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Abstract
Purpose Prostate cancer (PC) is a major health problem.
Overexpression of the gastrin-releasing peptide receptor
(GRPR) in PC, but not in the hyperplastic prostate,
provides a promising target for staging and monitoring of
PC. Based on the assumption that cancer cells have
increased metabolic activity, metabolism-based tracers are
also being used for PC imaging. We compared GRPR-based
targeting using the 68Ga-labelled bombesin analogue AMBA
with metabolism-based targeting using 18F-methylcholine
(18F-FCH) in nude mice bearing human prostate VCaP
xenografts.
Methods PET and biodistribution studies were performed
with both 68Ga-AMBA and 18F-FCH in all VCaP tumour-
bearing mice, with PC-3 tumour-bearing mice as reference.
Scanning started immediately after injection. Dynamic PET
scans were reconstructed and analysed quantitatively.
Biodistribution of tracers and tissue uptake was expressed
as percent of injected dose per gram tissue (%ID/g).
Results All tumours were clearly visualized using 68Ga-
AMBA. 18F-FCH showed significantly less contrast due to
poor tumour-to-background ratios. Quantitative PET analyses

showed fast tumour uptake and high retention for both tracers.
VCaP tumour uptake values determined from PET at steady-
state were 6.7±1.4%ID/g (20–30 min after injection, N=8)
for 68Ga-AMBA and 1.6±0.5%ID/g (10–20 min after
injection, N=8) for 18F-FCH, which were significantly
different (p<0.001). The results in PC-3 tumour-bearing
mice were comparable. Biodistribution data were in accor-
dance with the PET results showing VCaP tumour uptake
values of 9.5±4.8%ID/g (N=8) for 68Ga-AMBA and 2.1±
0.4%ID/g (N=8) for 18F-FCH. Apart from the GRPR-
expressing organs, uptake in all organs was lower for 68Ga-
AMBA than for 18F-FCH.
Conclusion Tumour uptake of 68Ga-AMBA was higher
while overall background activity was lower than observed
for 18F-FCH in the same PC-bearing mice. These results
suggest that peptide receptor-based targeting using the
bombesin analogue AMBA is superior to metabolism-
based targeting using choline for scintigraphy of PC.
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Introduction

Prostate cancer (PC) is the third leading cause of cancer-
related deaths and the most frequently diagnosed cancer in
men in Western countries [1]. Measurement of serum
prostate-specific antigen (PSA) is widely used for the
detection of early PC [2, 3] and PSA-based screening has
resulted in a sharp increase in PC detection. As long as PC
is organ-confined, prostate surgery or radiation therapy with
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curative intent is the first choice of treatment. However,
when facing metastasized PC, curative treatment is no
longer available and palliative hormone ablation therapy is
indicated. Therefore, accurate staging of early PC at the
time of diagnosis as well as monitoring of patients
following local or systemic treatment are crucial steps in
the management of the disease.

The accuracy of conventional imaging techniques—such
as transrectal ultrasonography, CT, MRI and bone scintig-
raphy—is not adequate to determine the extent of PC at
diagnosis and to visualize micrometastases [4–6]. New and
more sensitive, preferably non-invasive, imaging strategies
are required. Molecular imaging by nuclear scintigraphy
using PET or SPECT may provide alternative technologies
for detection. It enables biochemical cellular targets, such
as cell-specific receptors, and more general metabolic
processes to be targeted with tracers coupled to radio-
nuclides for sensitive imaging.

In peptide receptor-based scintigraphy, radiolabelled
peptides are used to target specific cell membrane receptors.
For PC imaging the gastrin-releasing peptide receptor
(GRPR) is a promising target since this receptor is overex-
pressed in malignant cells originating from the prostate
while normal and hyperplastic prostate cells show low or
no expression of GRPR [7]. Gastrin-releasing peptide,
which consists of 27 amino acids, is the mammalian
homologue of the linear tetradecapeptide bombesin (BN)
found in amphibians. Both peptides are natural ligands with
a very high affinity for the GRPR. Several (predominantly
BN based) analogues which can be labelled with radio-
nuclides have been developed and tested for their potential
to treat and image PC using SPECT and PET modalities;
for review see Schroeder et al. [8]. AMBA is a BN
analogue which has shown good targeting performance in
(pre)clinical studies [8–10]. It is coupled to the DOTA
chelator which enables labelling with 68Ga, a positron-
emitting radionuclide suitable for PET, resulting in 68Ga-
DOTA-AMBA (68Ga-AMBA).

