
Characterization of a novel family of fibronectin-binding proteins
with M23 peptidase domains from Treponema denticola

C.V. Bamford1, T. Francescutti2, C.E. Cameron2, H.F. Jenkinson1, and D. Dymock1

1 Oral Microbiology Unit, Department of Oral and Dental Science, University of Bristol, Bristol, UK
2 Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada

SUMMARY
Interactions with fibronectin are important in the virulence strategies of a range of disease-related
bacteria. The periodontitis-associated oral spirochaete Treponema denticola expresses at least two
fibronectin-binding proteins, designated Msp (major surface protein) and OppA (oligopeptide-
binding protein homologue). To identify other T. denticola outer membrane fibronectin-binding
proteins, the amino acid sequence of the Treponema pallidum fibronectin-binding protein Tp0155
was used to survey the T. denticola genome. Seven T. denticola genes encoding orthologous
proteins were identified. All but two were expressed in Escherichia coli and purified recombinant
proteins bound fibronectin. Using antibodies to the N-terminal region of Tp0155, it was
demonstrated that T. denticola TDE2318, with highest homology to Tp0155, was cell surface
localized. Like Tp0155, the seven T. denticola proteins contained an M23 peptidase domain and
four (TDE2318, TDE2753, TDE1738, TDE1297) contained one or two LysM domains. M23
peptidases can degrade peptidoglycan whereas LysM domains recognize carbohydrate polymers.
In addition, TDE1738 may act as a bacteriocin based on homology with other bacterial lysins and
the presence of an adjacent gene encoding a putative immunity factor. Collectively, these results
suggest that T. denticola expresses fibronectin-binding proteins associated with the cell surface
that may also have cell wall modifying or lytic functions.
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INTRODUCTION
Periodontal disease is prevalent within the human population and results from complex
communities of microorganisms, combined with the host inflammatory response, causing
damage to gingival and supporting tissues. Periodontal pockets, which are indicative of
periodontitis, enable the persistence of anaerobic conditions, which facilitate growth of
organisms including Fusobacterium, Porphyromonas, Prevotella and Treponema species.
Recent advances in understanding the growth requirements of oral Treponema have allowed
the isolation and characterization of a number of different species associated with
periodontal disease (Choi et al., 1994). However, there is evidence that many not yet
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cultivable treponemes are also present at diseased sites (Choi et al., 1994; Dewhirst et al.,
2000). Possibly the best characterized of the disease-associated oral spirochaetes is
Treponema denticola. There is strong evidence linking this pathogenic treponeme with
disease initiation and progression. Gingivitis was more likely to develop from healthy sites
where T. denticola was detected, than when it was absent (Riviere et al., 1998). Treponema
denticola is most regularly detected in deep periodontal pockets and evidence suggests that
it persists predominantly towards the leading edge of subgingival plaque providing direct
contact with periodontal tissues (Kigure et al., 1995).

Damage and inflammation within infected periodontal pockets leads to host
macromolecules, such as extracellular matrix and plasma components such as fibronectin,
becoming accessible to colonizing bacteria. Fibronectin is a vital matrix component, existing
either as an insoluble glycoprotein, which polymerizes to form part of the extracellular
matrix thereby adding structural support to host tissues (matrix fibronectin), or as a soluble
disulphide-linked plasma protein with a role in wound healing (Couchman et al., 1990).
Both matrix and plasma fibronectin are found in abundance during blood clotting, tissue
repair, cell migration and embryogenesis, as occurs within periodontal pockets.

Adhesion to, or degradation of, fibronectin is important in the virulence strategies of a
number of pathogenic organisms. Adhesion promotes colonization (Pasula et al., 2002;
Pracht et al., 2005), whereas proteolysis provides a source of peptides (Fenno et al., 2000;
Samen et al., 2004) or may hamper or obstruct wound-healing processes (Heilmann et al.,
2004). The capacity to avoid host immune defence mechanisms by penetrating host tissues
is also enhanced by interactions with fibronectin (Dziewanowska et al., 1999; Sinha et al.,
1999). Adherence to either matrix or plasma fibronectin could therefore be an essential
resource in the pathogenesis of T. denticola.

Fibronectin-binding by T. denticola was first described by Dawson & Ellen (1990) and was
later quantified (Haapasalo et al., 1991). Fluid-phase, but not immobilized, forms of
fibronectin were bound by an OppA (oligopeptide-binding protein) homologue, involved in
internalization of oligopeptides for nutrition (Fenno et al., 2000). Immunoblot overlays
(Umemoto et al., 1993) suggested that T. denticola expressed three outer membrane
fibronectin-binding proteins. The same technique was used by Haapasalo et al. (1992) in
characterization of the 53-kDa major surface protein (Msp) of T. denticola ATCC 35405.
Further analysis of Msp functions (Fenno et al., 1996; Edwards et al., 2005) suggested
involvement of this surface-associated protein in fibronectin interactions.

