its rows is evaluated at a vector θ̄ that is between θ0
and θ̂a, and op(1) represents a quantity that converges to zero in probability as n increases.
We also omitted the argument of the functions in (8) when evaluated at the population value
θ0. Notice that the rows of σ̇a corresponding to the diagonal elements of Σa are zeros and the
vector (sa − σa) constitutes of (r − ρ) plus p zeros. It follows from (1) that

(9)

where ϒ* is a p* × p* matrix consisting of ϒ and p rows and p columns of zeros. Obviously,
ϒ* is singular. We may understand (9) by the general definition of a random variable, which
is just a constant when its variance is zero. It follows from (8) and (9) that

(10a)

where

(10b)

Let ϒ̂* be a consistent estimator of ϒ*, which can be obtained from a consistent ϒ̂ plus p
rows and p columns of zeros. A consistent estimate Ω̂ = (ω̂ij) of Ω can be obtained when
replacing the unknown parameters in (10) by θ̂a and ϒ* by ϒ̂*. Notice that the Ω in (10) is

the asymptotic covariance matrix. We will compare the formula-based SEs 
against empirical SEs at smaller sample sizes using Monte Carlo.

A consistent ϒ̂ can be obtained by the approach of estimating equations (see e.g., Yuan &
Jennrich, 1998). Actually, the estimates of ϒ given in Lee et al. (1992, 1995), Jöreskog
(1994) and Muthén and Satorra (1995) can all be regarded as using estimating equations.

2.3 Statistics for overall model evaluation
This subsection presents four statistics for overall model evaluation. When minimizing (3)
for parameter estimates, we automatically get a measure of discrepancy between data and
model, i.e., FM La(θ̂a). However, the popular statistic TM La = nFM La(θ̂a) does not
asymptotically follow a chi-square distribution even when a = 0. Let

and

(11)

be the so-called reweighted LS statistic, which is in the default output of EQS when
modeling the covariance matrix. Under the assumption of a correct model structure, there
exists
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(12)

Notice that σa = σa(θ0). It follows from (8) that

(13)

where

Combining (12) and (13) leads to

(14)

Notice that ϒ* in (9) has a rank of p*, there exists a p* × p* matrix A such that AA′ = ϒ*.
Let u ~ Np*(0, I), then it follows from (9) that

(15)

Combining (14) and (15) yields

(16)

Notice that (PaA)′Wa(PaA) is nonnegative definite and its rank is p*−q. Let 0 < κ1 ≤ κ2 ≤ …

≤ κp*−q be the nonzero eigenvalues of (PaA)′Wa(PaA) or equivalently of . It
follows from (16) that

(17)

where  are independent and each follows . Unless all the κj’s are 1.0, the distribution of

TMLa will not be . However, the behavior of TMLa might be approximately described
by a chi-square distribution with the same mean. Let

Then, as n → ∞,
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approaches a distribution whose mean equals p* − q. Thus, we may approximate the
distribution of TMLa by

(18)

parallel to the Satorra and Bentler (1988) rescaled statistic when modeling the sample
covariance matrix. Again, the approximation in (18) is motivated by asymptotics, we will
use Monte Carlo to study its performance with smaller sizes.

Notice that the systematic part of TRMLa is the quadratic form

which agrees with  in the first moment. Allowing the degrees of freedom to be
estimated rather than p* − q, a statistic that agrees with the chi-square distribution in both
the first and second moments was studied by Satterthwaite (1941) and Box (1954), and
applied to covariance structure models by Satorra and Bentler (1988). It can also be applied
to approximate the distribution of TMLa. Let

Then TMLa/m1 asymptotically agrees with  in the first two moments. Consistent
estimates of m1 and m2 are given by

(19)

Thus, using the approximation

(20)

might lead to a better description of TMLa than (18). We will also study the performance of
(20) using Monte Carlo in the next section.

In addition to TMLa, TRLSa can also be used to construct statistics for overall model
evaluation, as printed in EQS output when modeling the sample covariance matrix. Like
TMLa, when modeling Ra, TRLSa does not asymptotically follow a chi-square distribution
even when a = 0. It follows from (12) that the distribution of TRLSa can be approximated
using
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(21)

or

(22)

The rationales for the approximations in (21) and (22) are the same as those for (18) and
(20), respectively. Again, we will study the performance of TRRLSa and TARLSa using Monte
Carlo in the next section.