Apart from peptide receptor-based targeting, metabolism-
based tracers are also being used to image cancer cells.
Metabolic targeting is based on the assumption that cancer
cells show increased activities of several metabolic processes
(for review see Jager et al. [11]), and indeed, malignant
transformation of cells has been found to be associated with
increased metabolic activity [12]. High cell activity and cell
turnover in cancer is assumed to be directly related to high
activity of a variety of biological processes such as
glycolysis, proliferation and membrane synthesis. Although
the metabolic activity of PC is considered to be rather low
because of its relatively low proliferative activity [13, 14],
results obtained with metabolism-based tracers are promising.
For imaging of PC, radiolabelled choline and acetate have
been shown to be the most promising tracers [5, 15–19]. We

selected choline as the metabolism-based reference tracer in
this study to compare its imaging ability with that of the
peptide receptor-based BN analogue AMBA.

Choline is an essential nutrient that serves as a precursor
for the synthesis of phosphatidylcholine, a major constitu-
ent of the cell membrane [20]. NMR spectroscopy has
demonstrated higher concentrations of phosphocholine in
human tumour tissues and in normal cells when stimulated
by (mitogenic) growth factors [21, 22]. In PC the cellular
uptake and phosphorylation of choline is often increased
compared to normal prostate epithelial and stromal cells
[23, 24]. Most PC imaging studies are PET scans using 11C-
labelled choline [5, 15, 25, 26]. Since 11C has a relatively
short half-life of 20 min, the use of this radionuclide is
limited to centres with on-site cyclotrons. This drawback
has led to the development of choline derivatives including
N-[18F]-fluoromethyl-N-(2-hydroxyethyl)-N,N-dimethylam-
monium (18F-FCH) with a radionuclide half-life of
110 min. The biodistribution of 18F-FCH is comparable to
that of 11C-choline, although 18F-FCH shows higher renal
activity [27]. The structures of BN, 68Ga-AMBA and 18F-
FCH are shown in Fig. 1.

To compare the potential of these radioactive tracers, we
used PC tumour-bearing male mice. The GRPR-expressing
VCaP cell line is androgen-responsive, expresses the
androgen receptor and secretes PSA, as do the majority of
early- and late-stage PC, and is therefore a representative
model for (progressive) human PC [28]. Since the
androgen-independent, GRPR-expressing cell line PC-3 is
the most widely used model for the study of radioactive BN
analogues [8, 26, 29], this model was used as the reference
model in this study. GRPR expression of both is compa-
rable (data not shown).

To our knowledge, this is the first study comparing BN
analogue-based GRPR targeting and metabolism-based
targeting for PC imaging. The PET imaging and
biodistribution data of VCaP-bearing nude mice pre-
sented in this study show that peptide receptor-based
targeting using 68Ga-AMBA for the GRPR is superior to
metabolism-based targeting using 18F-FCH for detection
of PC xenografts in nude mice.

Materials and methods

Cell culture

Human VCaP and PC-3 cells were cultured in RPMI-1640
(Lonza Verviers, Verviers, Belgium) supplemented with
penicillin/streptomycin antibiotics (10,000 U/ml penicillin,
10,000 U/ml streptomycin; Lonza Verviers) with the
addition of 10% fetal calf serum (Gibco Invitrogen, Grand
Island, NY) for VCaP and 5% fetal calf serum for PC-3.
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Cells were grown in T175 Cellstar tissue culture flasks
(Greiner Bio-One, Frickenhausen, Germany) at 37°C in a
humidified atmosphere containing 5% CO2. Cells were
passaged using a trypsin-EDTA solution (Lonza Verviers)
containing 170,000 U/l trypsin-Versene and 200 mg/l EDTA.
For the present study, cells were grown to near confluency,
harvested and counted. Cells were resuspended in PBS to
yield approximately 5×106 cells/100 μl for subcutaneous
injection into nude mice.

