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Abstract
AIM: To investigate the effects of schisandrin B (Sch B) 
on free fatty acid (FFA)-induced steatosis in L-02 cells.

METHODS: Cellular steatosis was induced by incubat-
ing L-02 cells with a FFA mixture (oleate and palmitate 
at the ratio of 2:1) for 24 h. Cytotoxicity and apoptosis 
were evaluated by 3-(4, 5-dmethylthiazol-2-yl)-2, 5-di-
phenyl tetrazolium bromide assay and Annexin V/prop-
idium iodide staining, respectively. Cellular total lipid 
was determined using a photocolorimetric method after 
Nile red staining, and triglyceride content was mea-
sured using an enzymatic kit. To study the effects of 
Sch B on steatosis, L-02 cells were treated with Sch B 
(1-100 μmol/L) in the absence or presence of 1 mmol/L 
FFA for 24 h, and cellular total lipid and triglyceride 
levels were measured. To explore the mechanisms of 
action of Sch B in the steatotic L-02 cells, mRNA levels 
of several regulators of hepatic lipid metabolism in-

cluding adipose differentiation related protein (ADRP), 
sterol regulatory element binding protein 1 (SREBP-1), 
peroxisome proliferator-activated receptor (PPAR)-α 
and PPAR-γ were measured by quantitative real-time 
polymerase chain reaction (PCR), and protein levels of 
ADRP and SREBP-1 were measured by immunoblotting.

RESULTS: Treatment with 1 mmol/L FFA for 24 h 
induced intracellular lipid accumulation in L-02 cells 
comparable to that in human steatotic livers without 
causing apparent apoptosis and cytotoxicity. Sch B miti-
gated cellular total lipid and triglyceride accumulations 
in the steatotic L-02 cells in a dose-dependent manner. 
Quantitative real-time PCR and Western blot analyses 
revealed that treatment of L-02 cells with 100 μmol/L 
Sch B reverted the FFA-stimulated up-regulation of 
ADRP and SREBP-1.

CONCLUSION: Sch B inhibits FFA-induced steatosis in 
L-02 cells by, at least in part, reversing the up-regula-
tion of ADRP and SREBP-1.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) has emerged 
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as a serious and widespread metabolic disease, which 
entails a wide spectrum of  liver disorders and damages 
ranging from simple steatosis through steatohepatitis and 
fibrosis to end stage liver diseases including cirrhosis and 
hepatocellular carcinoma[1]. The clinical significance of  
NAFLD is largely due to its high prevalence of  around 
20% in general populations and up to 80% in obese and 
diabetic individuals worldwide[2]. Although the patho-
genesis of  NAFLD has not been clearly defined, hepatic 
steatosis characterized by uncontrolled triglyceride accu-
mulation in hepatocytes and oxidative stress are believed 
to play a crucial role[3]. Therefore, agents that are capable 
of  lowering hepatic lipid levels and alleviating oxidative 
stress may be beneficial to the control of  NAFLD. 

Schisandrin B (Sch B) (Figure 1) is the most abundant 
and active dibenzocyclooctadiene derivative isolated from 
the fruits of  Schisandra chinensis, a traditional Chinese 
medicinal herb commonly used in treatment of  viral 
and chemical hepatitis. A growing body of  evidence has 
shown that Sch B can protect liver from damage caused 
by oxidative stress. Sch B may inhibit oxygen free-radical 
lipoperoxidative damage to plasma membrane of  rat he-
patocytes in vitro[4]. Sch B pretreatment protects mouse 
livers against tumor necrosis factor α-induced apoptosis 
in a dose-dependent manner[5]. In addition, Sch B can 
protect mice against carbon tetrachloride-induced hepatic 
toxicity by inhibiting lipid peroxidation[6]. Recently, we 
have reported that Sch B has hepatic lipid lowering ef-
fects in mice fed a high-fat diet[7]. These lines of  evidence 
underscore both hepatic lipid-lowering and antioxidant 
effects of  Sch B, making it a promising candidate for the 
treatment of  NAFLD. Although the antioxidant role of  
Sch B has been well investigated, the mechanism underly-
ing its hepatic lipid-lowering action remains unknown. 
This study was designed to investigate the anti-hepatos-
teatotic effects and mechanisms of  Sch B using cultured 
steatotic cells.