The causative agent of syphilis, Treponema pallidum, interacts with fibronectin (Peterson et
al., 1983; Thomas et al., 1986) but the molecular mechanisms involved are not well
understood. Two fibronectin-binding proteins were identified in T. pallidum using a
bioinformatics approach. Ten genes encoding potential outer membrane proteins were
cloned and expressed and the recombinant proteins were purified (Cameron, 2003) and
characterized for their abilities to bind plasma or matrix forms of fibronectin (Cameron et
al., 2004). Two proteins, designated Tp0155 and Tp0483, bound fibronectin although
Tp0155 bound preferentially to matrix fibronectin whereas Tp0483 showed greater
attachment to the plasma form.

Comparisons between the T. pallidum Nichols and T. denticola ATCC 35405 genomes have
become possible because they have both been fully sequenced and annotated. Analysis of
open reading frames suggests that T. pallidum and T. denticola are derived ancestrally. The
T. denticola genome contains 2786 open reading frames and T. pallidum carries 1039 open
reading frames. This suggests that gene elimination may have occurred in T. pallidum,
whereas duplication and expansion occurred in the T. denticola genome (Seshadri et al.,
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2004). It is also interesting to note that the T. denticola genome is predicted to encode 156
lipoproteins but T. pallidum encodes only 16. This may reflect the fact that T. denticola has
adapted to grow and survive in an oral environment where there is strong competition with
other microorganisms.

It has previously been shown that Msp has a role in mediating T. denticola binding to
fibronectin (Haapasalo et al., 1992; Fenno et al., 1996; Edwards et al., 2005). However, an
isogenic Msp-deficient strain (Fenno et al., 1998) was only reduced by ~ 30% in adherence
to fibronectin (C.V. Bamford, unpublished data), suggesting that other factors were present
that bound fibronectin. As the OppA homologue is reported to bind only fluid-phase
fibronectin, additional fibronectin-binding proteins may be expressed on the surface of T.
denticola. In this article we describe a family of T. denticola proteins with homology to a T.
pallidum fibronectin-binding protein, Tp0155, (Cameron et al., 2004) was identified. These
proteins are able to bind both matrix and plasma fibronectin, and protein sequence
characteristics suggest a possible multifunctional role in T. denticola pathogenesis.

METHODS
Bacterial strains and growth conditions

Treponema denticola ATCC 35405 was maintained in pre-reduced New Oral Spirochete
medium (Bamford et al., 2007) at 37°C in an anaerobic atmosphere (80% N2: 10% H2: 10%
CO2). Cultures were grown for 3–4 days to late exponential phase, corresponding to an
optical density (OD600) of 0.4–0.6, and were harvested by centrifugation (10,000 g, 10 min).
Escherichia coli XL-1 Blue was used as host to prepare plasmid DNA, and E. coli M15 was
used for production of recombinant polypeptides from pQE30 plasmids (Table 1). The E.
coli was cultured on Luria Bertani (LB) agar (Sambrook et al., 1989) or in LB broth,
containing appropriate antibiotics (ampicillin, 100μg ml−1; kanamycin 25μg ml−1).

Bioinformatics analyses
Treponema denticola ATCC 35405 and T. pallidum Nichols peptide sequences were
acquired from the TIGR Comprehensive Microbial Resource
(http://cmr.tigr.org.tigr-scripts/cmr/CmrHomePage.cgi) and analysed using a number of in
silico investigations. BLAST analyses to identify homologous peptide sequences were
achieved using appropriate tools at http://cmr.tigr.org.tigr-scripts/cmr/CmrHomePage.cgi.
Properties of individual peptide sequences were studied to assess peptide mass
(www.us.expasy.org/cgi-bin/peptide-mass.html) and presence of signal sequence
(http://bioinformatcs.leeds.ac.uk/prot_analysis/signal.html) and to examine other structural
or functional domains (www.ebi.ac.uk/InterProScan/) within the peptide sequence.

Expression and purification of recombinant Tp0155 orthologues
Coding sequences of T. denticola DNA that corresponded to potential orthologues of T.
pallidum Tp0155 were identified from predicted open reading frames of the T. denticola
genome (Seshadri et al., 2004) using BLAST similarity analyses (Altschul et al., 1990).
Chromosomal DNA of T. denticola was extracted using a method adapted from Nelson &
Selander (1994) and a polymerase chain reaction (PCR) was carried out with a Platinum Pfx
PCR system (Invitrogen, Carlsbad, CA) according to the manufacturer’s protocol. The PCR
amplimers were generated using specific forward and reverse primers for each gene (see
Supporting information, Table S1) and, where relevant, without inclusion of sequences
encoding leader peptides that may result in products toxic to E. coli (Fenno et al., 1996;
Edwards et al., 2005). Included within the forward primer sequences was an SphI restriction
site, and within the reverse primer a SalI site to ensure in-frame insertion of coding
sequences within the His6-tag expression vector pQE-30 (Qiagen). The PCR products were
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purified using a PCR cleanup kit (Qiagen), then digested and ligated into SphI/SalI-digested
and dephosphorylated pQE-30 vector. Eschierchia coli XL-1 Blue was transformed with
each ligation mix and colonies were screened first by PCR, then potential recombinant
plasmids were purified (Qiagen miniprep) and sequenced to confirm in-frame fusion and
sequence identity (Seqlon, Goettingen, Germany). The expression host E. coli M15 was then
transformed with appropriate constructs and recombinant His6-tagged proteins were
expressed after addition of 1 mM isopropyl-β-D-thiogalactopyranoside. Purification was
achieved under denaturing conditions (8 M urea) using nickel-nitrilotriacetic acid resin
(Qiagen) as described previously (Edwards et al., 2005). Recombinant proteins were
dialysed against 4 M and 2 M urea and finally against distilled H2O, and then freeze-dried
for storage.

