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Abstract
Systemic Lupus Erythematosus (SLE, OMIM 152700) is an autoimmune disease characterized by
self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding
the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine
mapping and genomic resequencing in ethnically diverse populations we fully characterized the
TNFAIP3 risk haplotype and isolated a novel TT>A polymorphic dinucleotide associated with
SLE in subjects of European (P = 1.58 × 10−8; odds ratio (OR) = 1.70) and Korean (P = 8.33 ×
10−10; OR = 2.54) ancestry. This variant, located in a region of high conservation and regulatory
potential, bound a nuclear protein complex comprised of NF-κB subunits with reduced avidity.
Furthermore, compared with the non-risk haplotype, the haplotype carrying this variant resulted in
reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant
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as the most likely functional polymorphism responsible for the association between TNFAIP3 and
SLE.

Tumor necrosis factor alpha inducible protein 3 (TNFAIP3) encodes the ubiquitin-modifying
enzyme A20, a key regulator of NF-κB activity downstream of tumor necrosis factor alpha
(TNFα), toll-like receptor (TLR), interleukin 1 receptor (IL1R) and nucleotide-binding
oligomerization domain containing 2 (NOD2)1–4. The importance of A20 in restricting NF-
κB has been demonstrated in A20 deficient mice, which develop systemic organ
inflammation and death within six weeks of birth2,3 and in mice with B lymphocyte specific
A20 deletion which develop lupus-like autoimmunity5. In humans, genetic surveys have
suggested a role for TNFAIP3 in susceptibility to complex genetic autoimmune disorders6–8,
including systemic lupus erythematosus (SLE)9–12.

Genetic association between variants in TNFAIP3 and SLE suggest that alterations in
activity and/or expression of TNFAIP3 encoded A20 influences SLE pathophysiology9–11.
Independent genetic associations of SLE and TNFAIP3 in European-ancestry (EA) subjects
have been localized to a region 185 kb upstream of TNFAIP3 that was first identified with
rheumatoid arthritis6,7, a region 249 kb downstream of TNFAIP3 and a 109 kb haplotype
that spans the TNFAIP3 coding region9–11 that includes a suggested causal coding variant in
exon 3 (rs2230926 T>G; F127C, RefSeq: NP_006281.1) that reduces the ability of A20 to
attenuate NF-κB signaling10. In this report we fully characterize the TNFAIP3 risk
haplotype, including the TNFAIP3 coding region, in five ethnically diverse populations and
identify a novel functional polymorphism most likely responsible for association with
human SLE.

We studied 127 SNPs in the region of TNFAIP3 on 6q23 and 347 ancestry informative
markers (AIMs) in five diverse ethnic populations (Table 1 and Supplementary Table 1) and
evaluated differences in linkage disequilibrium (LD) to narrow the associated DNA
segment. After applying quality control (QC) measures and adjusting for admixture within
and across populations (Supplementary Table 2), a total of 8,341 independent cases and
7,476 independent controls (Table 1) were analyzed for 113 TNFAIP3 SNPs and 262
ancestry informative markers (AIMs). We also imputed genotypes for SNPs from the 1000
Genomes Project and Phase III HapMap reference panels resulting in a minimum of 274
additional SNPs for each population (Supplementary Table 3).

Adjusting for sex and global ancestry in EA and Asian (AS) populations single marker
logistic regression analyses of SNPs spanning the TNFAIP3 coding region demonstrated
association far below a Bonferroni corrected P < 1 × 10−4 (Figs. 1a and 1b). Peak
associations in EA and AS were seen at markers rs6932056 (P = 3.92 × 10−10, OR = 1.78,
95% CI = 1.49–2.13) and rs4896303 (P = 6.84 × 10−11, OR = 2.35, 95% CI = 1.82–3.03) 38
kb and 30 kb downstream of TNFAIP3, respectively. Only modest association was seen in
the EA population in the previously reported region 185kb upstream of TNFAIP39,10 (Fig.
1a). Korean subjects comprised 71% of our AS cohort and when analyzed independently
demonstrated no marked differences in association from the full AS data set (Fig. 1c); thus,
subsequent analyses focused only on the more homogeneous Korean subset.