We would like to note that the op(1) in equation (12) goes to zero as n → ∞. But statistical
theory does not tell how close TMLa and TRLSa are at a finite n. The Monte Carlo study in
the next section will allow us to compare their performances and to identify the best statistic
for overall model evaluation at smaller sample sizes.

We also would like to note that the ridge procedure developed here is different from the
ridge procedure for modeling covariance matrices developed in Yuan and Chan (2008).
When treating Ra as a covariance matrix in the analysis, we will get identical TMLa and
TRLSa as defined here if all the diagonal elements of Σa(θ̂a) happen to be a + 1, which is true
for many commonly used SEM models. However, the rescaled or adjusted statistics will be
different. Similarly, we may also get identical estimates for factor loadings, but their SEs
will be different when based on either the commonly used information matrix or the
sandwich-type covariance matrix constructed using ϒ̂*.

3. Monte Carlo Results
The population z contains 15 normally distributed random variables with mean zero and
covariance matrix

where

with λ = (.60, .70, 0.75, .80, .90)′ and 0 being a vector of five zeros;

and Ψ is a diagonal matrix such that all the diagonal elements of Σ are 1.0. Thus, z can be
regarded as generated by a 3-factor model, and each factor has 5 unidimensional indicators.
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Three sets of conditions are used to obtain the observed variables. In condition 1, all the 15
variables in x are dichotomous and are obtained using thresholds

which corresponds to 30%, 40%, 50%, 60%, 70%, 35%, 40%, 45%, 50%, 55%, 50%, 55%,
60%, 65%, and 70% of zeros at the population level for the 15 variables, respectively. In
condition 2, for each factor the first two variables have five categories and the last three
variables are dichotomous. The thresholds for the 6 five-category variables are respectively
τ1 = (−0.52, −0.25, 0.25, 0.52)′, corresponding to proportions (30%, 10%, 20%, 10%, 30%)
for the five categories of x1; τ2 = (−0.84, −0.25, 0.25, 0.84), corresponding to proportions
(20%, 20%, 20%, 20%, 20%) for the five categories of x2; τ6 = (−0.84, −0.25, 0.25, 0.84),
corresponding to proportions (20%, 20%, 20%, 20%, 20%) for the five categories of x6; τ7 =
(−0.84, −0.52, −0.25, 0.25), corresponding to proportions (20%, 10%, 10%, 20%, 40%) for
the five categories of x7; τ11 = (−0.52, −0.25, 0.25, 0.52), corresponding to proportions
(30%, 10%, 20%, 10%, 30%) for the five categories of x11; τ 12 = (−0.25, 0.25, 0.52, 0.84),
corresponding to proportions (40%, 20%, 10%, 10%, 20%) for the five categories of x12.
The thresholds for the 9 dichotomous variables are τ = (0, 0.25, 0.52, −0.25, 0, 0.13, 0.25,
0.39, 0.52), which correspond to 50%, 60%, 70%, 40%, 50%, 55%, 60%, 65%, 70% of zeros
at the population level of x3, x4, x5, x8, x9, x10, x13, x14 and x15, respectively. In condition 3,
the first two variables for each factor are continuously observed and the last three variables
are dichotomous using thresholds

which correspond to 50%, 60%, 70%, 40%, 50%, 55%, 60%, 65%, and 70% of zeros at the
population level of variables x3, x4, x5, x8, x9, x10, x13, x14 and x15, respectively.

Because it is with smaller sample sizes that ML encounter problems, we choose sample
sizes3 n = 100, 200, 300 and 400. One thousand replications are used at each sample size.
For each sample, we model Ra with a = 0, .1 and .2, which are denoted by ML, ML.1 and
ML.2, respectively. Our evaluation includes the number of convergence or converging rate,
the speed of convergence, biases and SEs as well as mean square errors (MSE) of the
parameter estimates; and the performance of the four statistics given in the previous section.
We also compare SEs based on the covariance matrix Ω in (10) against empirical SEs.