Extraction of T. denticola outer sheath proteins
Proteins of T. denticola ATCC 35405 outer membranes were isolated as previously
described (Bamford et al., 2007). Briefly, exponential phase T. denticola cells were
harvested and washed twice in TE buffer (10 mM Tris–HCl, 1 mM
ethylenediaminetetraacetic acid, pH 8) in the presence of 0.05 mM phenylmethylsulphonyl
fluoride (PMSF). Approximately 3.6 × 109 cells ml−1 were incubated for 16 h at 4°C with
TE buffer containing 1% Triton-X 114 and 0.05 mM PMSF. Outer membrane proteins were
separated from non-periplasmic material by centrifugation at 21,000 g for 1 h at 4°C and
membrane proteins in supernatants were analysed by sodium dodecyl sulphate–
polyacrylamide gel eletrophoresis (SDS–PAGE).

SDS–PAGE and Western blot analysis
SDS–PAGE was carried out as described by Laemmli (1970). Rehydrated purified
recombinant His6-tagged T. denticola polypeptides or T. denticola outer sheath proteins
were mixed with sample buffer containing 2% SDS and 5 mMβ-mercaptoethanol and
incubated at 20°C or 100°C before electrophoresis within a gel containing 10% acrylamide.
Proteins were visualized by silver nitrate staining or electroblotted onto nitrocellulose
membrane (Hybond ECL, Amersham, Amersham, UK). The membrane was incubated for
16 h at 4°C in Tris-buffered saline (TBS) containing 5% [weight/volume (w/v)] Fraction V
bovine serum albumin (BSA) or 10% (w/v) skimmed milk powder and washed with
TBS-0.1% Tween 20 (TBST). Membranes were then incubated with either anti-tetra His
antibodies (Qiagen) diluted 1: 2000, or antibodies raised in chickens to the N terminus
(amino acids 46–187) of Tp0155 diluted 1: 50 in TBST-0.1% BSA (TBSTB) or 1%
skimmed milk powder (TBSTM) for 2 h at 20°C. The membranes were washed twice with
TBSTB or TBSTM as appropriate and incubated with either horseradish peroxidase (HRP) -
conjugated secondary anti-mouse antibodies (1: 1000) or HRP-Protein A for 2 h at 20°C.
Visualization of proteins was achieved using 4-chloro-1-naphthol solution or enhanced
chemiluminescence (Amersham).

Fibronectin adherence assay
Human plasma (Roche, Basel, Switzerland) or fibroblast (Calbiochem, San Diego, CA)
fibronectin (5μg) in carbonate coating buffer (0.02 M NaHCO3, 0.02 M Na2CO3, pH 9.3)
were adsorbed on to the surface of 96-well plastic plates (Greiner, Frickenhausen, Germany)
for 16 h at 4°C (confirmed using anti-fibronectin antibodies, data not shown). Wells were
blocked for 16 h at 4°C with 5% (w/v) BSA in phosphate-buffered saline (PBS). After
removal of the blocking agent, 50μl His6-tagged purified recombinant T. denticola peptides
(0–200μg/ml) were added to the wells, and incubated for 2 h at 20°C. Wells were washed
twice with PBS containing 0.1% Tween 20 and 0.1% (w/v) BSA (PBSTB), and once with
PBS for 10 min at 20°C. Recombinant peptides were detected using anti-tetra His antibodies
diluted 1: 1000 in PBSTB for 2 h at 20°C. Wells were washed twice with PBSTB and once
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with PBS for 10 min each and HRP-conjugated secondary antibodies diluted 1: 1000 in
PBSTB were added. After 2 h incubation at 20°C the wells were washed twice with PBSTB
and once with PBS for 10 min. Antibody binding to recombinant protein was detected by
incubating with o-phenylenediamine colour reagent and developing with 0.65 M H2SO4
(Edwards et al., 2005). Experiments were carried out in triplicate, and results are expressed
as means with standard deviations from the mean.