NAFLD patients exhibit an elevated lipolysis and high 
circulating free fatty acid (FFA) levels[8]. High circulating 
FFA levels can trigger a series of  biological changes in he-
patic lipid metabolism, thus ultimately leading to hepatic 
steatosis[9]. Therefore, cellular FFA loading is commonly 
utilized to develop in vitro models of  steatosis. These 
models can reliably reproduce the key features of  hepatic 
steatosis in human beings[10-12], rendering them useful 
for the identification of  potential therapeutic targets and 
effective intervention approaches against NAFLD. Hu-
man hepatocytes in primary culture represent the model 
closest to human liver tissues. Nevertheless, their use is 
often greatly hampered due to scarcity of  liver samples[13]. 
HepG2 and Huh-7, two human hepatoma cell lines, are 
frequently used in establishing in vitro steatosis models. 
However, the validity of  cancer cell-based models is 
concerned because metabolic regulation is often altered 
in cancer cells. For example, it has been highlighted that 
cancer cells may carry out an increased fatty acid de novo 
synthesis irrespective of  the extracellular lipid levels[13]. 
Therefore, in this study, we first established FFA-induced 

steatotic cells using an immortalized normal human hepa-
tocytes-derived cell line L-02[14,15]. Then, we investigated 
the in vitro effects of  Sch B on hepatosteatosis in the stea-
totic L-02 cells, and explored the underlying mechanisms. 

MATERIALS AND METHODS
Cell culture and treatment
L-02 (Institute of  Biochemistry and Cell Biology, Shang-
hai Institute for Biological Sciences, Shanghai, China) and 
HepG2 (ATCC) cells were grown in Dulbecco’s modified 
Eagle’s medium (DMEM, GIBCO) supplemented with 
10% fetal bovine serum (FBS, GIBCO, USA) and 1% 
penicillin/streptomycin (P/S, GIBCO, USA) at 37℃ in 
an atmosphere containing 5% CO2. When FFA mixture 
(sodium salts of  oleate and palmitate, Sigma, Malaysia) 
was added, bovine serum albumin (BSA) was supple-
mented to a final concentration of  1% in the culture me-
dium. Cell cultures were used in experiments when they 
reached 75% confluence.

Sch B was purchased from Ningli Technology Co. Ltd. 
(Kunming, China) with a purity of  98% as determined 
by HPLC. A stock solution of  Sch B (100 mmol/L) was 
prepared in dimethylsulfoxide (DMSO). The concentra-
tion of  vehicle DMSO was 0.1% in treated cell cultures. 

Cell viability assay
Cytotoxicity of  FFA to L-02 cells was assessed by 3-(4, 
5-dmethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide 
(MTT) assay. L-02 cells in 96-well plates were treated with 
FFA. After incubated for 24 h, 20 μL of  MTT solution 
(5 mg/mL, USB, Austria) was added to each well and the 
plates were further incubated at 37℃ for 4 h. After me-
dium removal, 100 μL of  DMSO was added to each well 
of  the plates which were then gently shaken for 5 min. 
Optical absorbance was determined at 570 nm with a mi-
croplate spectrophotometer (BD Bioscience, USA). Each 
treatment was performed in triplicate. 

Quantification of apoptosis
Early and late phase apoptotic cells were assessed using 
the Annexin V-fluorescein isothiocyanate (FITC) apop-
tosis detection kit I (BD Bioscience, USA) following the 
manufacturer’s instructions. After treatment with FFA, 
L-02 cells were harvested and rinsed twice with cold PBS, 
resuspended in the binding buffer, and incubated with 
Annexin V-FITC and propidium iodide (PI) staining so-
lution. Samples of  10 000 stained cells were analyzed us-
ing a flow cytometer (BD Bioscience, USA).