All the thresholds are estimated using the default probit function in SAS. Pearson product-
moment correlations are obtained for continuously observed variables. Fisher scoring
algorithms are used to obtain polychoric/polyserial correlations (Olsson, 1979; Olsson,
Drasgow & Dorans, 1982) and to solve equation (6) for structural model parameters θ̂a (Lee
& Jennrich, 1979; Olsson, 1979). The convergence criterion in estimating the polychoric/
polyserial correlations is set as |r(k+1) − r(k)| < 10−4, where r(k) is the value of r after the kth
iteration; the convergence criterion for obtaining θ̂a is set as

, where  is the jth parameter after the kth iteration. True
population values are set as the initial value in both estimation processes. We record the

3Actually, at sample size 400, we found that all replications converged with ML.
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estimation as unable to reach a convergence if the convergence criterion cannot be reached
after 100 iterations. For each R, the ϒ in (1) is estimated using estimating equations.

Note that not all of the N = 1000 replications converge in all the conditions, all the empirical
results are based on Nc converged replications for each estimation method. Let θ̂ij be the
estimate of θj in the ith converged replication. For each estimation method at a given sample
size we obtained

with , and

For the performance of the formula-based SE, we also obtained

where SEij is the square root of the jth diagonal element of Ω̂/n in the ith converged
replication. In contrast, the empirical SE, SEEj, is just the square root of Varj. Notice that
there are 18 free model parameters: 15 factor loadings and 3 factor correlations. With 3 data
conditions, 3 estimation methods and 4 sample sizes, there will be too many tables to
include in the paper if we report bias, MSE and SEs for each individual parameter. Instead,
these are put on the web at “www.anonymous.edu/ridge-item-SEM/”. In the paper, for each
sample size and each estimation method, we report the averaged bias, variance and MSE
given by

and the averaged difference

which will give us the information of the formula-based SEs when predicting empirical SEs.
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Results for data condition 1 with 15 dichotomous indicators are in Tables 1 to 5. All
replications reached convergence when estimating R. But more than half replications cannot
converge when solving (6) with a = 0 and .1 at n = 100, as reported in the upper panel of
Table 1. When a = .2, the number of convergence doubles that when a = 0 at n = 100. When
n = 200, there are still about one third of the replications cannot reach convergence at a = 0
while all reach convergence at a = .2. Ridge SEM not only results in more convergences but
also converges faster, as reported in the lower panel of Table 1, where each entry is the
average of the number of iterations for Nc converged replications.

Tables 2 contains the averaged bias, variance and MSE for the four sample sizes and three
estimation methods. Clearly, all the averaged biases are at the 3rd decimal place. Except for
n = 100, all the other variances and MSEs are also at the 3rd decimal place. Because the
Nc’s for the three different a’s for n = 100 and 200 are so different, it is had to compare the
results between different estimation methods. When n = 400, all the three methods
converged for all the replications, the averaged bias, variance, and MSE all become smaller
as a changes from 0 to .2. At n = 300, both ML.1 and ML.2 converged for all the
replications, the averaged bias, variance, and MSE corresponding to ML.2 are also smaller.
These indicate that the ridge procedure with a proper a leads to less biased, more efficient
and more accurate parameter estimates than ML. The corresponding biases, variances and
MSEs for individual parameters are in Tables A1 to A4 at “www.nd.edu~kyuan/ridge-item-
SEM/”. From these tables we may notice that most individual biases are also at the 3rd
decimal place although they tend to be negative. We may also notice that estimates for
smaller loadings tend to have greater variances and MSEs.

Table 3 contains the empirical mean, standard deviation (SD), the number of rejection and
the rejection ratio of the statistics TRMLa and TAMLa, based on the converged replications.
Each rejection is compared to the 95th percentiles of the reference distribution in (18) or
(20). For reference, the mean and SD of TMLa are also reported. Both TRMLa and TAMLa
over-reject the correct model although they tend to improve as n or a increases. Because the
three Nc’s at n = 100 are very different, the rejection rates, means or SDs of the three
estimation methods are not comparable for this sample size. Table 3 also suggests that TMLa
cannot be used for model inference because its empirical means and SDs are far away from

those of the nominal .