Immunofluorescence microscopy
Stationary-phase T. denticola cells were pelleted by centrifugation (10,000 g for 10 min) and
washed with PBS. Sterile glass coverslips (13 mm) were coated with filter-sterilized 0.1 mg
ml−1 poly-lysine (Sigma, St Louis, MO) in borate buffer (0.1 M, pH 8.5) for 30 min at 20°C,
washed thoroughly in sterile distilled H2O and dried. Approximately 4.8 × 107 cells were
added to the poly-lysine coated coverslips in a 24-well plate and this was centrifuged at
3000 g for 5 min. Coverslips were gently washed twice with PBS, blocked with 5% BSA in
PBS (1 h at 20°C) and washed with 0.1% Tween 20 in PBS. Antibodies to Tp0155 and to
Tp0249, a T. pallidum flagellar sheath protein (Cameron et al., 2008) were pre-absorbed
with Treponema phagedenis (Kazan). Antibodies and corresponding preimmune sera
controls in PBSTB were added at suitable dilutions and incubated for 1 h at 20°C. Excess
antibodies were removed by washing twice with PBSTB and once with PBS and then
fluorescein isothiocyanate-conjugated immunoglobulin G was added for 1 h at 20°C.
Coverslips were washed as above, placed onto slides with a drop of PermaFluor (Thermo
Electron), and imaged using phase and fluorescence microscopy.

Statistics
To establish statistical significance, Student’s t-test was used on paired samples.

RESULTS
Identification of T. denticola proteins with homology to Tp0155 of T. pallidum

The amino acid (aa) sequence of T. pallidum Tp0155 fibronectin-binding protein (371 aa
residues) was compared with the T. denticola genome (Seshadri et al., 2004) using BLAST
similarity analyses. Significant similarities between Tp0155 and seven T. denticola
predicted proteins were identified (Table 2), with TDE2318 showing the highest overall
identity (43% identity) and TDE1136 being the least similar (14% identity). The aa
sequences of the T. pallidum and T. denticola proteins were analysed to identify potential
structural or functional regions. A number of distinct domains were evident in Tp0155 and
in the seven T. denticola proteins (Fig. 1A). Tp0155 was composed of a leader peptide (38
aa residues), two N-terminal LysM domains, labelled for clarity LysM(A) (44 aa residues)
and LysM(B) (42 aa residues), and an M23 peptidase sequence (95 aa residues) at the C-
terminal end. The C-terminal M23 peptidase domain was present in all of the T. denticola
polypeptide sequences and showed the highest levels of homology (Table 2) with each other
and with the M23 sequence of Tp0155. Three of the seven T. denticola proteins contained
two predicted N-terminal LysM domains (TDE2318, TDE2753, TDE1297), whereas
TDE1738 polypeptide had only one LysM domain (Fig. 1A). TDE0110 and TDE2189
contained no potential LysM domains but TDE1136 appeared to consist solely of an
extended M23 peptidase sequence of 144 aa residues (Fig. 1A). Alignment of the seven
proteins with Tp0155 and the positions of the various domains within the sequences are
shown in supplementary material (see Supporting information, Fig. S1 and Fig. S2,
respectively).

Other T. pallidum fibronectin-binding proteins have been described including Tp0483
(Cameron et al., 2004) and Tp0136 (Brinkman et al., 2008). An orthologous protein to
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Tp0483 was identified in T. denticola (TDE1984). However, the low sequence identity
(21%) between these proteins, by comparison to the Tp0155 orthologues, led to no further
functional investigations at this time. No orthologues to Tp0136 were found.

Generation of recombinant T. denticola proteins
To determine the fibronectin-interacting activities of T. denticola proteins, genes were
cloned and proteins were expressed in E. coli. The appropriate gene sequences were
amplified by PCR with proof-reading enzymes (see Supporting information, Fig. S3) and
primers based on the sequence of the T. denticola ATCC 35405 genome on the
Comprehensive Microbial Resource (http://cmr.tigr.org.tigr-scripts/cmr/CmrHomePage.cgi).
Forward primers were constructed such that start codons, and where appropriate signal
sequences, were absent from the expressed proteins to counteract possible expression
problems in E. coli. Previous work suggests that some leader sequences of T. denticola
polypeptides may be toxic to E. coli (Fenno et al., 1996; Edwards et al., 2005). Termination
of translation was effected by including the stop codon of each gene within the reverse PCR
primer (see Supporting information, Table S1). In silico restriction analyses were carried out
(www.restrictionmapper.org) to identify enzymes that did not cut any of the T. denticola
sequences, so allowing a common strategy to be used for cloning and expression of the
genes.

Recombinant His6-tagged T. denticola proteins were expressed and purified from E. coli for
five proteins, as cloning was unsuccessful for TDE0110 and TDE1297 (Fig. 2A). All
polypeptides migrated closely to their predicted molecular mass and were detected using
HRP-conjugated anti-tetra His antibodies and appropriate HRP-conjugated secondary
antibodies (Fig. 2B). A peptide doublet was observed for rTDE2318, which may suggest
degradation at the C terminus because the 6×His Tag was at the N terminus.