In total, 28 SNPs (P < 1 × 10−4) in the both EA and Korean populations defined the
TNFAIP3 risk haplotype (Table 2). Interestingly, no convincing evidence for association
with TNFAIP3 was seen in the African American (AA), AA-Gullah (AAG) or Hispanic
(HS) populations (Supplementary Figs. 1a, 1b, and 1c, respectively).

To assess whether differences in the LD structure between EA and Korean populations (see
Supplementary Fig. 2) could reduce the size of the TNFAIP3 risk segment, we compared
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haplotypes (frequency ≥ 1%) formed by the SNPs in Table 2. In EA, a single 101 kb risk
haplotype (P = 8.71 × 10−10) was observed (Fig. 2a, EA Haplotype 2). Three segments of
this haplotype carry minor alleles absent from the non-risk haplotypes, suggesting they
might harbor the causal variant. In Koreans, we observed two primary risk haplotypes with
P = 4.11 × 10−5 and P = 2.27 × 10−6 (Fig. 2a, Korean Haplotype 2 and 3, respectively).
These two risk haplotypes shared minor alleles not present on the non-risk haplotype from
marker rs5029937 to rs61117627 thus reducing the TNFAIP3 risk interval to this 48.5 kb
segment.

Resequencing nine TNFAIP3 risk chromosomes from seven EA carriers (two homozygotes
and five heterozygotes) did not identify any additional SNPs not already accounted for in
our analyses (Online Methods). However, we did find a novel single base deletion at
chromosome 6 position 138,271,732 (hg18) present on all nine risk chromosomes
(Supplementary Fig. 3). Interestingly, this deletion polymorphism was located adjacent to
SNP chr6:138271733 (P = 1.58 × 10−8, OR = 1.70, 95%CI = 1.41–2.04, MAF = 0.039 in
EA and P = 8.33 × 10−10, OR = 2.54, 95%CI = 1.89–3.42, MAF = 0.059 in Koreans), and
together they formed a novel TT>A polymorphic dinucleotide (deletion T followed by a T to
A transversion) at chromosome 6 position 138,272,732–138,271,733 (Supplementary Fig.
4).

To determine the segment of the risk haplotype that accounted for the largest portion of the
association signal, we performed conditional association analysis. Conditioning on SNP
chr6:138271733 or its proxy SNP rs7749323 (r2 ≥ 0.97) for both EA and Korean
populations reduced the association signal to baseline (Figs. 2b and 2c, respectively).
However, conditioning on rs2230926, a coding variant in exon 3 (F127C) and a putative
causal variant, revealed residual association in the region 31.2 kb downstream most
prominently in EA (Fig. 2b) and to a lesser extent in the Koreans (Fig. 2c). These results
suggested that the variant responsible for association with SLE was likely to be located in
the 16.3 kb region extending from rs7752903 to rs61117627.

To assess the functional potential of the nine risk variants (8 SNPs and 1 deletion) present
on the 16.3 kb TNFAIP3 risk segment defined by our previous analyses we evaluated the
region with the UCSC Genome Browser (http://genome.ucsc.edu/) to determine overlap
between variants and genomic regulatory elements (Supplementary Fig. 5a). The TT>A
polymorphic dinucleotide is located in a region of high mammalian conservation (17-way
vertebrate conservation13), high regulatory potential (7X Regulatory Potential, ESPERR14)
and overlap with DNase hypersensitivity and transcription factor binding signals, as well as
a region of enhancer activity bearing the H3K27Ac epigenetic mark15 (Supplementary Fig.
5a). A total of eight transcription factors produced CHIP-seq signals in the vicinity of this
variant with the strongest signals produced by early B-cell factor (EBF), B-cell CLL/
lymphoma 11A (BCL11A) and NF-κB16 (Supplementary Fig. 5b). In contrast, the remaining
variants demonstrated substantially less overlap with regulatory elements thus pointing to
the TT>A variant as the prime functional variant responsible for association with SLE.

Further evidence supporting the TT>A polymorphic dinucleotide was sought by genotyping
both AA and AAG cases and controls (Online Methods). Neither of these populations
demonstrated SLE association and would therefore not be expected to carry the variants of
interest. In all AA samples evaluated (N=2,252), we observed this variant only 23 times (1
copy each in 13 cases and 11 controls) for an overall allele frequency of 0.53%, which
approximates that expected due to European admixture (Online Methods). Furthermore,
TT>A variant was not detected in any of the AAG (N=243), a population with low European
admixture (~3.5%17). We estimate our power to detect an association with the TT>A variant
in this AA sample is only 0.8% given a type I error of 0.0001 and an odds ratio of 1.7. These
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results suggest that the TT>A dinucleotide polymorphism is derived from European and
Asian chromosomes and the low allele frequency in African-Americans resulted in our
inability to demonstrate association.