PC xenografts

Eight male NMRI nu/nu mice (Taconic, Ry, Denmark) aged
6 to 7 weeks were inoculated subcutaneously with VCaP

cells in the right shoulder. For reference, three mice were
injected with PC-3 cells in the same way. A maximum of
four mice were kept in individually ventilated cages
measuring 14×13×33.2 cm (Techniplast) on sawdust
(Woody-Clean, type BK8/15; BMI) under a 12-h light/dark
cycle at 50±5% relative humidity and a controlled
temperature of approximately 22°C. Mice received irradi-
ated chow and acidified drinking water ad libitum. Experi-
ments were initiated when tumours reached a volume of
200–600 mm3 (2–5 weeks after inoculation).

This study was approved by the Animal Experimental
Committee (DEC) of Erasmus MC and performed in
agreement with The Netherlands Experiments on Ani-
mals Act (1977) and the European Convention for

18F-CH 

N-[18F]fluormethyl-N-(2-hydroxyethyl)-N,N-dimethylammonium

Ga
NN

NN

HOOC COOH

HOOC N
H

O

N
H

O

NH2O

NH N
NH

N
H

N
H

N
H

N
H

N
H

N
H

S

O

O

O

O

O

O

N
H

N
H

O

O

NH2

O

68Ga-AMBA

68Ga-DOTA-CHCO-Gly-4-aminobenzyl-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH  

Bombesin  

pGlu-Gln-Arg-Leu-Gly-Asn-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH 2

N
H

N
H

O

NH2

O

NH2O

NH N
NH

N
H

N
H

N
H

N
H

N
H

N
H

S

O

O

O

O

O

O

N
H

N
H

O

O

NH2

O

N
H

N
H

N
H

O

O

O

N
H

NHNH2

NH

NH2

O

O

N
+ OH

F18

Fig. 1 Structural formulas of BN, 68Ga-AMBA and 18F-FCH

Eur J Nucl Med Mol Imaging (2011) 38:1257–1266 1259



Protection of Vertebrate Animals Used for Experimental
Purposes (Strasbourg, 18 March 1986).

Radiolabelling and quality control

68Ga-DOTA-AMBA

Physical characteristics and radiochemistry of the 68Ge/68Ga
generator A 68Ge/68Ga 370-MBq generator (obtained from
IDB Holland, Baarle Nassau, The Netherlands, and origi-
nating from iThemba Labs, Somerset West, South Africa)
was used (t1/2

68Ge 280 days, t1/2
68Ga 68 min). The

carrier used in this generator is SnO2. The generator was
eluted with 1 M Ultrapure HCl 30% (J.T. Baker, Deventer,
The Netherlands). All chemicals were of the highest grade
available. The generator was eluted in the following
fractions: 1.5 ml (void volume), 2.0 ml (80% of total activity)
and 2.5 ml (waste). The fractions were collected and measured
in a VDC-405 dose calibrator (Veenstra Instruments, Joure,
The Netherlands). 68Ga was quantified as described previ-
ously [30]. Anion purification was performed with an Oasis
WAX 1-cm3 column (Waters, Etten-Leur, The Netherlands).
Before use the anion column was pretreated with 2 ml
ethanol followed by 2 ml 5-M HCl. The total peak fraction
(2 ml, about 300 MBq) was added to a 4-ml HCl solution
(final concentration 5-M HCl). This solution was eluted over
the anion column and subsequently washed with 2 ml of
5-M HCl containing 68Ge, which was then quantified.
Approximately 0.4 ml of Milli-Q was used to desorp 68Ga
(recovery ±80%).