Adherence to fibronectin
Differential adherence of T. pallidum protein Tp0155 to matrix or plasma fibronectin has
already been characterized (Cameron et al., 2004), with matrix fibronectin being
preferentially bound. Quantitative assessment of binding to fibronectin immobilized to wells
of a plastic plate by the recombinant T. denticola proteins indicated that all, except
rTDE2753, were better able to adhere to matrix fibronectin (Fig. 3). Significant differences
(P < 0.05) in binding matrix versus plasma fibronectin were observed for rTDE1738,
rTDE2189 and rTDE1136 (Fig. 3). This figure was based on dose-dependent (Fig. S4)
adherence to matrix or plasma fibronectin (p < 0.05) that was shown for all proteins tested,
compared with binding to blocked wells (controls). The recombinant T. denticola proteins
were also immobilized by Western blot on nitrocellulose and assessed for their ability to
bind fluid-phase fibronectin detected using anti-fibronectin antibodies. None of the
recombinant proteins bound fibronectin under these conditions (data not shown), suggesting
that affinity towards fluid-phase fibronectin was much lower than to immobilized
fibronectin. These results identify five novel fibronectin-binding proteins from T. denticola
with greater ability to bind immobilized forms of fibronectin.

Surface localization of Tp0155 orthologues in T. denticola
Sequence analyses of the T. denticola proteins indicated that TDE2318, TDE1738,
TDE2189 and TDE1297 had leader peptides (Fig. 1) suggesting cell surface localization or
secretion. To investigate surface exposure of TDE2318, which has the highest homology to
T. pallidum fibronectin-binding protein Tp0155 on the basis of aa sequence (Table 1),
antibodies specific to Tp0155 were used to probe T. denticola outer membrane proteins in
Western blot analyses and immunofluorescence microscopy investigations of T. denticola
cells. These antibodies were shown to detect both TDE2318 and TDE2753 in Western blot
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analyses (Fig. 2C) but lack of predicted leader sequence in TDE2753 indicates that this
protein might not be secreted. Polyclonal antibodies to Tp0155 were first pre-adsorbed to a
closely related organism T. phagedenis (Kazan) to reduce non-specific binding. Preimmune
sera were similarly preadsorbed against T. phagedenis.

A single peptide of ~ 33 kDa was visualized in T. denticola outer sheath proteins, although
only in a sample heated to 100°C before separation. This peptide showed similar molecular
mass to that predicted for TDE2318. This suggests that this peptide is excreted to the T.
denticola outer membrane but may be a multimeric complex in its native form.

Immunofluorescence analyses demonstrated control (preimmune) antibodies did not react
with T. denticola cells in analyses (Fig. 4A,B). However, antibodies to Tp0155 reacted with
intact T. denticola cells (Fig. 4C,D). Based on fluorescence distribution, it appeared that the
orthologous proteins may not be expressed by all cells of the population. In addition,
proteins may not be expressed uniformly across the cell surface (Fig. 4D). When cells were
permeabilized with Triton X-114, all cells present reacted with Tp0155 antibody (Fig. 4E,F).
To demonstrate that T. denticola cells were all intact in Fig. 4(C,D), the T. denticola cells
were reacted with anti-Tp0249 (FlaA) antibodies generated to the flagella sheath proteins
(Cameron et al., 2008) that are beneath the outer membrane, and so not exposed in intact
cells. Neither preimmune antibody (Fig. 4G,H) nor anti-FlaA antibody (Fig. 4I,J) reacted
with T. denticola cells, but cells permeabilized with Triton X-114 were all reactive (Fig.
4K,L). These were as reactive as whole cell antibodies to intact cells (Fig. 4M,N). The
results show that TDE2318 is surface exposed in T. denticola.

DISCUSSION
Normal epithelial shedding or tissue damage, caused by trauma or infection of mucosal
surfaces as witnessed deep within the periodontal pocket, will expose plasma and
extracellular matrix proteins including fibronectin. It has been known for some time that T.
denticola can bind both matrix fibronectin (Ellen et al., 1994) and plasma fibronectin
(Haapasalo et al., 1991; Fenno et al., 1996; Edwards et al., 2005). The major surface protein
Msp has been shown to bind fibronectin (Haapasalo et al., 1992; Edwards et al., 2005) but
an Msp mutant of T. denticola (Fenno et al., 1998) still retains the ability to adhere to
fibronectin (C.V. Bamford, unpublished data) suggesting that other factors are involved. To
identify these molecules we used comparative sequence analyses, based on the T. pallidum
fibronectin-binding protein Tp0155 we identified seven potential fibronectin-binding
proteins from the T. denticola genome. Five of these were produced as recombinant
polypeptides and shown to adhere to matrix or plasma fibronectin. Protein TDE2318, the
closest homologue to Tp0155, was shown to be cell surface exposed and others with signal
sequences, but not detected here, may be similarly localized to the cell membrane. A role for
these proteins in colonization of damaged host tissues by T. denticola is suggested. The
ability of these proteins to also bind plasma fibronectin may interfere with tissue
regeneration and disrupt healing processes.