To test functional differences in nuclear protein binding conferred by the TT>A
polymorphic dinucleotide, oligonucleotide probes containing this variant or wild-type
sequences were evaluated using an electrophoretic mobility shift assay (EMSA). In nuclear
extracts from independent monocyte cell lines, THP1 and U937, we observed differential
intensity of shifted bands (Fig. 3a) suggesting that the TT>A variant was important in
mediating nuclear protein binding. Using antibodies specific to subunits of the NF-κB
transcription factor (p50, p65, cREL) we demonstrated that NF-κB was a major component
of the DNA-nuclear protein complex (Fig. 3b). Densitometric measurement of shifted band
intensity from multiple independent experiments demonstrated statistically significant
differences between the TT>A and WT cells for the THP-1 extracts at P = 0.0076 (N=6, Fig.
3c). U937 extracts also exhibited a difference at the less stringent level of P = 0.09, likely
due to the smaller number of observations in U937 cells (N=3, Fig. 3d).

Since altered binding of NF-κB to the regulatory region containing the TT>A polymorphic
dinucleotide could influence TNFAIP3 gene expression we used gene expression data
generated from transformed B-cell lines of 201 unrelated HapMap samples18

(ftp.sanger.ac.uk/pub/genevar) to test this possibility. We pooled the genotypes for SNP
rs7749323 from HapMap European (CEU), Chinese (CHB) and Japanese (JPT) subjects
since our data confirmed that rs7749323 is a perfect proxy of the TT>A variant in these
populations and compared TNFAIP3 mRNA expression to that of the HapMap Yoruba
(YRI) samples. These results demonstrated a significant decrease in TNFAIP3 mRNA
expression with the number of risk alleles (A) in the combined sample (Fig. 3e, P = 0.0001,
one-way ANOVA) compared to the YRI samples (Fig. 3f, P = 0.2352, two-tailed t-test). To
confirm these results we evaluated basal A20 expression in an independent set of EBV
transformed cell lines by Western blotting. Similar to the mRNA expression results, we
found decreased expression of A20 protein as a function of the number of rs7749323 risk
alleles in EA subjects (Fig. 3g, P = 0.0068, one-way ANOVA) compared to cell lines from
AA subjects (Fig. 3h, P = 0.8078, two-tailed t-test). These results support the hypothesis that
regulatory polymorphisms present on the TNFAIP3 risk haplotype, such as the TT>A
polymorphic dinucleotide, influence A20 expression.

In summary, we have comprehensively characterized the genetic variation present on the
TNFAIP3 risk haplotype and have identified a novel TT>A dinucleotide as the best
candidate polymorphism responsible for SLE association in subjects of European and
Korean ancestry. The lack of significant association in AA, AAG, and HS populations is
proportional to the power to detect the European derived TT>A variant present at
frequencies consistent with EA admixture (0.53%, unobserved, and 2.9%, respectively). The
TT>A dinucleotide variant, 42 kb downstream of the TNFAIP3 promoter, is located in a
genomic region of high conservation and regulatory potential and may influence TNFAIP3
expression by altering the binding of transcription factors, one of which is NF-κB, in
response to pro-inflammatory signals.

In addition to the TT>A polymorphic dinucleotide and the rs2230926 T>G F127C exon 3
coding variant, another TNFAIP3 functional variant was recently reported in SLE through
genetic association in 217 AA cases19. This variant, rs5029941 C>T, defines a rare African
derived protective haplotype (P=0.027) and encodes an A125V substitution, two amino acid
residues from F127C19. Functionally, the A125V polymorphism resulted in significant
defects in A20 mediated deubiquitination19. However, our results from a larger set of AA
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SLE cases (N=1527) failed to support a role for rs5029941 (P=0.223, Supplementary Table
4) in AA SLE susceptibility.