Radiolabelling DOTA-AMBA (MW 1,503 g/mol) was
kindly provided by Prof. Dr. H.R. Maecke (University
Hospital Basel, Switzerland). Before application of the
peptide, it was dissolved in Milli-Q water (final concentra-
tion 10−3 M). Peptide, desorped 68Ga (200 μl in Milli-Q)
and HEPES 1 M (200 μl) were heated for 10 min at 80°C.
Radiolabelling was performed in reaction volumes of
1.5 ml in polypropylene or glass vials (Waters). The final
pH of the radiolabelled product was in the range 3–3.5.
The vials were placed on a temperature-controlled
heating block. Instant thin-layer chromatography on silica
gel was performed with a mobile phase comprising
sodium citrate 0.1 M and ammonium acetate 1 M/
methanol (1:1 v/v) [30, 31]. Activity was subsequently
detected using a Packard Cyclone phosphor imaging
system with OptiQuant software (PerkinElmer, Groningen,
The Netherlands). HPLC quality control and purification
were performed using a Waters breeze system with a 1525
binary HPLC pump. Radioactivity was detected with a
Unispec MCA γ-detector (Canberra, Zelik, Belgium). For
separation a Symmetry 5-μm, 4.6×250-mm C18 column
(Waters) was used.

The HPLC mobile phase comprised 0.1% TFA (A) and
methanol (B). The HPLC gradient was as follows: 0–2 min
100% A (flow 1 ml/min), 2–3 min 55% B (flow 0.5 ml/
min), 3–20 min 60% B (flow 0.5 ml/min), 20–20:01 min
100% B (flow 1 ml/min), 20:01–25 min 100% A (flow
1 ml/min), and 25:01–30 min 100% A (flow 1 ml/min). The
injection volume was 200 μ, and the injections were
performed with a 717 autosampler (Waters).

After labelling, the main peak containing 68Ga-AMBA
was collected carrier-free. Retention times were 12.4 min for
DOTA-AMBA and 13.5 min for 68Ga-DOTA-AMBA. After
quantification of the activity of the purified main peak the
solution was diluted for injection (0.5–1.5 MBq per animal).
Non-labelled DOTA-AMBA was added to obtain a solution
containing a fixed mass (300 pmol). The 68Ga-DOTA-
AMBA mass, collected by HPLC, was considered to be
negligible (68Ga approximately 3.6×10−13 moles/37 MBq).
After HPLC purification methionine, ascorbic acid and
gentisic acid were added as quenchers for stabilization. The
radiochemical purity was ±90%.

18F-Fluoromethyl-dimethyl-2-hydroxyethylammonium
(18F-FCH)

Radiosynthesis and control of radiochemical purity were
adapted from the methods described by Iwata et al. [32].
18F-FCH was synthesized at the VU University Medical
Centre (Amsterdam, The Netherlands). An remotely oper-
ated radiosynthesis system developed in-house was used.
The 18F was isolated from 18O-enriched water through a
PS-HCO3 ion-exchange column and was subsequently
eluted into the reaction vial with 1 ml of a Kryptofix
2.2.2/K2CO3 solution (12.5 mg K2.2.2, 2 mg K2CO3 in
acetonitrile/water 9:1 v/v). Under reduced pressure and a
flow of helium (50 ml/min), the solvents were evaporated at
100°C. The residue was azeotropically dried by addition of
500 μl dry acetonitrile followed by evaporation as before.
After cooling the reaction vial to room temperature
followed by removal of the vacuum and helium, a dry
solution of 50% dibromomethane in acetonitrile was added.
The temperature was raised to 100°C, and the dibromo-
methane was allowed to react with the 18F for 5 min, after
which the vial was again cooled to 35°C. 18F-Bromofluoro-
methane was then distilled from the vial using a stream of
helium (50 ml/min) and passed through four connected
Sep-Pak Plus silica cartridges and consecutively through an
“on-column reaction” setup consisting of (1) a Sep-Pak
Plus C18 cartridges loaded with 700 μl dimethylethanol-
amine, (2) a second Sep-Pak Plus C18 cartridge, and (3) an
activated Sep-Pak Light Accell Plus CM ion-exchange
cartridge connected in series. Activity on these cartridges
was monitored and after it reached a maximum (8–12 min)
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distillation was terminated. The “on column reaction” setup
was rinsed with 10 ml ethanol followed by 10 ml water and
subsequently the 18F-FCH was eluted with 5 ml of 0.9%
NaCl (aqueous) into a flask containing 10 ml of a 0.9%
NaCl/7.09 mM NaH2PO4 (aqueous) solution yielding the
final product.

