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Abstract
It remains a critical issue to improve the survival rate in patients with recurrent or metastatic breast
cancer. This study sought to develop a prognostic scheme based on a 28-gene signature in a broad
patient population, including those with advanced disease. Clinically annotated transcriptional
profiles of 1,734 breast cancer patients were obtained to validate the 28-gene signature in
prognostic categorization. The 28-gene signature generated significant patient stratification with
regard to breast cancer disease-free survival (log-rank P < 0.0001; n = 1,337) and overall survival
(log-rank P < 0.0001; n = 806) in Kaplan-Meier analyses. The gene expression signature provides
refined prognosis of disease-free survival (log-rank P < 0.006; Kaplan-Meier analysis) within each
classic clinicopathologic factor-defined subgroup, including LN-, LN+, ER-, ER+, and tumor
Grade II. Furthermore, it was investigated whether this gene signature predicts chemoresponse to
drugs commonly used to treat breast cancer. The mRNA expression levels of this gene signature in
NCI-60 cell lines were used to predict chemoresponse to CMF, Tamoxifen, Paclitaxel, Docetaxel,
and Doxorubicin (Adriamycin). The 28-gene prognostic signature accurately (P < 0.02) predicted
chemotherapeutic response to the studied drugs. This study confirmed the prognostic applicability
of the breast cancer gene signature in a broad clinical setting. This prognostic signature is also
predictive of drug response in cancer cell lines.
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Introduction
Breast cancer is a complex and heterogeneous disease encompassing a wide variety of
pathological entities, clinical behaviors, and molecular changes. Patients with the same
disease stage or histopathology classification may have remarkably different clinical
outcome and response to various therapies. During the past decades, the overall risk of
mortality due to breast cancer has been declining with earlier detection and the development
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of advanced therapies (1). However, the survival rate has not been substantially improved
for patients with recurrent or metastatic breast cancer (2). One of the main obstacles to
improve the survival rate is to accurately predict the risk for recurrence in breast cancer
patients after initial treatments. High-risk patients should be considered for more aggressive
therapy. Following this, another essential issue in clinics is to predict the predisposition to
certain chemotherapeutic agents in individual patients.

Substantial efforts have been made to establish the prognostic factors for patients with breast
cancer during the last two decades. Traditional prognostic factors are lymph node status,
tumor size, histologic type, histologic grade, lymphatic vessel invasion, and hormone
receptor status (3). With the development of molecular biology and cell biology, many new
prognostic factors have been proposed, including markers that regulate cell cycle, cell death,
Her2/neu, markers of metastasis or metastatic process, lymph node micrometastases, bone
marrow micrometastases, and markers of angiogenesis (4). Recent advances in DNA
microarrays have fostered tremendous advances in molecular diagnosis and prognosis of
breast cancer (5-19). Gene expression-based signatures such as MammaPrint (13;19) and
Oncotype DX (9) have been applied in clinics for more refined prognosis in early stage
breast cancer patients. Breast cancer patients with advanced stages generally receive
chemotherapy, but only about half of them benefit from it (20). It remains a critical
challenge to identify patients at high-risk for recurrence after primary chemotherapy. These
high-risk patients should be considered for second-line chemotherapy. A population-based
prognostic gene signature is needed for devising more rational treatment options in breast
cancer treatment.

In a previous study, we identified a 28-gene signature from an unselected population of 99
lymph node negative and positive breast cancers obtained from Sotiriou et al. (12), and
validated this gene signature in additional 153 patients for prognostic prediction of breast
cancer recurrence and metastasis (21). To demonstrate the clinical applicability of this gene
signature, a consistent prognostic categorization scheme needs to be designed for gene
expression profiles generated from current DNA microarray platforms. This stratification
scheme was developed by using a nearest centroid method and comprehensively evaluated
in seven independent breast cancer patient cohorts (n = 1,734) in this study. The association
between the gene signature and traditional breast cancer prognostic factors was assessed in
the prediction of disease-free survival and overall survival.