Nile red staining
L-02 cells in F96 microwell black plates (Nunc, Denmark) 
were treated with FFA in the presence or absence of  Sch 
B for 24 h. Photocolorimetric measurement of  intracellu-
lar lipid contents in Nile red stained cells was performed 
as previously described[16]. Each treatment was performed 
in triplicate. 
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Phase-contrast and fluorescence microscope imaging
L-02 cells in 6-well plates were treated with FFA for 24 h,  
washed with PBS, stained with 1 μmol/L Nile red in 
HBSS for 15 min and then examined under phase-con-
trast (Leica, Germany) and fluorescence (Nikon, Japan) 
microscopes.

Measurement of intracellular triglyceride content
Cellular triglyceride content was measured using an en-
zymatic kit (Zhongsheng Beikong Biotechnology and 
Science Inc, China) following the manufacturer’s instruc-
tions. Triglyceride content was expressed in microgram 
of  triglycerides per microgram protein. Protein concen-
tration was measured by Bio-Rad protein assay (Bio-Rad, 
USA). Each treatment was performed in triplicate. 

Semi-quantitative and real-time quantitative polymerase 
chain reaction analyses
Total RNA was extracted with Trizol reagent (Invitrogen, 
USA), and 2 μg of  RNA was reverse-transcribed with oli-
go-dT using the M-MLV reverse transcriptase (Promega, 
USA) according to the manufacturer’s protocol. For semi-
quatitative polymerase chain reaction (PCR), the resultant 
cDNA was subjected to 25-30 cycles of  PCR amplifica-
tion (denaturing at 95℃ for 30 s, annealing at 55-60℃ for 
30 s, extension at 72℃ for 60 s). The PCR products were 
separated by electrophoresis on a 2% agarose gel and 
visualized with ethidium bromide staining. Quantitative 
real-time PCR was performed using SYBR green reaction 
mixture in the ABI 7500 fast real-time PCR system (Ap-
plied Biosystems). The PCR conditions were one cycle 

at 55℃ for 2 min and at 95℃ for 10 min, followed by 40 
cycles of  amplification at 95℃ for 15 s and at 60℃ for 
1 min. The fluorescent signals were detected using the 
ABI Prism 7500HT sequence detection system (Applied 
Biosystems). The gene expression data were normalized 
to the endogenous control β-actin. The relative expres-
sion levels of  genes were measured according to the for-
mula 2-∆Ct, where ∆Ct is the difference in threshold cycle 
values between the targets and β-actin. All samples were 
analyzed in triplicate. The specific primer pairs used for 
detecting messenger RNA are listed in Table 1. 

Western blot analysis
L-02 cells were harvested and lysed on ice with the RIPA 
buffer consisting of  50 mmol/L Tris-Cl, 1% NP-40, 0.35% 
sodium-deoxycholate, 150 mmol/L NaCl, 1 mmol/L 
EDTA, 1 mmol/L EGTA, pH 7.4, 1 mmol/L phenylmeth-
ylsulfonyl fluoride, 1 mmol/L NaF, 1 mmol/L Na3VO4 
and 10 μg/mL each of  aprotinin, leupetin and pepstatin A. 
Protein concentration in each sample was measured by the 
Bio-Rad protein assay. Protein samples (each 15 μg) were 
separated by SDS-PAGE and then electro-transferred 
onto nitrocellulose membranes (Amersham Biosciences, 
USA), which were blocked for 30 min with 5% skim milk 
in the TBST buffer containing 50 mmol/L Tris (pH 7.6), 
150 mmol/L NaCl and 0.1% Tween-20 and incubated 
with specific antibodies against adipose differentiation 
related protein (ADRP) (Abcam), sterol regulatory ele-
ment binding protein 1 (SREBP-1) (Santa Cruz) or β-actin 
(Santa Cruz) overnight at 4℃. The membranes were then 
incubated with HRP-conjugated secondary antibodies, 
and immunoreactive bands were visualized using the ECL 
detection kit (Amersham Biosciences, USA) following the 
manufacturer’s instructions.