Table 4 contains the results of TRRLSa and TARLSa, parallel to those in Table 3. For n = 200,
300 and 400, the statistic TRRLSa performed very well in mean, SD and rejection rate
although there is a slight over-rejection at smaller n. While TRLSa monotonically decreases
with a, TRRLSa is very stable when a changes. The statistic TARLSa also performed well with
a little bit of under-rejection.

Table 5 compares the averages of the formula-based SEs against the empirical ones. We use
4 decimals to inform the fine differences among the three estimation methods. As expected,
within each estimation method, both the averaged SEE and SEF become smaller as n
increases, as reflected by Table 5(a). They are also smaller at a given n when a changes from
0 to .2, although at n = 100 and 200 they are based on different number of replications.
Table 5(a) also implies that formula-based SEs tend to slightly under-predict empirical SEs.
The results in Table 5(b) indicate that SEF predicts SEE better when either a or n increases.
At n = 400, the under-prediction is between 1% and 2% with ML.2. It is interesting to note
that the averaged difference between SEF and SEE is smaller at n = 300 and a = .2 than that
at n = 400 and a = 0 or .1. The corresponding SEs for individual parameters are in Tables A5
to A8 on the web, where almost all individual SEEs are slightly under-predicted by the
corresponding SEF s, with only a few exceptions mostly for factor correlations.
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Results for data condition 2 with 6 five-category and 9 dichotomous indicators are in Tables
6 to 10. All replications converged when estimating R. But only 294 out of 1000 replications
converged when solving (6) with a = 0 at n = 100, as reported in the upper panel of Table 6.
At n = 100, the number of convergences almost tripled when a = .1, and only 3 replications
could not reach convergence with ML.2. Nonconvergences still exist for ML at n = 200 and
300 while all replications converged for ML.1 and ML.2. The lower panel of Table 6 implies
that ridge SEM also converges faster. It is interesting to see that ML at n = 100 in Table 6
enjoys fewer convergences than that in Table 1. Further examination indicates that almost
all the nonconvergences are due to nonpositive definite or near singular R. This is because
positive definiteness is a function of all the elements in R. One element in R can change the
smallest eigenvalue from positive to negative.

Tables 7 contains the averaged bias, variance and MSE for data condition 2. At n = 400
when all the three estimation methods converged on all replications, bias, variance and MSE
all become smaller when a changes from 0 to .2. These quantities also become smaller as a
increases at n = 100, 200 and 300. These indicate that the ridge procedure with a proper a
leads to less biased, more efficient and more accurate parameter estimates than ML.
Compared to the results in Table 2, we notice that, except for the averaged bias of ML at n =
100, all the other numbers in Table 7 are smaller. This indicates that having indicators with
more categories leads to less biased and more efficient parameter estimates for all the three
estimation methods. The exception for the averaged bias with ML at n = 100 is due to the
very different convergence rates. The corresponding biases, variances and MSEs for
individual parameters are in Tables A9 to A12 on the web. From these tables we may notice
that most individual biases are negative. We may also notice that estimates for smaller
loadings do not tend to have greater variances or MSEs anymore, due to their corresponding
indicators having more categories.

Parallel to Table 3, Table 8 contains the results for the statistics TRMLa and TAMLa, based on
the converged replications. Similar to those in Table 3, both TRMLa and TAMLa over-reject
the correct model although they tend to improve as n or a increases. Among the statistics,
TAMLa performed the best at a = .2. Table 8 also suggests that TMLa cannot be used for
model inference. Table 9 contains the results of TRRLSa and TARLSa, parallel to those in
Table 4. Both TRRLSa and TARLSa continue to be stable when n or a changes. But TRRLSa
tends to reject the correct model more than in Table 4 while TARLSa slightly under-rejects
the correct model. Tables 8 and 9 also suggest that TMLa and TRLSa tend to be smaller with

indicators having more categories, but they are still too far away from the expected .