Next, we sought to explore whether this prognostic gene signature is also predictive of
chemoresponse to drugs commonly used for treating breast cancer. The studies assessing
treatments are typically carried out in patients with advanced disease, who do not routinely
undergo surgery. Therefore, it raises tremendous logistical issues to implement the
(unbiased) genome-wide association studies using tissue samples for predicting treatment
responses (22). As an alternative strategy, preclinical models such as cell line or animal
models are used for searching predictive gene expression signatures and then validate them
in clinics, thereby reducing the number of patients required for tissue collection. In this
study, we used a panel of 60 cancer cell lines (NCI-60) to evaluate whether the 28-gene
signature can accurately predict chemosensitivity/resistance to CMF, Tamoxifen, Paclitaxel,
Docetaxel, and Doxorubicin (Adriamycin). Furthermore, gene markers that showed
significant differential mRNA expression between sensitive and resistant beast cancer cells
lines were identified for each drug.
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Materials and Methods
Patient samples

Seven breast cancer patient cohorts were analyzed in this study. These datasets include
patients from Bild et al. (5) (n = 158; GEO accession number: GSE3143), Sorlie et al. (23)
(n = 117; GEO accession number: GSE4335), Wang et al. (14) (n = 286; GEO accession
number: GSE2034), Van de Vijver et al. (13) (n = 295), Miller et al. (17) (n = 236; GEO
accession number: GSE3494), Loi et al. (24) (n = 393; GEO accession number: GSE6532),
and Ivshina et al. (25) (n = 249; GEO accession number: GSE4922). Patient cohorts from
van de Vijver et al. (13), Sorlie et al. (23), Wang et al. (14), Ivshina et al. (25), and Loi et al.
(24) had recorded disease-free survival (either relapse-free survival and/or metastasis-free
survival). Patient cohorts from van de Vijver et al. (13), Sorlie et al. (23), Bild et al. (5), and
Miller et al. (17) had recorded overall survival information. A more detailed description of
each patient cohort is provided in Appendix
(http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/publications.asp).

Nearest shrunken centroid classification
Nearest shrunken centroid method is an efficient classification algorithm. This algorithm
categorizes an unknown instance to the class whose centroid is closest to it. It considers the
centroid of the cluster as a representative of the class. The learnt distance function is used to
determine the closest centroid (26). For cases involving two classes, the nearest centroid
algorithm is linear and implicitly encodes a threshold hyperplane that separates the two
classes (27).

Specifically, the arithmetic mean of a class Cj represents the prototype pattern (i.e., the
average gene expression profiles of each signature gene in the training centroid) for the class
and is denoted by

where xi represents the training samples that belong to the class Cj. Using this algorithm, a
class label of an unknown instance x is predicted as:

where d(x,y) denotes the distance function (27).

The distance function measures the strictness of dependence between the two vectors (28).
In this study, Pearson's correlation was used as the distance measure in nearest centroid
classification. Pearson's correlation provides the degree of linear dependence of vectors x
and w by
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where μx and μw are the respective means of the vectors x (gene expression signature in the
training centroid) and w (gene expression signature in a test sample). The equation is
standardized by the multiplication of the standard deviations of the vectors after subtracting
their respective means. This causes the Pearson's correlation to be invariant (28).

This method is usually preferred in biological applications because of its favorable
invariance properties, i.e., the correlation between the variables is not affected by an
addition of a constant offset to the components of the data or by applying a multiplicative
factor (28). This is especially appealing to the classification based on DNA microarray data,
where heterogeneous array platforms pose a challenge to cross-cohort and cross-experiment
validation.

Validation of the 28-gene expression signature in multiple DNA microarrays
The validation sets used in this study contain a variety of DNA microarray platforms,
including cDNA microarrays, Affymetrix U95, U133A, and U133 plus 2.0. The recorded
clinical endpoints include relapse-free survival (RFS), metastasis-free survival (MFS),
disease-free survival (DFS; here a clinical event refers to either a local recurrence or distant
metastasis of breast cancer), disease-specific survival (DSS; an event is death from beast
cancer), and overall survival (OS).

The training cohort obtained from Sotiriou et al. (12) was partitioned into good-prognosis
and poor-prognosis groups based on patient survival information recorded in the clinical
data. A patient was defined with good-prognosis if the patient survived longer than five
years after the primary treatment; otherwise, the patient was defined with poor-prognosis.
The average expression profiles of the signature genes in both groups were computed for the
training set. These constituted the training centroids of good-prognosis and poor-prognosis
for future prognostic categorization in a new patient. A nearest centroid classification
method (13) was used to predict clinical outcome in each patient from the validation sets.
Pearson's correlation coefficient was used as the metrics for classifying a new instance
(patient) into the closest centroid.