PET scanning

Mice were anaesthetized with a mixture of isoflurane and
oxygen, and were placed in the prone position and kept under
anaesthesia in a MicroPET scanner (Inveon; Siemens/CTI,
Knoxville, TN). Tumour-bearing mice were injected intrave-
nously using a tail vein cannula with 300 pmol/100 μl 68Ga-
AMBA (68Ga-AMBA: 1.5–0.5 MBq) or 100 μl 18F-FCH
(8.1–1.2 MBq). Based on their unique pharmacokinetics an
ideal scanning schedule for each tracer was constructed. So,
a dynamic full-body acquisition was started at the time of
injection for a continuous period of 30 min with 68Ga-
AMBA or 20 min with 18F-FCH. During scanning the mice
were kept warm with an external heating mat.

Each mouse was scanned after injection of the tracers
68Ga-AMBA and 18F-FCH on two consecutive days. In
order to be able to correct for potential interference between
the tracers, the first group of mice were scanned first with
68Ga-AMBA and 1 day later with 18F-FCH, and the
remaining animals were scanned first with 18F-FCH and
1 day later with 68Ga-AMBA (see Table 1).

List-mode data were stored on IAW 1.2.2.2 (Inveon
Acquisition Workplace; Siemens). From there they were
histogrammed and framed: 30×60-s frames for 68Ga-
AMBA and 20×60-s frames for 18F-FCH. Attenuation
correction on sinograms was subsequently performed.
Images were reconstructed using filtered back projection
(2DFBP) with a 50% ramp filter for analysis and
quantification. For visualization the ordered-subsets expec-
tation maximization/maximum a priori (OSEM3D/MAP)
algorithm was used. To achieve steady-state for both
quantification and visualization the sum of the last ten
frames was displayed.

Quantification was performed by manually drawing
volumes of interest (VOIs) over preselected organs
(kidneys and bladder) and tumours in all directions with a
VOI diameter not exceeding the total volume of the
selected tissue to avoid interfering signals from other

tissues [33]. The average outcomes from two independent
skilled individuals were used. The percentage of injected
dose per gram tissue (%ID/g) was calculated as VOI
activity (in megabecquerels per millilitre)/total injected
dose (in megabecquerels)×100%. To decrease the inter-
ference from the background we allowed this uptake to
wash out and quantified the mean total uptake at steady-
state from the last 10 min of scanning in percent of
injected dose per gram tissue. The median and inter-
quartile range (IQR) in percent of injected dose per gram
tissue were determined for the time points 0.5–30.0 min
after injection. Statistical analysis was performed using
the Mann-Whitney U test. A probability of less than 0.05
was considered significant.

Biodistribution studies

After PET scanning, VCaP tumour-bearing mice were
killed for determination of biodistribution at ideal time
points for each tracer. The biodistribution of 68Ga-AMBA
was determined 1 h after injection and of 18F-FCH 30 min
after injection following the schedule summarized in
Table 1. Due to radiolysis, it was important to use 68Ga-
AMBA immediately after labelling

Tumour, liver, heart, blood, muscle, tail and kidneys as
well as the GRPR-expressing organs pancreas and colon
[34], were collected for counting of radioactivity in a LKB-
1282 Compugamma system (Perkin Elmer, Oosterhout, The
Netherlands). Radioactive uptake was calculated as percent
of injected dose per gram tissue after correction for
remaining activity in the tail. Mean uptakes in each group
of mice (N=4) were then calculated.

The unpaired t-test was used for statistical analysis. A
probability of less than 0.05 was considered significant.

Results

PET scanning

Using 68Ga-AMBA, all VCaP and PC-3 tumours were
clearly visualized by PET. High uptake was seen in tumour
tissue as well as in GRPR-positive pancreas tissue and in
organs responsible for clearance (kidneys and bladder),
while uptake in background organs was low (Fig. 2a).