While rare variants may influence the genetic association with TNFAIP3, we are confident
that we have captured all common variants (minor allele frequency > 1%) present on the risk
haplotype in our analyses with the data supporting the TT>A polymorphic dinucleotide as
responsible for SLE association. It is possible that this variant may work in concert with the
F127C or A125V coding region variants to influence both expression and enzymatic activity
of A20, thus producing a more robust functional phenotype. Such a mechanism has been
suggested for IRF5, where a complex haplotype is required for SLE risk20.

The location of the TT>A polymorphic dinucleotide in relation to TNFAIP3 suggests that it
may be part of a transcriptional modulator perhaps through recruitment of epigenetic DNA
modifiers or through direct interaction with the A20 proximal promoter. The precise
mechanism for how the TT>A polymorphism would influence expression of TNFAIP3 is
uncertain, however, methods designed to detect long-range interactions of transcriptional
regulatory elements may provide insight into this process21. Future work will focus on
characterizing the protein complex bound to the TT>A polymorphism and mapping the
interactions of this genomic region with other regulatory elements in the vicinity of
TNFAIP3.

METHODS
Subjects

This study included the following independent cases and controls, respectively
(Supplementary Table 1): African-American (1,569/1,893), Asian (1,328/1,348), European-
ancestry (4,248/3,818), African-American Gullah (155/131) and Hispanic enriched for the
Amerindian-European admixture (1,622/887) populations. The Asians were comprised
primarily of Koreans (906 cases and 1012 controls) but also included Chinese, Japanese,
Taiwanese and Singaporeans. Cases were defined by meeting at least four of the 1997 ACR
revised criteria for the classification of SLE22. Samples were collected from multiple sites
and processed at the Oklahoma Medical Research Foundation (OMRF) under the auspices
of the OMRF Institutional Review Board (IRB).

Genotyping and Quality Control
Genotyping was performed on the Illumina iSelect platform at OMRF for 127 SNPs
(chromosome 6, 138,001,148 to 138,295,172 bp; NCBI build 36, dbSNP build 126) and 347
genome-wide AIMs23,24 (Supplementary Table 5). Principal components analysis25, using R
(Supplementary Fig. 6), and global ancestry, estimated using ADMIXMAP26,27 were used
to identify population outliers (with ancestral allele frequencies from African, European,
American Indian, and East Asian populations23,24). For inclusion, SNPs had to meet the
following criteria: well-defined cluster plots, call rate >90%, minor allele frequencies
>0.001 and P>0.001 for Hardy-Weinberg proportion tests in controls. We removed 1,182
samples because of low call rates (<90%), sample heterozygosity outliers (>5 standard
deviations from the mean), extreme population outliers (based on global ancestry estimation
and principal component analysis), sample duplicates (the proportion of alleles shared
identity by descent (IBD) >0.4), gender discrepancies between reported gender and genetic
data, and genotype/imputation error discovered by resequencing (Supplementary Table 2).
comprised 113 TNFAIP3 SNPs and 262 AIMs and 15,817 samples (Table 1).
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Imputation Methods
Imputation was performed 137.9 Mb to 138.4 Mb on chromosome 6q with the genotype data
as the source of observed genotypes and the 1000 Genomes Project and the Phase III
HapMap release 2 as reference using IMPUTE2 program28–30. IMPUTE2 calculates
posterior probabilities for the three possible genotypes (i.e. AA, AB, and BB). We converted
the posterior probabilities to the most likely genotypes with a threshold of 0.8 and removed
imputed SNPs with less than 90% average certainty of the most probable genotypes. At a
call threshold of 0.8, more than 87% of the imputed genotypes were called and more than
94% of those were concordant with the known genotypes. The composition of the 1000
Genomes Project and Phase III HapMap reference panels for each population imputation can
be found in Supplementary Table 3. After imputation, our datasets comprised a minimum of
351 SNPs for each of the populations (the number varied based on linkage disequilibrium
structure) (Supplementary Table 3).

Association Analyses
The single marker association analyses were calculated using the logistic regression function
in PLINK31 and R under the additive model adjusting for sex and either global ancestry
(African, European, and East Asian) or the first three principal components, with no
observable difference. Conditional analyses were also performed using PLINK and R and
were adjusted for sex and global ancestry as well as each SNP, one-at-a-time, within the risk
haplotype.