In the validation cohorts, the prognostic categorization was based on the correlation of each
patient's gene expression profile and the average good-prognosis centroid in the training set.
A patient was classified into the good-prognosis group if the correlation with the good-
prognosis training centroid was greater than the corresponding cutoff value; otherwise, this
patient was classified into the poor-prognosis group. If there are multiple probes for the
same annotated signature gene, the average expression of all the probes was used in the
correlation analysis. Since the validation sets contain DNA microarray data generated on
heterogeneous platforms, different cut-off values were chosen in patient stratification. Each
cutoff value was validated by at least two independent cohorts.

Statistical analysis
A heat map of the 28-gene signature on the good-prognosis training centroid of patients
from Sotiriou et al (12) was generated with CIMminer (29) based on Euclidean distance
matrix with complete linkage (http://discover.nci.nih.gov/cimminer/index.jsp).

Patient survival rates were assessed with Kaplan-Meier analysis using log-rank tests.
Associations between the gene expression signature and clinicopathologic parameters were
evaluated with two-sided chi-square tests. All statistical analyses were performed with
software package R (30).
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Transcriptional Profiles in NCI-60 Cell Panel
Genome-wide mRNA expression profiles in NCI-60 cell lines (31) were retrieved with
CellMiner (http://discover.nci.nih.gov/cellminer). The data were generated on Affymetrix
U133A and normalized with the GCRMA method (32). The signature genes were identified
from the data file with gene symbols or UniGene Cluster IDs (for unknown genes).

Drug activity profiles in NCI-60
The drug activity data in NCI-60 were retried from Developmental Therapeutic Program at
NCI/NIH through DTP Data Search (http://dtp.nci.nih.gov/dtpstandard/dwindex/index.jsp).
The latest screening results for each studied drug was used in the analysis. Growth inhibition
was assessed from the changes in total cellular protein after 48 hours of drug treatment using
a sulphorhodamine B assay. Drug activities (log10 GI50) were recorded across the 60 human
cancer cell lines. GI50 is the concentration required to inhibit cell growth by 50% compared
with untreated controls. The activity profile of an agent consists of 60 such activity values,
one for each cell line.

Defining Drug Sensitivity and Resistance
Drug activity data of CMF (Cyclophosphamide, Methotrexate, and Fluorouracil 5FU),
Tamoxifen, Paclitaxel, Docetaxel, and Doxorubicin (Adriamycin) was processed to define
drug resistance and sensitivity of the NCI-60 lines as described before (33;34). Specifically,
for each drug, log10 (GI50) values were normalized across the 60 cell lines. Cell lines with
log10 (GI50) at least 0.5 SDs above the mean were defined as resistant to this drug. Those
with log10 (GI50) at least 0.5 SDs below the mean were defined as sensitive to the drug. The
remaining cell lines with log10 (GI50) within 0.5 SDs were defined as intermediate in the
range of drug responses. The log10 (GI50) values of Cyclophosphamide (Cytoxan) had little
variation in NCI-60 cell lines. There was no resistant cell line to Cytoxan.

Classification of chemosensitivity/resistance
The mRNA expression profiles of the 28-gene breast cancer signature were used to predict
chemosensitivity/resistance in the cancer cell lines. For each drug, only sensitive and
resistant cell lines were included in the analysis, while those with intermediate response
were excluded from classification. A k-nearest neighbor method was used to classify
chemoresponse to Methotrexate, Fluorouracil (5FU), Paclitaxel, and Docetaxel. Neural
network was used to classify drug response to Tamoxifen. Threshold Selector, choosing a
mid-point threshold on the probability output by logistic regression, was used to in
classifying chemoresponse to Doxorubicin (Adriamycin). The classification results were
evaluated with a leave-one-out cross validation. These algorithms were implemented in
WEKA 3.4 (35). No classifier was constructed for Cytoxan, because no cell lines in the
NCI-60 panel were resistant to it.

Differential expression analysis in resistant and sensitive breast cancer cell lines
Using the average expression values of each gene on the breast cancer cell lines in the
NCI-60 panel, fold change of the gene expression in resistant cell lines versus sensitive cell
lines was computed as follows:

Where Resistant_Mean is the mean expression of the group of resistant cell lines;
Sensitive_Mean is the mean expression of the group of sensitive cell lines. In this study,
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value 1.5 (1.5 for over-expressed and 0.67 for under-expressed) is the threshold used in
deciding if a gene is expressing differently.