Day 68Ga–DOTA AMBA PET 18F-FCH PET 68Ga–DOTA-AMBA
biodistribution

18F-FCH
biodistribution

1 Mice 1–4

2 Mice 1–8 Mice 1–4

3 Mice 5–8 Mice 5–8

Table 1 Time chart of the set
up for PET and biodistribution
studies
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When performing PET scans using 18F-FCH it was more
difficult to distinguish VCaP and PC-3 tumours from
background tissues due to the relatively low tumour uptake
and high uptake in surrounding background organs
(Fig. 2b). In 20% of all 18F-FCH scans it was not possible
to determine the tumour from background due to the poor
contrast.

Dynamic tracer uptake in VCaP tumour, bladder and
kidney over time is shown in Fig. 3. Tumour uptake of
both tracers was fast, reaching peak values within
3–5 min. 68Ga-AMBA uptake reached a plateau phase at
approximately 20 min after injection, while 18F-FCH
uptake reached a plateau in less than 10 min (Fig. 3a).
We used the average uptake in the plateau phase to
calculate the total tumour uptake. In VCaP tumours,
uptake was 6.7±1.4%ID/g (N=8) for 68Ga-AMBA, and
only 1.6±0.5%ID/g (N=8) for 18F-FCH. This difference
was highly significant (p<0.001). Similarly, for PC-3
tumours, uptake was 9.2±1.1%ID/g (N=3) for 68Ga-
AMBA and 1.2±0.3%ID/g (N=3) for 18F-FCH. Renal

clearance of 68Ga-AMBA gradually progressed over time
resulting in accumulation of bladder radioactivity at
10 min after injection (Fig. 3b). Renal clearance of 18F-
FCH occurred immediately after injection resulting in
increased bladder radioactivity immediately after injection
(Fig. 3c).

a

b

Fig. 2 PET scans from four of eight corresponding VCaP-bearing
mice: a scans after tail vein injection of 68Ga-AMBA (300 pmol, 1.5–
0.5 MBq); b scans after tail vein injection of 18F-FCH (100 μl, 8.1–
1.2 MBq). Using the OSEM3D/MAP algorithm the last ten frames of
each scan were summed for image reconstruction. Arrows indicate
tumour location
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Fig. 3 Uptakes in different tissues over time: a VCaP tumour (y-axis in
two segments); b kidney; c bladder. Black solid lines show median uptake
and black dashed lines IQR after tail vein injection of 68Ga-AMBA (300
pmol, 1.5–0.5 MBq, N=8). Grey lines show median uptake and IQR after
tail vein injection of 18F-FCH (100 μl, 8.1–1.2 MBq, N=8)
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Biodistribution studies

Biodistribution results are summarized in Fig. 4. Average
VCaP tumour uptake of 68Ga-AMBA at 60 min after
injection was 9.5±4.8%ID/g and of 18F-FCH at 30 min
after injection was 2.1±0.4%ID/g (N=4). These differences
in tumour uptake were highly significant (p<0.03).

As was expected using GRPR-based tracers, the uptake
of 68Ga-AMBA was high in the GRPR-positive pancreas
(57.5±7.1%ID/g), and that of 18F-FCH was much lower
(3.6±1.0%ID/g). The uptake of 68Ga-AMBA in the colon
(8.5±2.9%ID/g) was also significantly higher than that of
18F-FCH. On the other hand, the uptake of 18F-FCH in the
kidneys was much higher (35.7±4.1%ID/g) than that of
68Ga-AMBA (2.2±0.2%ID/g). As in the kidney, most other
(background) organs showed significantly higher uptake of
18F-FCH than 68Ga-AMBA: blood (0.8±0.1 vs. 0.5±0.1%
ID/g tissue), heart (4.7±0.5 vs. 0.2±0.0%ID/g tissue) and
liver (13.0±1.7 vs. 0.9±0.5%ID/g tissue). Only the uptake
of 18F-FCH in muscle was not significantly different from
that of 68Ga-AMBA (0.9±0.2 vs. 0.7±0.2%ID/g tissue).
Both radiolabelled tracers showed low activity levels in
blood.

Discussion

Accurate imaging of PC in patients is crucial for decision
making as it strongly determines management of the
disease. The accuracy of conventional imaging techniques
is not adequate [4–6]. Nuclear scintigraphy is a promising
modality for the sensitive imaging of PC. In this study we
compared a peptide receptor-based tracer, the BN analogue
AMBA, with a metabolism-based tracer, the choline
derivative 18F-FCH, for targeting of PC.