Statistical analysis
All results were expressed as mean ± SE. The difference 
between two groups was analyzed using the Student’s t 
test. 

RESULTS
Cytotoxic effect of FFA treatment on L-02 cells
L-02 cells were treated with 0.5-2 mmol/L a FFA mixture 
(oleate and palmitate at the ratio of  2:1) for 24 h and the 
cytotoxicity of  FFA to L-02 cells was detected by MTT 
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Figure 1  Chemical structure of schisandrin B.

Table 1  Primers used for polymerase chain reaction amplification of mRNA

Gene Forward primer Reverse primer

SREBP-1 ACGGCAGCCCCTGTAACGACCACTGTGA TGCCAAGATGGTTCCGCCACTCACCAGG
ADRP GGGATCCCTGTCTACCAAGC AGATGTCGCCTGCCATCACC
PPAR-α CCAGTATTTAGGAAGCTGTCCTG CGTTGTGTGACATCCCGACAG
PPAR-γ TGGTGACTTTATGGAGCCCAA GGCAAACAGCTGTGAGGACTCAG
β-actin GACTACCTCATGAAGATC GATCCACATCTGCTGGAA

SREBP-1: Sterol regulatory element binding protein 1; ADRP: Adipose differentiation related protein; PPAR: Peroxisome 
proliferator-activated receptor.
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assay. No apparent cytotoxic effect of  FFA was observed 
on L-02 cells after treatment with FFA at the concen-
tration of  0.5 or 1 mmol/L, while the cell viability was 
decreased by 40% when L-02 cells were treated with FFA 
at the concentration of  2 mmol/L (Figure 2A). These re-
sults suggest that 0.5 or 1 but not 2 mmol/L FFA can be 
used to prepare steatotic L-02 cells.

Apoptotic effect of FFA treatment on L-02 cells
To evaluate the apoptotic effect of  FFA treatment on L-02 
cells, the L-02 cells were treated with 1 mmol/L FFA 
(oleate and palmitate at the ratio of  2:1) for 24 h, and 
then stained with Annexin V/PI. Apoptosis of  L-02 cells 
was monitored by flow cytometry. For comparison, apop-
tosis of  HepG2 cells induced by FFA treatment was also 
analyzed. FFA treatment did not trigger early- or late-
stage apoptosis of  L-02 cells but significantly induced 
early-stage apoptosis of  HepG2 cells (Figure 2B and C). 
The percentage of  apoptotic HepG2 cells was increased 
from 1.500% ± 0.473% in control cells to 9.267% ± 
0.203% in FFA-treated cells (Figure 2C), which is con-
sistent with previous reports showing that FFA causes 
apoptosis of  HepG2 cells under the same conditions[11,12]. 
These results suggest that L-02 and HepG2 cell lines do 
have different responses to FFA treatment.

FFA treatment induced lipid accumulation in L-02 cells
We next examined the cellular lipid accumulation in L-02 

cells treated with the FFA mixture for 24 h at the con-
centration of  0.5 mmol/L or 1 mmol/L using Nile red 
staining. The results showed that FFA induced lipid ac-
cumulation (Figure 3A) in L-02 cells in a dose-dependent 
manner, which was confirmed by fluorescent microscopy 
(Figure 3B). When the L-02 cells were treated with FFA 
mixture at the concentration of  1 mmol/L, the intracel-
lular lipid content was increased by 5.34 ± 0.65-fold in 
L-02 cells compared to that in FFA-untreated controls 
(Figure 3A). The cellular lipid accumulation level in L-02 
cells treated with FFA at the concentration of  1 mmol/L 
was comparable to that in human steatotic livers, which is 
5.5-fold over non-steatotic livers[13].