Table 10 contains the averages of empirical and the formula-based SEs. Similar to those in
Table 5, the SE becomes smaller as either n or a increases. Table 10(a) also implies that
formula-based SEs tend to slightly under-predict empirical SEs. The results in Table 10(b)
indicate that SEF predicts SEE better when either a or n increases. SEF also predicts SEE
better under ML.2 at n = 300 than under ML at n = 400. Comparing the results in Table 10 to
those in Table 5, we notice that the formula-based SEs predict the empirical ones better
when indicators have more categories. The corresponding SEs for individual parameters are
in Tables A13 to A16 on the web, where almost all individual SEEs are slightly under-
predicted by the corresponding SEF s, with only a few exceptions.

Results for data condition 3 with 6 continuous and 9 dichotomous indicators are in Tables 11
to 15. Similar to data conditions 1 and 2, all nonconvergences occurred when solving (6)
with a = 0 at n = 100, 200, 300 and with a = .1 at n = 100, as reported in the upper panel of
Table 11. Obviously, ridge SEM not only results in more convergences but also converges
faster, as reported in the lower panel of Table 1. Similar to being observed previously, the
condition with 6 continuous and 9 dichotomous indicators does not necessarily correspond
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to more positive definite R than the condition with 15 dichotomous indicators when n is
small. It is expected that both ML.1 and ML.2 perform well.

Tables 12 contains the averaged bias, variance and MSE. Similar to the two previous
conditions, bias, variance and MSE all become smaller from a = 0 to a = .2. Compared to the
results in Tables 2 and 7, we notice that, except for the averaged bias of ML at n = 100, all
the other numbers in Table 12 are smaller. This is expected because more continuous
indicators should correspond to less biased and more efficient parameter estimates. The
exception for the averaged bias with ML at n = 100 is due to the very different convergence
rates. The corresponding biases, variances and MSEs for individual parameters are in Tables
A17 to A20 on the web.

Table 13 gives the results of TRMLa and TAMLa, parallel to those in Tables 3 and 8. Similar
to being observed earlier, both TRMLa and TAMLa over-reject the correct model although
they tend to improve as n or a increases. Table 14 contains the results of TRRLSa and
TARLSa, parallel to those in Tables 4 and 9. Both TRRLSa and TARLSa continue to be stable to
the changes of n and a. But TRRLSa tends to reject the correct model more often than in
previous tables. TARLSa performed quite well, only slightly under-rejecting the correct
model. Tables 13 and 14 suggest that TMLa and TRLSa tend to be smaller with more

continuous indicators, but they are still too far away from the expected .

Table 15 compares SEF against SEE for data condition 3, parallel to Tables 5 and 10. Both
the averaged SEE and SEF become smaller as n increases or a changes from 0 to .2.
Formula-based SEs still tend to slightly under-predict empirical SEs. The results in Table
15(b) indicate that SEF predicts SEE better when either a or n increases. Again, the averaged
difference between SEF and SEE under ML.2 at n = 300 is smaller than those under ML and
ML.1 at n = 400. Comparing the numbers in Table 15 with those in Tables 5 and 10 we
found that more continuous indicators not only lead to more efficient parameter estimates
but also more accurate prediction of empirical SEs by formula-based SEs. The
corresponding SEs for individual parameters are in Tables A21 to A24 on the web, where
most individual SEEs are still slightly under-predicted by the corresponding SEF s.

In summary, for the three data conditions and four sample sizes, ML.2 performed better than
ML.1, which was a lot better than ML with respect to convergence rate, convergence speed,
bias, efficiency, as well as the accuracy of formula-based SEs.

4. An Empirical Example
The empirical results in the previous section indicate that, with a proper a, MLa performed
much better than ML. This section further illustrates the effect of a on individual parameter
estimates and test statistics using a real data example, where ML fails.