In recent years, there has been a change of paradigm
in the field of BN radiopharmaceuticals from agonists
towards antagonists as potentially more favourable
tracers for tumour targeting. Antagonists have been
shown to wash out from the pancreas more rapidly than
agonists and they seem to have a higher uptake and
retention in PC [35]. Also antagonists have lower
expected toxicity than the pharmacologically active
agonists. In a previous study we indeed showed that the
BN antagonist demobesin-1 was the best performing
analogue of five compounds tested [10]. Nonetheless, in
the same study AMBA also did well with a roughly
comparable tumour uptake. Since it has a DOTA chelator
AMBA can be labelled with the positron-emitting
radionuclide 68Ga required for PET. This radionuclide
can easily be obtained with an in-house generator. AMBA
has been investigated in different preclinical and clinical
studies already and can therefore serve as a model
compound [8–10]. In the current study we decided to use
BN analogue AMBA. In future studies it would also be
interesting to investigate the targeting performance of BN
antagonists for PET.

Although AMBA can be labelled with positron-emitting
radionuclides, its use has yet not been reported in (animal)
PET studies nor in studies in which it has been published
labelled with 68Ga. Therefore, apart from our own
experience with 68Ga-AMBA, the only available informa-
tion to base an optimal PET protocol on came from studies
using AMBA labelled with 177Lu or 111In. In a biodistri-
bution study using 177Lu-DOTA-AMBA in PC-3-bearing
mice, the animals were killed 1 h and 24 h after injection
[9]. Absolute uptake was almost twice as high at the
1-h time point and overall tumour-to-background ratio was
also favourable. In another study of the biodistribution in
PC-bearing mice using 111In-DOTA-AMBA the mice
were killed 1 h after injection only, and sufficient tumour
uptake was shown [36]. In our standardized comparative
study between different BN analogues, 111In-AMBA also
showed high tumour uptake and promising tumour-to-
background ratios at 1 h after injection [10]. Based on
these data, and in order to be able to compare our data
with those in the literature, we decided to determine the
biodistribution of 68Ga-AMBA 1 h after injection.
Imaging was initiated immediately after injection to
provide an insight into the process of biodistribution of
68Ga-AMBA.

We used choline as the metabolism-based reference
tracer in this study. Along with acetate, 11C-choline has
been shown to be the most promising metabolism-based
tracer for imaging of PC [5, 15–19]. In order to make the
use of choline feasible for a large number of clinical centres
that do not have a cyclotron, derivatives with a longer-lived
radionuclide than the often employed 11C, such as 18F-
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Fig. 4 Uptake in preselected organs after tail vein injection of both
68Ga-AMBA (300 pmol, 1.5–0.5 MBq) and 18F-FCH (100 μl, 8.1–
1.2 MBq) in VCaP-bearing mice. Ex vivo biodistribution was
determined 60 min after injection of 68Ga-AMBA and 30 min after
injection of 18F-FCH. The results are presented as means±standard
deviation of four mice per tracer per time point. *p<0.05, 68Ga-
AMBA vs. 18F-FCH
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FCH, were introduced by DeGrado et al. [27]. Experiments
have shown that the rate of phosphorylation of this
derivative by yeast choline kinase and its rate of uptake
by cancer cells (PC-3) approach those of natural choline,.
18F-FCH can therefore be considered as a prototypical
choline tracer. Since the biological processes of targeting
are quite different, different protocol details are required for
18F-FCH and 68Ga-AMBA. Only a few PET imaging
studies have been performed with radiolabelled choline in
PC-bearing mice, so no consensus has been reached as to
the optimal scanning protocol. Zheng et al. performed a
PET study with 11C-choline in PC-3-bearing mice scanning
one group for a 30 min and another for 60 min immediately
after injection [26]. In a PET study using 11C-choline in
TRAMP mice by Belloli et al., a 30-min acquisition was
started immediately after injection [25], and in another
study using 18F-FCH in xenograft-bearing mice, including
mice bearing prostate DU145 tumours, by Ebenhan et al.,
acquisition was started at 15 min after injection [37].
Although sparse, dynamic data and reconstructions in all
three studies implied that tumour uptake of choline is
rapid and that choline uptake and tumour-to-background
ratios do not improve when scanning is prolonged. Based
on these data and our own pilot experiments (data not
shown), we performed PET scans for 20 min starting
immediately after injection of 18F-FCH. For determina-
tion of biodistribution, mice were killed at 30 min after
injection, in accordance with the time point used for
determination of biodistribution by Zheng et al. [26].