We also measured the intracellular triglyceride levels in 
L-02 cells treated with FFA mixture at the concentration 
of  1 mmol/L. The triglyceride content was increased by 
about 2.5-fold from 0.108 ± 0.027 μg/μg protein in con-
trol cells to 0.241 ± 0.030 μg/μg protein in FFA-treated 
cells (Figure 3C), which is similar to the results obtained 
from human liver samples. The triglyceride content is 
about 2.7-fold higher in human steatotic livers than in 
non-steatosis livers[13]. 

The above data indicate that steatotic cells can be pre-
pared by incubating L-02 cells with a FFA mixture (oleate 
and palmitate at the ratio of  2:1) at the concentration 
of  1 mmol/L for 24 h, in which lipid accumulation can 
reach a level similar to that in human steatotic livers in 
the absence of  apoptosis. 
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Figure 2  Cytotoxic and apoptotic effects of free fatty acid treatment on cultured cells. A: L-02 cells were treated with a free fatty acid (FFA) mixture (oleate and 
palmitate at the ratio of 2:1) at various concentrations for 24 h. Cell viability was determined by the 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) 
assay. bP < 0.01 vs control group; B: L-02 and HepG2 cells were treated with 1 mmol/L FFA mixture (oleate and palmitate at the ratio of 2:1) for 24 h and stained with 
Annexin V-fluorescein isothiocyanate (FITC) and propidium iodide. Apoptotic and necrotic cells were monitored by flow cytometry. Normal, early and late apoptotic 
cells as well as necrotic cells were shown in Q3, Q4, Q2 and Q1 quadrants, respectively. The percentage of cells in each quadrant was displayed. Results were the 
representative of three independent experiments; C: Quantification of early phase apoptotic cells in response to FFA treatment. bP < 0.01 vs HepG2 control group.
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Sch B treatment alleviated FFA-induced lipid 
accumulation in L-02 cells 
To investigate the anti-steatotic effect of  Sch B in L-02 
cells, L-02 cells were exposed to various concentrations 
of  Sch B (1-100 μmol/L) in the absence or presence of  
FFA mixture at the concentration of  1 mmol/L for 24 h. 
The intracellular total lipid levels in L-02 cells were mea-
sured after Nile red staining and the triglyceride contents 
were assayed using an enzymatic kit. Nile red staining 
assay showed that Sch B at all concentrations had no sig-
nificant effect on the cellular lipid content in L-02 cells 
in the absence of  FFA, but substantially ameliorated the 
lipid accumulation induced by FFA in a dose-dependent 
manner (Figure 4A). The lipid-lowering effect of  Sch B at 
the concentration of  100 μmol/L was further confirmed 

by microscopic examination of  the fluorescence of  Nile 
red-stained L-02 cells (Figure 4B). The intracellular triglyc-
eride measurements showed that Sch B inhibited the fat 
accumulation in a dose-dependent manner, and exerted a 
significant inhibitory effect in L-02 cells treated with FFA 
at the concentration of  1 mmol/L (Figure 4C). It was 
noteworthy that Sch B at each tested concentration did 
not elicit apparent cytotoxicity or apoptosis in L-02 cells 
in the presence or absence of  1 mmol/L FFA at 24 h (data 
not shown). 