Eysenck and Eysenck (1975) developed a Personality Questionnaire. The Chinese version of
it was available through Gong (1983). This questionnaire was administered to 117 first year
graduate students in a Chinese university. There are four subscales in this questionnaire
(Extraversion/Introversion, Neuroticism/Stability, Psychoticism/Socialisation, Lie), and each
subscale consists of 20 to 24 items with two categories. We have access to the dichotomized
data of the Extraversion/Introversion subscale, which has 21 items. According to the manual
of the questionnaire, answers to the 21 items reflect a respondent’s latent trait of
Extraversion/Introversion. Thus, we may want to fit the dichotomized data by a one-factor
model. The tetrachoric correlation matrix4 R was first obtained together with ϒ̂. However,
R is not positive definite. Its smallest eigenvalue is −.473. Thus, the ML procedure cannot
be used to analyze R.
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Table 16(a) contains the parameter estimates and their SEs when modeling Ra = R + aI with
a = .5, .6 and .7. To be more informative, estimates of error variances (ψ̂11 to ψ̂21,21) are also
reported. The results imply that both parameter estimates and their SEs change little when a
changes from .5 to .7. Table 16(b) contains the statistics TRMLa, TAMLa, TRRLSa and TARLSa
as well as the associated p-values. The estimated degrees of freedom m̂2 for the adjusted
statistics are also reported. All statistics indicate that the model does not fit the data well,
which is common when fitting practical data with a substantive model. The statistics TRMLa
and TAMLa decrease as a increases, while TRRLSa and TARLSa as well as m̂2 are barely
affected by a. Comparing the statistics implies that statistics derived from TMLa may not be
as reliable as those derived from TRLSa. The p-values associated with TRRLSa are smaller
than those associated with TARLSa, which agrees with the results in the previous section
where TARLSa tends to slightly under-reject the correct model.

5. Conclusion and Discussion
Procedures for SEM with ordinal data have been implemented in major software. However,
there exist problems of convergence in parameter estimation and lack of reliable statistics
for overall model evaluation, especially when the sample size is small and the observed
frequencies are skewed in distribution. In this paper we studied a ridge procedure paired
with the ML estimation method. We have shown that parameter estimates are consistent,
asymptotically normally distributed and their SEs can be consistently estimated. We also
proposed four statistics for overall model evaluation. Empirical results imply that the ridge
procedure performs better than ML in convergence rate, convergence speed, accuracy and
efficiency of parameter estimates, and accuracy of formula-based SEs. Empirical results also
imply that the rescaled statistic TRRLSa performed best at smaller sample sizes and TARLSa
also performed well for n = 300 and 400, especially when R contains product-moment
correlations.

For SEM with covariance matrices, Yuan and Chan (2008) suggested choosing a = p/n.
Because p/n → 0 as n → ∞, the resulting estimator is asymptotically equivalent to the ML
estimator. Unlike a covariance matrix that is always nonnegative definite, the polychoric/
polyserial/product-moment correlation matrix may have negative eigenvalues that are
greater than p/n in absolute value, hence choosing a = p/n may not lead to a positive definite
Ra, as is the case with the example in the previous section. In practice, one should choose an
a that makes the smallest eigenvalue of Ra greater than 0 for a proper convergence when
estimating θ̂a. Once converged, a greater a makes little difference on parameter estimates
and test statistics TRRLSa and TARLSa, as illustrated by the example in the previous section
and the Monte Carlo results in section 3. If the estimation cannot converge for an a that
makes the smallest eigenvalue of Ra greater than, say, 1.0, then one needs to choose either a
different set of starting values or to reformulate the model. A good set of starting values can
be obtained from submodels where analytical solutions exist. For example, when zi, zj and
zk are unidimensional indicators for a factor ξ, with loading λi, λj and λk, respectively; then
ρij = λiλj and λi = (ρijρik/ρjk)1/2. Thus, (rijrik/rjk)1/2 gives a good starting value for λi. When
all the correlations are positive, we may choose .5 for all the free parameters. Actually, all
the starting values of factor loadings for the example in the previous section are set at .5
without any convergence problem with a = .5, .6 and .7 even when three of the 21 estimates
are negative. The product-moment correlations of the ordinal and continuous data can be
used as the starting values when estimating the polychoric and polyserial correlations.