LD between variants was estimated and probable haplotypes were calculated followed by
haplotypic association using Haploview version 4.232 for all haplotypes formed by the
associated markers with P < 1 × 10−4 (28 SNPs) that are common in EA and Koreans. We
used those SNPs to construct haplotypes for AA, AAG, and HS (Supplementary Fig. 7). The
pairwise linkage LD for SNPs across TNFAIP3 was confirmed by the r2 values. Haplotype
blocks were calculated using the solid-spine of LD algorithm with a minimum D’ value of
0.832. Only haplotypes with a frequency of at least 1.0% were included in the haplotype
analysis. The haplotype blocks were then compared to narrow down the region of interest.
Power to detect association to the TT>A effect in the AA, AAG, and HS populations was
determined using the available sample sizes, assuming an OR of 1.7 (as seen in the EA), a
type I error rate of 0.0001, and the respective minor allele frequency (MAF).

Resequencing
Targeted sequence capture followed by resequencing was performed using the Agilent
SureSelect and Illumina GAIIx platforms, respectively. Data generated using the Illumina
GAIIx instrument was processed using the Illumina Pipeline software (v.1.7). Duplicate
reads were removed and unique reads as well as sequence contigs were assembled and
analyzed using CLC Genomics Workbench Software 4.0. All samples were sequenced to
minimum average fold coverage of 25X.

We resequenced the TNFAIP3 risk segment of two EA cases homozygous for the risk
haplotype, five EA cases heterozygous for the risk haplotype (although phase was estimated
not confirmed) and three EA cases with no copies of the risk haplotype using solution-based
sequence capture and massively parallel sequencing. We identified 258 variants (233 SNPs
and 26 deletion/insertion polymorphisms (DIPs)) that differed from the reference sequence
(hg18) across the 174 kb targeted region from 138,173,000 to 138,347,000 bp. Of these, 220
were already documented in the HapMap or 1000 Genomes Project databases leaving 29
novel SNPs and 9 novel DIPs (Supplementary Fig. 3 and Supplementary Table 6). No single
SNP was observed in more than one individual and thus not likely to be carried on the
TNFAIP3 risk haplotype. Among the 9 novel DIPs only one was observed with the expected
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risk genotype distribution and was found at position chr6:138271732, immediately adjacent
to SNP chr6:138271733.

Genotyping the TT>A Polymorphic Dinucleotide in African-Americans
The TT>A variant genotyping was performed on a Li-Cor Longread IR 4200 DNA
sequencer using a PCR based assay and a Li-Cor IR 700nm labeled M13 forward primer and
two unlabeled TNFAIP3 primers (Supplementary Table 7). Individual PCR reactions were
set up in a 10ul volume using 0.25 Units Takara Taq DNA polymerase, 1 X PCR buffer, 1 X
dNTPs (Fisher Scientific, Pittsburg, PA), 19 mM MgCl2, 1.5 uM each primer, and 10 ng
genomic DNA. PCR reactions were denatured at 94oC for 3 minutes, followed by 33 cycles
of 94oC for 30 seconds, 57oC for 45 seconds and 72oC for 1 minute followed by a final
extension at 72oC for 2 minutes. Samples were held at 10oC until they were run on the Li-
Cor sequencers. The 100 bp insertion and/or 99 bp deletion amplification products were
separated and detected on 6% polyacrylamide gels run with 1X TBE buffer for 945 AA
cases and 1,307 controls and 127 AAG cases and 116 controls. The allele frequency of the
TT>A variant expected in the AA due to European admixture alone (0.429–0.585%) was
calculated as the product of the EA minor allele frequency (3.9%) and the proportion of the
genome expected to originate from the European population, in this case 11% to 15%33.
This was similarly calculated for the HS population (MAF=1.8% to 3.2%) based on recent
European admixture estimates ranging from 48% to 82%34.

Cell Culture
Human monocyte cell lines, THP-1 and U937, were purchased from ATCC. Cells were
maintained in RPMI (Gibco Invitrogen) with 10% FBS, L-glutamine (2mM), penicillin and
streptomycin (100 units/mL). Lipopolysaccharide (LPS) was purchased from Sigma-
Aldrich.