Statistical significance of the fold change is computed using two-tail, unequal variance two-
sample t-tests. It's considered statistically significant if the p-value is ≤ 0.05. However, in
cases where there is only one cell line falls into one of the response group where two-sample
t-tests fail, the fold change is considered statistically significant if the expression value of
the gene for that cell line does not fall into the 95% confidence interval of the other group.
The confidence interval of the group with more than one cell lines is computed by:

where n is the number of cell lines falls into that response group and t is the critical-t value
for two-tail t-tests on 95% confident with n-1 degree of freedom.

Results
A general patient stratification scheme for current DNA microarray platforms

Previously (21), the 28-gene signature was identified from Sotiriou et al. (12) and was
validated in two patient cohorts from Sorlie et al. (11) and van't Veer et al. (19). In this
study, seven independent cohorts containing 1,734 breast cancers (5;13;14;17;23-25) were
obtained to design a consistent patient stratification scheme using this prognostic gene
signature. In these cohorts, diagnosis ranged from early stage (T1/T2) to advanced stage
(T3/T4). To develop prognostic categorization for individual patients in these validation
sets, a nearest centroid classification scheme (13) was designed based on the correlation
between a new patient gene expression profile and the good-prognosis centroid of the
training cohort from Sotiriou et al (12) (Fig. 1A). Compared with algorithms such as neural
networks, random forests, and Bayesian methods, the nearest centroid method is more robust
to the discrepancy of quantification scales and inconsistency of probe sets from different
microarray platforms during cross-cohort validation. A detailed algorithms comparison is
included in a thesis
(http://www.hsc.wvu.edu/mbrcc/fs/GuoLab/pdfs/Shruti_Rathnagiriswaran_Thesis.pdf).
During the nearest centroid classification, since the validation cohorts contain data generated
from diverse DNA microarray platforms and contained different clinical endpoints, specific
cutoff values based on the Pearson's correlation with the good-prognosis training centroid
were identified for the corresponding experimental platforms and predicted clinical
endpoints. To avoid over-fitting, each cutoff value was consistently validated in multiple
patient cohorts, except for one cutoff defined for predicting relapse-free survival in patients
from Loi et al. (24). Specifically, in predicting disease-free survival (DFS; including relapse-
free survival and metastasis-free survival) and overall survival (OS) on samples quantified
with cDNA microarray [van de Vijver et al. (13) and Sorlie et al. (23)], a patient was
classified into the good-prognosis group if the correlation between the patient gene
expression profile and the good-prognosis training centroid was greater than 0.15; otherwise,
the patient was classified into poor-prognosis group. In predicting overall survival on
samples quantified with Affymetrix HG-133A [Miller et al. (17)] and Affymetrix HG-U95
[Bild et al. (5)], a patient was classified into the good-prognosis group if the correlation
between the patient gene expression profile and the good-prognosis training centroid was
greater than -0.3; otherwise, the patient was classified into poor-prognosis group. In
predicting disease-free survival based on gene expression quantified with Affymetrix chips,
cutoff values were determined for different platforms as follows: -0.4 for Affymetrix HG-
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U133A [Wang et al. (14), Ivshina et al. (25), and Loi et al.(24)], and -0.5 for Affymetrix
U133 Plus 2.0 Array [Loi et al. (24)] (Fig. 1B).

Based on the nearest centroid classification schemes, the 28-gene signature stratified
individual patients in each validation cohort into either good- or poor-prognostic group with
distinct disease-free survival (log-rank P < 0.05) and overall survival (log-rank P < 0.036) in
Kaplan-Meier analyses (Appendix; Suppl. Figs 1-7). When all patient cohorts were
combined together, the gene expression-defined good- and poor-prognosis groups had
significantly different disease-free survival (log-rank P < 0.0001; n = 1,337) and overall
survival (log-rank P < 0.0001; n = 806) (Fig. 2). These results demonstrated that the 28-gene
breast cancer prognostic signature has general clinical applicability for multiple DNA
microarray platforms.