Sch B decreased mRNA and protein expression levels of 
ADRP and SREBP-1 in FFA-induced steatotic L-02 cells
To explore the mechanisms underlying Sch B-mediated lip-
id-lowering action in L-02 cells, the mRNA expression lev-
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Figure 3  Free fatty acid induced lipid accumulation in L-02 cells. A: L-02 cells were incubated with a free fatty acid (FFA) mixture (oleate and palmitate at the 
ratio of 2:1) for 24 h. Intracellular lipid accumulation was evaluated after Nile red staining. Results were expressed as mean ± SE of three independent experiments. 
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els of  ADRP, SREBP-1, peroxisome proliferator-activated 
receptor (PPAR)-α and PPAR-γ, four important regulators 
of  hepatic lipid metabolism, were first measured by semi-
quantitative PCR and quantitative real-time PCR, respec-
tively. Sch B attenuated the FFA-induced fat accumulation 
most effectively at the concentration of  100 μmol/L, 
thus this dosage of  Sch B was used in this experiment. 
The mRNA expression level of  PPAR-α remained un-
changed in FFA-treated L-02 cells, while the mRNA 
expression levels of  the other three genes were up-regu-
lated (Figure 5A and B). Concurrent treatment with Sch 
B at the concentration of  100 μmol/L for 24 h restored 
the FFA-upregulated ADRP and SREBP-1 expression to 
normal levels, but did not affect FFA-stimulated PPAR-γ 
mRNA expression. In addition, Sch B treatment did not 
obviously influence the expression of  PPAR-α in L-02 
cells in the presence of  FFA.

Immunoblot analysis showed that the protein levels of  
ADRP and SREBP-1 were dramatically elevated in L-02 
cells in response to FFA treatment, but returned to normal 
levels after concurrent treatment with Sch B (Figure 5C).

DISCUSSION
FFA-induced hepatocellular steatosis models have been 

widely applied in studies on NAFLD pathogenesis and 
anti-NAFLD drugs[13,17]. Although human hepatocytes in 
primary culture represent the most stringent model of  the 
human liver, they are tedious to prepare and the reproduc-
ibility of  experimental results is often a big problem[18,19]. 
On the other hand, the use of  liver cancer cell lines in-
cluding HepG2 and Huh-7 is often questioned about their 
acquired genetic and epigenetic alterations which may 
endow them with numerous properties including metabo-
lism regulation distinct from normal hepatocytes[20]. In 
the present study, we successfully prepared FFA-induced 
steatotic cells using a normal human hepatocytes-derived 
cell line L-02. The steatotic L-02 cells behave similarly to 
human steatotic livers in two aspects. First, 24 h treatment 
with a FFA mixture (oleate and palmitate at the ratio of  
2:1) at the concentration of  1 mmol/L caused no appar-
ent toxicity to L-02 cells. Second, the induced fat accu-
mulation in L-02 cells was comparable to that in human 
steatotic livers[13]. These aforementioned attributes make 
FFA-induced steatotic L-02 cells suitable for the investiga-
tions of  NAFLD pathogenesis and anti-NAFLD agents. 

High circulating FFA concentration may aggravate 
hepatic fat accumulation by disrupting lipid metabolism 
in NAFLD patients, and thus studying how FFA overload 
influences metabolic regulators will further improve our 
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Figure 4  Effect of schisandrin B on free fatty acid-induced fat accumulation in L-02 cells. A: L-02 cells were treated with schisandrin B (Sch B) (1 μmol/L, 10 μmol/L 
or 100 μmol/L) in the presence or absence of 1 mmol/L free fatty acid (FFA) mixture (oleate and palmitate at the ratio of 2:1) for 24 h. Intracellular total lipid levels were 
measured after Nile red staining; B: Representative micrographs showing intracellular lipid accumulation in Nile red stained L-02 cells after treatment with 100 μmol/L Sch 
B in the presence of 1 mmol/L FFA examined by fluorescent microscopy; C: L-02 cells were treated with Sch B at the indicated concentrations for 24 h and cellular triglyc-
eride levels were measured using an enzymatic kit. bP < 0.01 vs FFA-untreated control groups; cP < 0.05, dP <0.01 vs FFA-treated groups. Data are from three indepen-
dent experiments. 
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understanding about the pathogenesis of  NAFLD. Given 
that palmitic and oleic acids are the most abundant fatty 
acids in liver triglycerides in both normal subjects and 
NAFLD patients[21], clarification of  their effect on hepa-
tocytes is of  great importance. In the present study, treat-
ment of  L-02 cells with a FFA mixture (oleate and palmi-
tate at the ratio of  2:1) did not significantly affect PPAR-α 
mRNA expression level but increased the mRNA expres-
sion levels of  ADRP, SREBP-1 and PPAR-γ. The un-
changed PPAR-α mRNA expression in L-02 cells treated 
with FFA suggests that PPAR-α-mediated mitochondria 
fatty acid β-oxidation may not been affected by FFA in 
our experimental conditions. The increased SREBP-1 
and PPAR-γ mRNA expression levels in response to FFA 
treatment are in good accord with a recent report as-
suming that the up-regulations of  SREBP-1 and PPAR-γ 
are linked to the steatogenic property of  oleic acid[17]. 
Moreover, the ADRP mRNA expression was elevated in 
L-02 cells challenged with FFA, which is in agreement 
with the reported observations in other cell lines treated 
with FFA[22,23]. ADRP is a lipid storage droplet-associated 
protein found in most cells and tissues, and has been 
suggested to be a marker of  lipid accumulation, because 
the cellular level of  ADRP is proportional to the total 
mass of  neutral lipids within the cells[24]. Fatty acids have 
been implicated as ligands for PPAR family members in-
cluding PPAR-α and PPAR-γ, it is thus believed that the 