4Four of the 21 ×20/2 = 210 contingency tables contain a cell with zero observations, which was replaced by .1 to facilitate the
estimation of R.
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We have only studied ridge ML in this paper, mainly because ML is the most popular and
most widely used procedure in SEM. In addition to ML, the normal-distribution-based
NGLS procedure has also been implemented in essentially all SEM software. The ridge
procedure developed in section 2 can be easily extended to NGLS. Actually, the asymptotic
distribution in (10) also holds for the NGLS estimator after changing Σ (θ̂a) in the definition
of Wa to Sa; the rescaled and adjusted statistics parallel to those in (21) and (22) for the
NGLS procedure can be similarly obtained. Further Monte Carlo study on such an extension
is valuable.

Another issue with modeling polychoric/polyserial/product-moment correlation matrix is the
occurrence of negative estimates of error variances. Such a problem can be caused by model
misspecification and/or small sample together with true error variances being small (see e.g,
Kano, 1998; van Driel, 1978). Negative estimates of error variances can also occur with the
ridge estimate although it is more efficient than the ML estimator. This is because Σa(θ) will
be also misspecified if Σ (θ) is misspecified, and true error variances corresponding to the
estimator in (5) continue to be small when modeling Ra. For correctly specified models,
negative estimates of error variances is purely due to sampling error, which should be
counted when evaluating empirical efficiency and bias, as is done in this paper.

We have only considered the situation when z ~ N (μ, Σ) and when Σ (θ) is correctly
specified. Monte Carlo results in Lee et al. (1995), Flora and Curran (2004), and Maydeu-
Olivares (2006) imply that SEM by analyzing the polychoric correlation matrix with ordinal
data has certain robust properties when z ~ N (μ, Σ) is violated, which is a direct
consequence of the robust properties possessed by R, as reported in Quiroga (1992). These
robust properties should equally hold for ridge SEM because θ̂a is a continuous function of
R. When both Σ (θ) is misspecified and z ~ N (μ, Σ) does not hold, the two
misspecifications might be confounded. Test procedures for checking z ~ N (μ, Σ) under
ordinal data exist (see e.g., Maydeu-Olivares, 2006). Further study is needed for their
practical use in SEM with a polychoric/polyserial/product-moment correlation matrix.

As a final note, the developed procedure can be easily implemented in a software that
already has the option of modeling polychoric/polyserial/product-moment correlation matrix
R by robust ML. With R being replaced by Ra, one only needs to set the diagonal of the
fitted model to a + 1 instead of 1.0 in the iteration process. The resulting statistics TML,
TRML, TAML and TRLS will automatically become TMLa, TRMLa, TAMLa and TRLSa,
respectively. To our knowledge, no software currently generates TRRLSa and TARLSa.
However, with TRLSa, m̂1 and m̂2, these two statistics can be easily calculated. Although Ra
is literally a covariance matrix, except unstandardized θ̂a when diag(Ra) = Σ (θ̂a) happen to
hold, treating Ra as a covariance matrix will not generate correct analysis (see e.g.,
McQuitty, 1997).
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Table 1

Number of convergences and average number of iterations with 15 dichotomized indicators, 1000 replications.

n ML ML.1 ML.2

number of convergences

100 438 491 961

200 688 995 1000

300 988 1000 1000

400 1000 1000 1000

average number of iterations

100 18.767 12.112 10.286

200 9.416 8.085 7.405

300 7.886 6.949 6.480

400 7.046 6.348 5.996
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Table 6

Number of convergence and average number of iterations with 6 five-category and 9 dichotomous indicators,
1000 replications.

n ML ML.1 ML.2

number of convergence

100 294 882 997

200 938 1000 1000

300 998 1000 1000

400 1000 1000 1000

average number of iterations

100 16.320 10.249 9.002

200 8.453 7.317 6.776

300 7.119 6.433 6.030

400 6.514 5.958 5.622
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Table 11

Number of convergences and average number of iterations with 6 continuous and 9 dichotomized indicators,
1000 replications.

n ML ML.1 ML.2

number of convergence

100 279 919 1000

200 946 1000 1000

300 999 1000 1000

400 1000 1000 1000

average number of iterations

100 13.756 9.950 8.703

200 8.205 7.121 6.626

300 6.974 6.278 5.916

400 6.391 5.847 5.532
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