Association between the 28-gene breast cancer signature and clinicopathological factors
The association between the 28-gene expression-defined prognostic groups and patient age,
lymph node status, ER status, and tumor grade was assessed with two-sided chi-square tests.
The results showed that the breast cancer gene signature was significantly associated with
patient age (P = 0.019), lymph node status (P = 6.6e-10), ER status (P = 0.0013), and tumor
grade (P = 9.8e-14) in predicting disease-free survival (n = 1,337; Appendix; Suppl. Table
2). The prognostic gene signature was significantly associated with ER status (P = 0.0037)
and tumor grade (P = 8.5e-13) in predicting breast cancer overall survival (n = 806). The
association was not significant between the breast cancer gene signature and patient age (P =
0.55) or lymph node status (P =0.29) in terms of breast cancer overall survival (Appendix;
Suppl. Table 3).

The 28-gene signature provides refined prognosis to traditional factors
Lymph node metastasis, estrogen receptor (ER) status, and tumor grade are important
prognostic factors of breast cancer. This study sought to investigate whether the 28-gene
signature could provide refined prognosis in addition to these traditional factors. First, all
lymph node negative patients from the studied cohorts were combined for Kaplan-Meier
analysis. Based on the prognostic categorization described in the above section, the 28-gene
signature further stratified node negative patients into subgroups with distinct disease-free
survival (log-rank P = 0.0029; n = 870) and overall survival (log-rank P = 0.0001; n = 334;
Fig. 3A). Similarly, the 28-gene signature further stratified node positive patients into
subgroups with distinct disease-free survival (log-rank P < 0.0001; n = 444) and overall
survival (log-rank P = 0.0008; n = 300; Fig. 3B).

Next, we investigated whether the signature could refine positive and negative estrogen
receptor (ER+ and ER-) groups. The results showed that the prognostic gene signature
partitioned ER+ breast cancers into subgroups with distinct disease-free survival (log-rank P
< 0.0001; n = 1,075) and overall survival (log-rank P < 0.0001; n = 618; Fig. 4A). In ER-
breast cancer patients, the gene expression-defined subgroups also showed significantly
different disease-free survival (log-rank P = 0.0062; n = 248) and borderline different
overall survival (log-rank P = 0.06; n = 179; Fig. 4B).

Finally, we explored whether the 28-gene signature could further stratify Grade II breast
cancers, which are more challenging in prognosis than Grade I or Grade III tumors. Kaplan-
Meier analyses showed that the gene expression-defined risk groups within Grade II breast
cancers had divergent disease-free survival (log-rank P = 0.0197; n = 327) and overall
survival (log-rank P = 0.0024; n = 270; Fig. 5). Overall, these results demonstrated that the
28-gene breast cancer signature provides independent prognostic information within
subgroups defined by lymph node status, ER status, and tumor grade.
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The 28-gene signature predicts chemoresponse in NCI-60 cell lines
After substantiating the clinical relevance of the 28-gene signature in predicting breast
cancer disease-free survival and overall survival, we sought to explore whether the signature
can predict chemoresponse to anti-breast cancer agents, including CMF, Tamoxifen,
Paclitaxel, Docetaxel, and Doxorubicin (Adriamycin). Here, the NCI-60 cell lines,
regardless of tissue origin, were used in the study. For each drug, cancer cell lines that are
either sensitive or resistant to the drug were included to build a chemoresponse classifier
based on the 28-gene expression profiles in the cell lines. The performance of the classifier
was evaluated with leave-one-out cross validation (Table 1). The overall prediction accuracy
of chemoresponse was 90.6% (P < 0.0004) for Tamoxifen, 82.4% (P < 0.005) for
Fluorouracil (5FU, part of CMF), 73.3% (P < 0.02) for Methotrexate (part of CMF), 92.3%
(P < 0.0008) for Paclitaxel, 89.2% (P < 0.0002) for Doxorubicin, and 88.2% (P < 0.0007)
for Docetaxel. These results demonstrated that the 28-gene signature accurately predicted
sensitivity and resistance to common breast cancer chemotherapy in cancer cell lines.