stimulation of  ADRP gene by FFA is at least in part due 
to PPAR activation. It has been shown that the activated 
PPAR can complex with retinoid X receptor and bind to 
the PPAR response element in the promoter of  ADRP 
gene[25,26]. As both PPAR-α and PPAR-γ were detectable in 
L-02 cells, further studies are needed to ascertain whether 
one or both of  them are required for the up-regulation of  
ADRP gene expression induced by FFA treatment. These 
findings suggest that exposure to exogenous FFA may 
interfere with lipid metabolism through the modulation 
of  metabolic regulators in L-02 cell line derived from 
normal human hepatocytes. 

We demonstrated that Sch B exerted a drastic inhibi-
tory effect on FFA-induced steatosis in L-02 cells. This 
finding and the hepatic lipid-lowering action of  Sch B 
observed in high-fat diet-fed mice[7] strongly highlight the 
anti-steatosis potential of  Sch B. Since FFA overloading 
contributed to hepatic fat accumulation through modula-
tion of  lipid metabolism- related genes in our established 
steatotic L-02 cells, it is conceivable that Sch B may at-
tenuate fat accumulation by counteracting or reversing 
the unfavorable changes in expression of  genes evoked 
by FFA. In this study, Sch B treatment restored the FFA-
induced up-regulation of  both mRNA and protein levels 
of  ADRP and SREBP-1 to normal levels, indicating that 
ADRP and SREBP-1 are the potential targets of  Sch B 
in relation to its lipid-lowering property. 
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Figure 5  Effect of schisandrin B on mRNA and protein expression levels of several lipid metabolism-related molecules in free fatty acid-treated L-02 cells. 
A, B: Semi-quantitative polymerase chain reaction (PCR) and real-time quantitative PCR showing mRNA levels of adipose differentiation related protein (ADRP), ste-
rol regulatory element binding protein 1 (SREBP-1), peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ. Results shown are the representative of three 
independent experiments. aP < 0.05, bP < 0.01 vs control group; cP < 0.05 vs free fatty acid-treated groups; C: Immunoblotting showing expression levels of ADRP and 
SREBP-1 proteins. The representative blots out of three experiments are shown. FFA: Circulating free fatty acid; Sch B: Schisandrin B.
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ADRP expression is closely associated with intracel-
lular lipid droplets and up-regulated in hepatic steatosis 
in human and mouse models[27,28]. It has been reported 
that ADRP overexpression may promote lipid accumula-
tion in fibroblasts and macrophages without changing 
the expression of  adipogenic genes and genes involved in 
lipid efflux[29,30]. Intriguingly, ADRP overexpression may 
facilitate the uptake of  long chain FFA in COS-7 cells[31]. 
Moreover, Edvardsson et al[32] have recently proposed that 
ADRP may enhance cellular triglyceride accumulation 
in hepatocytes by increasing fatty acid uptake, driving 
fatty acids to triglyceride formation as well as preventing 
the use of  triglyceride in VLDL assembly. In this con-
nection, the down-regulation of  ADRP may contribute 
to the anti-hepatosteatotic effect of  Sch B by inhibiting 
the uptake of  exogenous long chain FFA, decreasing the 
incorporation of  FFA into triglyceride and increasing 
the availability of  triglyceride for VLDL assembly. It has 
been demonstrated that ADRP-deficient mice produced 
by either knock-out or anti-sense oligonucleptide technol-
ogy do not acquire diet-induced hepatic steatosis[26,33,34], 
raising the possibility that ADRP may become a putative 
molecular target for the prevention of  NAFLD，thus 
screening for compounds that can repress hepatic ADRP 
expression may provide a new direction for the identifi-
cation of  potential therapeutic agents against NAFLD. 
It has been recently demonstrated that pycnogenol, a 
French maritime pine bark extract, can reduce oleic acid-
induced lipid droplet formation in mouse liver epithelial 
cells MMuLi by inhibiting ADRP expression, and inter-
estingly the suppression of  ADRP expression is mediated 
in part by facilitating mRNA degradation[23]. How Sch B 
impairs ADRP expression in steatotic L-02 cells remains 
to be evaluated.