Distinct domains are present in all of the seven T. denticola proteins described in this study.
However, it is not clear at this stage which of these domains might be involved in adherence
to fibronectin. None of the protein sequences contain the consensus bacterial fibronectin-
binding protein domain motif (Schwarz-Linek et al., 2004) that is often a component of
amino acid sequence repeats. Four of the polypeptides contain a LysM domain, and all of
them contain the M23 peptidase domain (Fig. 1).

LysM domains consist of about 40 aa residues, containing a lysin motif sequence
YxxxxGxx(Hyd) (Turner et al., 2004). The LysM domains of Tp0155 and the T. denticola
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proteins all showed high homology and carried the lysin motif (Fig. 1B). LysM domains are
commonly found in proteins with modular functions including autolysis (MurA, Listeria
monocytogenes, Carroll et al., 2003). A surface protein (Sep) of Lactobacillus fermentum
BR11 (Turner et al., 2004) and the autolysin, Aae, of Staphylococcus epidermidis
(Heilmann et al., 2003) use the peptidoglycan-binding LysM domains as cell wall anchors.
LysM domains of proteins with accompanying lytic domains may act to target activity to a
specific substrate (Steen et al., 2003).

The LysM domains of autolysins Aae (Staphylococcus epidermidis) and Aaa
(Staphylococcus aureus), were shown to bind vitronectin, the Aα and Bβ chains of
fibrinogen and the 29-kDa fragment of fibronectin (Heilmann et al., 2003, 2005). This may
indicate a similar role for the LysM domains within the T. denticola polypeptide. However,
ability to bind either matrix or plasma fibronectin did not correlate with the numbers of
LysM domains present. For example, TDE2318 and TDE2753 both have two LysM
domains, but show a much lower adherence level to fibronectin compared with TDE1136.
The latter consists almost entirely of an M23 peptidase domain with no LysM sequence and
is able to bind fibronectin to a higher level than TDE2318 or TDE2753. A development of
this work will be to produce truncated recombinant polypeptides of TDE1738 and TDE1136
to try to delineate more precisely the fibronectin-binding domains.

Interactions of LysM sequences with peptidoglycan, or peptidoglycan precursors, appear to
be one property, so potentially targeting LysM-containing proteins to the cell surface. In T.
denticola it has been shown that binding to immobilized fibronectin occurs through
interactions with the bacterial cell tip (Dawson & Ellen, 1990). Binding levels were reduced
~50% at 4°C compared with 37°C, suggesting that metabolic activity was important
(Dawson & Ellen, 1990). Recent work shows that the cell tips of T. denticola and T.
pallidum have complex morphologies with T. pallidum having higher structural complexity
(Izard et al., 2008, 2009). Peptidoglycan forms a thin layer between the cytoplasmic
membrane and outer membrane, and is thicker at the cell ends (Izard et al., 2009). It is
possible therefore that the LysM domain proteins described in this article may be involved
in peptidoglycan modelling as well as fibronectin adherence.

All the T. denticola polypeptides contained M23 peptidase domains which are zinc
metalloproteases for which the active sites are HxH or HxxxD. Analysis of Tp0155 and the
seven T. denticola polypeptides with M23 peptidase domains indicated that all except
TDE1297 had conserved HxH (HLH or HVH) and HxGxD sequences (Fig. S2).
Characterization of other M23 peptidases has suggested activity against glycine–glycine
bonds (Schindler & Schuhardt, 1965). Many proteins containing the M23 domain have
specific hydrolytic activity on peptidoglycan, resulting in bacteriolytic capabilities
(Schindler & Schuhardt, 1964; Thumm & Gotz, 1997). Perhaps the best characterized of
these lytic M23 peptidase-containing proteins is lysostaphin produced by Staphylococcus
simulans biovar staphylolyticus (Schindler & Schuhardt, 1964; Naverre & Schneewind,
1999). It specifically cleaves between the third and fourth Gly residueS of the pentaglycine
cross bridges which are unique to the peptidoglycan of staphylococcal species (Thumm &
Gotz, 1997; Recsei et al., 1987). Other known lytic proteins with similar
peptidoglycanolytic activities are Zoocin A (Streptococcus equi subsp. zooepidemicus 4881,
Simmonds et al., 1996, 1997) and ALE-1 (Staphylococcus capitis EPK1, Sugai et al.,
1997a). These proteins are all conserved for the M23 protease motifs (Fig. 5A). It is possible
therefore that the T. denticola proteins have lytic activity against other closely related or
closely co-habiting bacteria. We have tested the recombinant polypeptides for their ability to
bind to, or degrade, cells walls from S. aureus or T. denticola, but have been unable to
demonstrate any clumping or lytic activities (data not shown).
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Many bacteriolysins are targeted to bind peptidoglycan via a substrate-binding domain (e.g.
LysM) at the C-terminal end of the protein with the M23 peptidase domain at the N terminus
(Baba & Schneewind, 1996; Simmonds et al., 1996; Nilsen et al., 2003). In four of the T.
denticola proteins there is opposite orientation, with LysM at the N-terminal and M23
peptidase domain at the C-terminal ends. We speculate that the LysM domain is responsible
for anchoring the protein to the cell surface environment of T. denticola through binding
peptidoglycan-like material associated with the outer membranes. Such a function for LysM
sequences has been shown for surface protein Sep of Lactobacillus fermentum BR11
(Turner et al., 2004) and the Aae autolysin of Staphylococcus epidermidis (Heilmann et al.,
2003).