The differential expression in sensitive and resistance breast cancer cell lines was analyzed
for each signature gene. The drug responses of the breast cancer cell lines in the NCI-60
panel were provided in Appendix (Suppl. Table 4). As there was no breast cancer cell line
showing resistance to Docetaxel, this drug was not included in the analysis. Among the
signature genes, the over-expression of TOMM70A and PLSCR1 was linked to
chemoresistance to all the studied drugs in the breast cancer cell lines; whereas the over-
expression of MCF2 and IGHA1 was associated with chemosensitivity to all the studied
drugs in breast cancer cell lines. The over-expression of TXNRD1, FAT, and FGF2 was
observed in resistance to 5FU, Methotrexate, Tamoxifen, and Doxorubicin, but was
associated with sensitivity to Paclitaxel. MCM2 and S100P also showed similar expression
patterns in drug responses. Their over-expression was associated with chemoresistance to
Paclitaxel (P < 0.05), and chemosensitivity to Tamoxifen (Fig. 6).

Discussion
Predicting the risk for recurrence and treatment response for patients with advanced disease
remains a critical issue in clinics. Patients at high risk for recurrence after the primary
treatment should be considered for more aggressive chemotherapy, whereas second-line
chemotherapy may not be necessary in low-risk patients. The FDA recently approved the
first gene test for cancer, MammaPrint of Agendia (Amsterdam, The Netherlands) (19), for
use in lymph node-negative women under age 61 and with a tumor size less than 5 cm.
Oncotype DX of Genomic Health (Redwood City, CA) is a clinically applied multigene
assay to predict recurrence of tamoxifen-treated, node-negative, and estrogen receptor-
positive breast cancer (9). Both Oncotype and MammaPrint target early stage breast cancer
patients. New gene signatures are needed for predicting breast cancer recurrence in broader
clinical settings.

In a previous study (21), we presented a population-based approach to predicting recurrence
and metastases of breast cancer by using gene expression patterns in tumors obtained from
Sotiriou et al (12). The external validation sets used in this study consist of completely
independent patient cohorts. The prognostic prediction based on the 28-gene signature
employed the “gold standard” of validation schemes, i.e., an independent training set and a
validation in multiple, non-overlapping datasets. Specific cutoff values were identified for
multiple experimental platforms and clinical outcomes using a nearest centroid classification
method. All cutoff schemes except one were consistently validated on multiple breast cancer
patient cohorts. The 28-gene signature was confirmed to predict disease-free survival and
overall survival in individual breast cancer patients (n =1,734). These results showed that the
stratification scheme could be applied to predicting clinical outcomes in a new breast cancer
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patient based on the 28-gene expression profiles measured on various commonly used
microarray platforms.

Fan et al. (36) compared five breast cancer signatures, including Oncotype DX (9),
MammaPrint® (13;19), wound response predictor (6), intrinsic subtypes (10;11;23), and the
“two-gene ratio” (8) using the cohort from van de Vijver et al (13). This comparison
represents an entirely independent test set only for Oncotype DX and the “two–gene ratio”,
whereas the remaining three signatures used part of the samples from van de Vijver's cohort
(n = 295) in model development. If the training samples were removed for testing these
three signatures, the resulting test dataset would be greatly reduced to fewer than 147
samples and possibly as few as 72 samples (36). In this evaluation, all five signatures except
the two-gene ratio allowed for prognostic categorization with respect to disease-free survival
(log-rank p < 0.001) and overall survival (log-rank p < 0.001). Compared with these results
in consideration of the bias toward MammaPrint®, intrinsic subtypes, and wound response
predictor, our 28-gene prognostic signature is comparable as Oncotype DX and could
potentially be more accurate than the other signatures in terms of predicting disease-free
survival and overall survival in van de Vijver's cohort (Appendix; Suppl. Figure 1). More
importantly, the 28-gene breast cancer signature showed prognostic ability beyond early
stage breast cancer. The 28-gene prognostic signature quantified disease-free survival and
overall survival in a broad patient population including those with advanced stage (T3/T4),
tumor grade III, lymph node metastasis, or negative estrogen receptor status (ER-).

According to the REMARK guidelines (37;38), cancer prognostic studies must demonstrate
whether tumor markers provide information independent of traditional criteria or provide
prognostic information within subgroups defined by traditional criteria. This study
demonstrated that the breast cancer gene signature could refine prognosis within each
subgroup defined by lymph node status (node positive or negative), tumor grade (patients
with Grade II), and ER status (ER+ or ER-). These results indicated that the 28-gene
signature provides independent prognostic information in addition to the traditional factors.