Electrophoretic Mobility Shift Assays
A 248 base pair oligonucleotide was generated by PCR amplification using AccuPrime pfx
DNA polymerase (Invitrogen) with two primers (Supplementary Table 8) and template
DNA from either homozygous risk or non-risk subjects. The amplified product was gel-
purified and end-labeled with (γ-32P) adenosine triphosphate (MP Biomedicals Int.) using
T4 polynucleotide kinase (Invitrogen). A portion of each probe preparation was sequenced
to verify no mutations had been introduced during amplification. Nuclear protein extracts
were prepared from cells stimulated with LPS (1ug/mL) for 3 hours and incubated for 25
min at 37°C with labeled probes in binding buffer (1ug poly (dI-dC), 20mM HEPES, 10%
Glycerol, 100mM KCl, and 0.2mM EDTA, pH 7.9). DNA-protein complexes were resolved
on denaturing 5% acrylamide gels. Supershift assays were performed by adding 80–100ug
of anti-p50, p65, c-Rel (GeneTex) or Rabbit IgG isotope control (Alpha Diagnostic Int. Inc.)
to the mixture followed by incubation at room temperature for 15 min prior to adding
labeled probe. Densitometry measurements of EMSA bands were performed using a Bio-
Rad Universal Hood II Gel Docking Station and Quantity One analysis software. The
density value of each band was recorded and normalized to the background for each blot.
Statistical analyses were performed using a paired t-test and Prism 5.0 software.

A20 Protein Expression
EBV-transformed B cell lines were obtained from the Large Lupus Family Registry
(OMRF) with IRB approval and selected using genotype data corresponding to the TT>A
variant proxy marker rs7749323. Cell lines were maintained in RPMI 1640 supplemented
with 10% fetal bovine serum, penicillin, streptomycin, L-glutamine and 55uM beta-
mercaptoethanol. Equal numbers of cells were harvested under basal conditions in log-phase
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growth and were lysed in RIPA buffer (50mM Tris, 1% TritonX-100, 150mM NaCl, 1mM
EDTA, 0.25% deoxycholate and protease inhibitors). Lysates were subjected to SDS-PAGE
and Western transfer. Membranes were immunoblotted for A20 (Ebioscience) and GAPDH
(Imgenex). Bands were revealed radiographically, scanned, and band intensity analyzed
using Image J (NIH) software.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
SNPs in and around the TNFAIP3 gene associated with SLE in European-ancestry (a.),
Asian (b.) and Korean (c.) populations. Genotyped SNPs are depicted with blue diamonds
and imputed SNPs are shown with red circles. An orange solid line represents recombination
rates across the region. The dashed line represents a Bonferroni corrected P < 1 × 10−4.
Arrows identify SNPs demonstrating the most significant association results in each
population.
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Figure 2.
Haplotype and conditional association analysis results of the TNFAIP3 risk haplotype.
Haplotypes present at a frequency > 1% were compared in the European-ancestry and
Korean populations (a.). Alleles in white boxes represent the major allele and those in grey
boxes represent the minor allele for each haplotype. Black bold rectangles identify minor
alleles that differentiate the SLE risk haplotype from the non-risk haplotype. Conditional
association analysis was performed in the European (b.) and Korean (c.) populations for
each of the SNPs within the 48.5 kb segment bounded by rs5029937 and rs61117627. We
assessed three models: first, conditioning the on F127C coding variant rs2230926 (white
bars), then conditioning on the TT>A variant (gray bars) and finally conditioning on
rs7749323 (black bars).
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Figure 3.
Functional characterization of the TT>A polymorphic dinucleotide and TNFAIP3 associated
risk haplotype. (a.) Shown is a representative EMSA result from six independent
experiments for THP1 and three for U937). The first two lanes show free probe for wild type
(WT) and TT>A variant followed by increasing amounts of nuclear protein and labeled
probes as indicated. A non-specific band is labeled N.S. (b.) Super shift was performed
using antibodies specific to NF-κB subunits.. Complexes formed in the presence and
absence of antibodies are identified by arrows on the left of the figure.. Densitometric
quantification of nuclear protein binding in independent experiments was performed for
THP1 cells (c.) and U937 cells (d.) using optimal concentrations of nuclear extract.
Expression of TNFAIP3 transcripts were evaluated from CEU, CHB and JPT populations
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(AA, N=2; AG, N=24; GG, N=115) (e.) and compared to the YRI population (AG, N=6;
GG, N=54) (f.) using a one-way ANOVA and unpaired t-test. A20 protein expression from
cell lines of European-ancestry subjects (AA, N=2; AG, N=5; GG, N=5) (g.) were compared
to African-American subjects (AG, N=10, GG, N=9) (h.) using one-way ANOVA and
unpaired t-test, respectively.
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