SREBP-1 is the most important transcription factor 
regulating de novo lipogenesis in the liver. There is compel-
ling evidence that supports the involvement of  SREBP-1 
in NAFLD development. It has been reported that 
SREBP-1 expression is significantly elevated in livers from 
NAFLD and obesity patients, and from insulin-resistant 
and hyperinsulinemic ob/ob mice[27,35,36]. Overexpression 
of  SREBP-1 in cultured hepatocytes or mouse livers can 
increase hepatic triglyceride deposition and mRNA ex-
pression of  genes involved in lipogenesis[37-39]. Moreover, 
in Lepob/ob mice deficient in SREBP-1, hepatic steatosis is 
markedly attenuated, which is accompanied by decreased 
mRNA levels of  lipogenic enzymes[40]. These lines of  
evidence strongly suggest that SREBP-1 plays a pivotal 
role in the regulation of  hepatic lipid metabolism, thus 
pharmacological manipulation of  SREBP-1 may be ben-
eficial to the management of  NAFLD. In this study, Sch 
B could reverse FFA-induced up-regulation of  SREBP-1. 
Therefore it is plausible to infer that the down-regulation 
of  SREBP-1 may partly contribute to the lipid-lowering 
activity of  Sch B by inhibiting de novo lipogenesis. Since 
SREBP-1 may transcriptionally activate a variety of  genes 
required for lipogenesis in the liver[41], it is of  interest to 
investigate which SREBP-1 target genes are regulated 
by Sch B. Another question is how Sch B regulates the 

expression of  SREBP-1. A most recently study showed 
that resveratrol inhibits palmitate-induced lipid accumu-
lation in HepG2 cells by reducing the up-regulation of  
SREBP-1 via the Sirt1-FOXO1 pathway[42]. Whether the 
Sirt1-FOXO1 pathway is involved in Sch B-mediated 
down-regulation of  SREBP-1 remains to be clarified.

In summary, Sch B has an inhibitory effect on FFA-in-
duced steatosis in L-02 cells, and the decreased expression 
of  ADRP and SREBP-1 may account for the inhibitory 
effect of  Sch B by reducing FFA uptake, incorporation of  
FFA into triglycerides and de novo fatty acid synthesis, as 
well as by increasing VLDL assembly. Changes in ADRP 
and SREBP-1 expression may also provide mechanistic 
explanations for the hepatic lipid-lowering effect of  Sch 
B in mice fed a high-fat diet as reported previously by 
us. The results of  this study provide the molecular evi-
dence for developing Sch B as a therapeutic agent against 
NAFLD.
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