The prognostic categorization will address one clinically important issue, i.e., who should
receive more aggressive chemotherapy? Following this, another unresolved issue is which
chemotherapy should be given to a specific patient? Breast cancer patients with the same
tumor stage may have remarkably different response to a chemotherapeutic agent. This
study demonstrated that the 28-gene prognostic signature was also predictive of
chemoresponse in cancer cell lines. Since each NCI-60 cell line was derived from a clinical
tumor and the gene expression was measured in untreated cell lines, this finding has
important clinical implications in predicting a patient's predisposition to certain
chemotherapy based on her molecular tumor characteristics, in addition to the tumor stage.
This would help physicians to design optimal treatment strategies by including drugs within
the sensitive range of this patient in personalized therapy.

In summary, this study developed a scheme for applying a 28-gene signature in patient
stratification based on transcriptional profiles generated on a diverse range of microarray
platforms. The signature predicts a poor outcome in breast cancer patients with early stage
as well as advanced disease. This is significant in the clinical management of breast cancer,
because this molecular classification scheme may help physicians to identify high-risk
patients who might need additional or more aggressive chemotherapy after the primary
treatment. Furthermore, this prognostic gene signature is also predictive of chemoresponse
to CMF, Tamoxifen, Paclitaxel, Docetaxel, and Doxorubicin (Adriamycin) in cancer cell
lines, which could potentially be used to predict patient predisposition to chemotherapy.
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Figure 1.
The general patient stratification scheme based on the 28-gene breast cancer signature
quantified on current DNA microarray platforms. (A) Nearest shrunken centroid
classification method stratified each new patient in the validation sets into good- or poor-
prognosis group based on the Pearson's correlation between the patient's gene expression
profiles and the good-prognosis training centroid from Sotiriou et al (12). (B) Specific cutoff
values of the distant function in nearest centroid classification. Different cutoff values were
determined for different DNA microarray platforms and predicted clinical outcomes. Each
stratification scheme was validated in multiple published cohorts. DFS: disease-free
survival; OS: overall survival.
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Figure 2.
The 28-gene signature predicted breast cancer disease-free survival and overall survival in
Kaplan-Meier analysis. The studied patient cohorts were stratified as either good-prognosis
(upper curves) or poor-prognosis (lower curves) and were combined in the analysis. The
survival probabilities of two prognostic groups were assessed with log-rank tests.
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Figure 3.
The 28-gene signature stratified subgroups defined by lymph node status in predicting breast
cancer disease-free survival and overall survival using Kaplan-Meier analyses. The breast
cancer gene signature further partitioned lymph node negative (A) and positive (B) patients
into distinct prognostic subgroups, respectively.
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Figure 4.
The 28-gene signature stratified subgroups defined by ER status in predicting breast cancer
disease-free survival and overall survival using Kaplan-Meier analyses. The breast cancer
gene signature further partitioned ER+ (A) and ER- (B) patients into distinct prognostic
subgroups, respectively.
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Figure 5.
The 28-gene signature generated significant prognostic categorization in predicting disease-
free survival and overall survival for Grade II breast cancers in Kaplan-Meier analyses.
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Figure 6.
Signature genes with significant differential expression in sensitive and resistant breast
cancer cell lines for the studied anti-cancer agents. Fold change represents the gene
expression ratio in resistant versus sensitive breast cancer cell lines. In the graph,
statistically significant differential expression is marked by a red asterisk (*).
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Table 1

Prediction accuracy of chemosensitivity/resistance in NCI-60 cell lines using 28-gene breast cancer prognostic
signature. A P-value < 0.05 represents the overall accuracy is significantly higher than that of random
prediction (two-sided Z-tests).

Drug name Sensitivity
(chemoresistance)

Specificity
(chemosensitivity)

Overall Accuracy P Value

Tamoxifen 94.4% (17/18) 85.7% (12/14) 90.6% (29/32) 0.0004

Fluorouracil (5FU; part of CMF) 76.5% (13/17) 88.2% (15/17) 82.4% (28/34) 0.005

Methotrexate (part of CMF) 60.0% (12/20) 84.0% (21/25) 73.3% (33/45) 0.02

Paclitaxel (Taxol) 86.7% (13/15) 100% (11/11) 92.3% (24/26) 0.0008

Doxorubicin (Adriamycin) 100% (19/19) 77.8% (14/18) 89.2% (33/37) 0.0002

Docetaxel 94.4% (17/18) 81.3% (13/16) 88.2% (30/34) 0.0007
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