Bacteria that produce M23 peptidase domain bacteriolytic proteins all appear to produce
immunity factors. These factors protect the producer organism from self-
peptidoglycanolysis. Some immunity factors (Sugai et al., 1997b; Beatson et al., 1998) are
enzymic and replace peptidoglycan glycines with serines (DeHart et al., 1995; Heath Farris
et al., 2003), which prevents successful targeting of the substrate-binding domain and
inhibiting hydrolysis (Lai et al., 2002). The genes encoding for immunity factors are
commonly adjacent to the bacteriocin peptidase gene (Fig. 5B) although they may not
always be in the same orientation (Recsei et al., 1987; Heath et al., 1989, 2004; Sugai et al.,
1997b). Analysis of the T. denticola genome shows that immediately downstream of
TDE1738, the gene TDE1739 encodes a protein with similarity to lysostaphin immunity
factor (Fig. 5B). The TDE1739 gene is annotated within the genome as encoding a FemAB
homologue. FemAB imparts resistance to methicillin by altering the glycine ratio of
peptidoglycan in a similar manner to other immunity factors (Maidhof et al., 1991; Heath et
al., 2005). This strongly suggests that TDE1738 could be a bacteriocin, with the gene
product of TDE1739 necessary to protect T. denticola from autolysis. The periodontal
pocket is a highly competitive environment for bacteria and T. denticola bacteriocins could
lyse organisms to release otherwise unavailable nutrients. It has been shown that Prevotella
intermedia, Eubacterium nodatum, Veillonella parvula and Fusobacterium nucleatum all
stimulate growth of T. denticola (ter Steeg & van der Hoeven, 1990). The possibility that T.
denticola has the ability to lyse anaerobic bacteria is currently being investigated along with
attempted genetic knockouts of the relevant genes to further develop functional analyses.

The comparative analyses carried out in this article have identified seven T. denticola
proteins that show various degrees of homology to Tp0155. Further investigation of the T.
pallidum genome reveals that six of these T. denticola proteins have corresponding
homologous proteins in T. pallidum (Table S2). Close phylogenetic relationships between
individual T. pallidum and T. denticola proteins is retained, with each containing similar
structural arrangements of LysM and M23 peptidase domains (Table S2). These
observations suggest that this gene set is functionally conserved within Treponema. The T.
pallidum genome also contains a gene, Tp0806, that encodes a protein with homology to
lysostaphin immunity factor. The ZoocinA immunity factor (Zif) acts as a penicillin-binding
protein (Heath et al., 2004) capable of peptidoglycan reorganization, and downstream and in
the same orientation as the T. pallidum M23 peptidase gene Tp0706 (homologous to
TDE1738) is a gene, Tp0705 (Fig. 5C), annotated as a penicillin-binding protein, suggesting
a role in protection from autolysis.