Comparison of tumour uptake in mice bearing VCaP and
PC-3 xenografts has revealed that peptide-receptor targeting
is superior to metabolism-based targeting in both tumour
types. This may be explained by the fact that GRPR
expression is high in these xenografts, while their metabolic
activity is relatively low. Although choline uptake has been
reported to increase with PC aggressiveness [4], in this
study AMBA performed better in targeted tumour imaging
of GRPR-expressing tumours. Also, while choline is taken
up by all metabolizing organs, AMBA had much lower
uptake in most non-targeted (GRPR-negative) organs. This
was particularly visible when comparing PET images of the
two types of tracer (Fig. 2). The high background signal
observed with choline relates to the relative high metabolic
activity in these organs due to general cellular processes
that are not specifically related to cancer. Although,
naturally, AMBA shows high background activity in
GRPR-expressing tissues, peptide-receptor targeting is
more tissue-specific than metabolism-based targeting. This
resulted in more contrast between tumour and background,
allowing more discrete imaging of GRPR-expressing
tumour tissue.

Renal uptake and excretion of 18F-FCH is known to be
higher than that of natural choline (11C-choline) [27]. High

activity in the bladder resulting from this excretion could
cause diagnostic limitations for the prostatic region [24,
38]. Zheng et al. reported kidney uptake of 5.1±1.8%ID/g
in PC-3-bearing athymic mice 30 min after injection
of 11C-choline [26], while in our study the equivalent
value was 35.7±4.11%ID/g using 18F-FCH. More impor-
tantly, in our PET scans activity in the bladder was very
high. The use of 11C-choline instead of 18F-FCH may
reduce the undesirable high uptake in the kidneys and
bladder while maintaining a tumour uptake comparable
with that of 18F-FCH.

Dedicated PET for imaging of small animals is a very
useful application in preclinical nuclear medicine re-
search. Besides its use for establishing and validating
novel tools for detection and visualization of tumours,
PET data are also used for in vivo quantification.
Quantification with PET allows the dynamics of biodis-
tribution processes to be followed without the need for
lots of laboratory animals for each time point. We
determined tracer uptake in two different ways: first by
analysis of PET images and, subsequently, by determin-
ing the biodistribution in tissues from the same animals.
Quantification of in vivo PET data was in accordance
with our ex vivo biodistribution results. The graphs
showing tumour, kidneys and bladder uptake over time
show the benefits of PET. Since spatial resolution of PET
remains inferior to that of other imaging techniques such
as CT, MRI and ultrasonography, dual modality scanners
including PET/CT have been developed, and these
provide accurate imaging [12, 39].

Time–activity curves derived from PET data showed that
both imaging protocols used for scanning of AMBA and
choline were well chosen. Especially for 18F-FCH,
immediate imaging after injection was required, since
tumour uptake was fast. Tumour uptake reached a plateau
at the endpoint of both scanning protocols—which was
20 min after injection for 18F-FCH and 30 min after
injection for 68Ga-AMBA—indicating that the dynamic
process of tumour uptake did not require extended
imaging.

In conclusion, the clinical diagnosis of (early) PC is a
good application for targeted nuclear imaging of tumours
based on receptor-specific radiolabelled analogues. PET
imaging and biodistribution data indicated that tumour
uptake of 68Ga-AMBA was higher while overall back-
ground activity was lower than observed for 18F-FCH in
individual PC xenograft-bearing mice. These results
suggest that peptide receptor-based targeting using BN
analogues is superior to metabolism-based targeting using
choline for scintigraphy of PC. The results of the present
study indicate that further clinical evaluation of GRPR-
targeted nuclear imaging of PC using BN-analogues is
warranted.
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