In summary, this paper describes a family of seven conserved T. denticola genes. The
products of five of these genes bind fibronectin and TDE2318, the orthologue of T. pallidum
protein Tp0155, is cell-surface exposed. Six of the T. denticola genes have orthologues in T.
pallidum. Based on sequence similarities, and genetic organization of adjacent genes, one of
these polypeptides (TDE1738), and the orthologue T. pallidum (Tp0706), may be a
bacteriocin. The other proteins may have autolytic or peptidoglycan remodelling activities in
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addition to recognizing fibronectin. It will be important to determine that these molecules
are expressed in vivo and if their expression correlates with virulence or disease severity.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
(A) Predicted identifiable peptide motifs (www.ebi.ac.uk/InterProScan/) of Treponema
pallidum fibronectin-binding protein Tp0155 and potential orthologues identified from the
Treponema denticola genome using BLAST similarity searches. LysM domains are shown
with vertical bars (A) or dots (B). Treponema pallidum and T. denticola M23 peptidase
domains (diagonal bars) retain 37% identity. Potential signal sequences (solid black) were
identified using http://bioinformatics.leeds.ac.uk/prot_analysis/signal.html. (B) Alignments
of LysM(A) and LysM(B) domain sequences from T. pallidum Tp0155 and potential T.
denticola orthologues showing high degree of consensus across the different peptide
sequences. Degree of identity is shown from highest (e.g. ) to lowest (e.g. H). The LysM
motif YxxxxGxx(Hyd) (Turner et al., 2004) is boxed. Asterisk indicates residues that do not
fit the specified motif.
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Figure 2.
Recombinant Treponema denticola His-tagged proteins (5μg), which show homology to
fibronectin-binding protein Tp0155 of Treponema pallidum, purified using nickel affinity
chromatography, analysed by sodium dodecyl sulphate–polyacrylamide gel electrophoresis
(SDS–PAGE) stained with silver nitrate (A), and by Western blot, using anti-tetra His
antibodies to detect each protein (B) or antibodies to the T. pallidum protein Tp0155, which
had first been pre-adsorbed with T. phagedenis (Kazan) (C). Treponema denticola
ATCC35405 outer membrane proteins extracted with 1% Triton X-114 incubated at 20°C or
100°C before separation by SDS–PAGE analyses (d) exposed to antibodies to T. pallidum
Tp0155 (E). Molecular mass standards (kDa) are indicated to the side of the figure.
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Figure 3.
Adhesion of recombinant Treponema denticola proteins to matrix (grey bars) or plasma
fibronectin (black bars). Recombinant protein (5 μg) was added to each well, except for
TDE2753 and TDE1738, which appeared to bind non-specifically to the substrates when
more than 1.25μg was added. Stars denote significant difference (P < 0.05) between
adhesion to either matrix or plasma fibronectin and bovine serum albumin-blocked wells.
Error bars indicate ± SD of the mean from triplicates of a representative experiment.
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Figure 4.
Detection of proteins on the surface of Treponema denticola ATCC 35405 using antibodies
to the Treponema pallidum protein Tp0155 which had first been pre-adsorbed against
Treponema phagedenis (Kazan). (A, C, E, G, I, K and M) Phase-contrast images; (B, D, F,
H, J, L and N) corresponding immunofluorescence. (A, B) Preimmune serum for Tp0155-
specific antibodies; (C, D), Tp0155-specific antibodies, non-detergent-treated T. denticola;
(E, F), Tp0155-specific antibodies, Triton X-114-treated T. denticola; (G, H), preimmune
serum for Tp0249-specific antibodies; (I, J), Tp0249-specific antibodies, non-detergent-
treated T. denticola (negative control); (K, L), Tp0249-specific antibodies, Triton X-114-
treated T. denticola; (M, N), anti-T. denticola antibodies (control) (Edwards et al., 2005).
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Figure 5.
(A) Alignments of M23 peptidase domains from TDE1738 of Treponema denticola and
homologous regions of peptidoglycan-degrading enzymes lysostaphin from Staphylococcus
simulans biovar staphylolyticus, zoocin A from Streptococcus equi subsp zooepidemicus and
ALE-1 from Staphylococcus capitis. The M23 peptidase domain of TDE1738 retains 43%
identity to lysostaphin, 43% identity to zoocin A and 40% identity to ALE-1 with
conservation across the HxGxD and HLH active sites. (B) Alignments of a 92 amino acid
(aa) residue portion regions of TDE1739 of T. denticola and lysostaphin immunity factor
from S. simulans biovar staphylolyticus, demonstrating homology (29% identity) between
these peptides. Sequence consensus is shown as is degree of identity from highest (e.g. ) to
lowest (e.g. A). (C) Diagram depicting genes encoding potential and known peptidoglycan
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degradation enzymes and adjacent immunity factors which provide protection from autolysis
by the peptidoglycanolytic enzyme. (i) The chromosomal gene TDE1738 from T. denticola
encodes for a potential peptidoglycan-degrading enzyme, and TDE1739 for a potential
immunity factor. (ii) Lysostaphin and adjacent lysostaphin immunity factor (Lif/Epr) are
encoded on the plasmid pACK1 of S. simulans biovar staphylolyticus. (iii) The gene
encoding zoocin A and corresponding zoocin A immunity factor (Zif) is on the chromosome
of Streptococcus equi subsp zooepidemicus, while (iv) ale-1 and adjacent endopeptidase
resistance (epr) genes are located on a plasmid in Staphylococcus capitis. (v) Tp0706 from
the Treponema pallidum chromosome, with homology to TDE1738 may also be an enzyme
with peptidoglycan-degrading activity and the adjacent gene Tp0705 is annotated as a
pencillin-binding protein in the same manner as zoocin A immunity factor (Zif).
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Table 1

Bacterial strains and plasmids used in this study

Strain/plasmid Relevant characteristics Source

Treponema denticola

ATCC 35405 Type strain (Chan et al., 1993)

Escherichia coli

XL-1 Blue recA1 endA1 gyrA96 thi hsdR17 supE44 relA1 lac [F ‘proAB laclqZΔM15 Tn10 (TetR)] Stratagene

M15 (pREP-4 KnR) nals strs rifs thi− lac− ara+ gal+ mtl−F− recA+ uvr+ lon+ Qiagen

Plasmids

pQE30 bla ColE1ori (ApR) Qiagen

pQE30-TDE2318 bla ColE1ori This study

pQE30-TDE2753 bla ColE1ori This study

pQE30-TDE1738 bla ColE1ori This study

pQE30-TDE0110 bla ColE1ori This study

pQE30-TDE2189 bla ColE1ori This study

pQE30-TDE1136 bla ColE1ori This study

pQE30-TDE1297 bla ColE1ori This study
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