Enrichment of oligonucleotide sets with transcription control signals II: mammalian DNA

S.Volinia⁺, C.Scapoli, R.Gambari, R.Barale and I.Barrai^{*} Dipartimento di Biologia Evolutiva e Istituto di Chimica Biologica–Universita' di Ferrara, Via Borsari 46, 44100 Ferrara, Italy

Received September 23, 1991; Revised and Accepted January 9, 1992

ABSTRACT

We studied the frequency distribution of oligonucleotides 10 bp long in a sample of 1.6 Mb of mammalian genes, containing 579 sequences from GenBank(R) 55.0, with the aim of detecting transcription control signals. 2216 decamers had a frequency higher than 10 times the mean and were subjected to further statistical analysis. For each of the 2216 decamers (parents), we counted the individual frequencies of the 30 decamers differing from the parent by one base mutation (progeny) and then calculated two variance/mean chi squares for the progeny, with and without the parent. We then studied the distribution of the ratio between the two chi squares. Out of 2216 decamers, 346 had a chi square ratio of 1.9 or larger. In this final set, which corresponds to less than 0.033 per cent of all possible decamers. 18 were found to contain 23 eukaryotic transcription control elements 5 – 10 bp of length, such as Sp1 and others. Furthermore, when compared to 210 random sets containing 346 decamers, this set contains a highly significant excess of the longer signals.

INTRODUCTION

Computer analysis has been used to identify regulatory DNA sequences mostly by means of homology searches (1-3) and also by considering the absolute frequency of oligonucleotides in large sets of genes or ultimately in complete genomes (4-12). If the oligonucleotide is for example a decamer, it would be expected to occur about once in a million base pairs. But if that same decamer plays a functional role in a large number of different genes, its frequency should then be higher than expected according to compositional models.

After observing that the NF-kB binding site behaves according to this simple hypothesis in animal viruses, we developed computer methods to identify and characterize frequent decamers in a sample of Genbank(R) entries (13).

We studied, as a preliminary approach, a sample of sequences from mammalian and avian viruses, since (a) the majority of viral genomes displays only 'functional' sequences, either coding or regulatory, and (b) viral genomes contain DNA elements that interact with host proteins involved in cellular tropism and gene activation (14, 15). With our method we were able to considerably enrich with signals a set of 479 viral decamers (13).

The aim of the present work was to apply our computer methodology to mammalian DNA, with the purpose of 1) testing if the method has any validity with DNA from complex genomes and 2) identifying a set of decamers enriched of transcription signals.

The experimental design we devised to detect frequent decamers putatively playing functional roles is described in detail in (13), but we will briefly repeat it here.

At first, we calculated the frequency of each decanucleotide in a mammalian sample from GenBank(R) and collected the most frequent decamers having frequency higher than ten times the mean, into a preliminary subset, which we call the 'query' set.

Secondly, for each of the selected decamers, namely for each parent, we determined the frequencies of the 30 progeny decamers which differ from the parent only by one base substitution.

Thirdly, we calculated the chi square for equality of the frequencies including the parent, with 30 degrees of freedom, and excluding the parent, with 29 degrees of freedom, so that decamers were classified in two groups: (a) those whose progeny mutants have frequency similar to the parent and (b) those where the parent is much more frequent than any individual member of the progeny.

This last class of decanucleotides could be of interest, since it might contain DNA elements that play biological roles depending upon the uniqueness of their sequence. This second set of frequent decamers was then examined for presence of known transcription signals. It was selected on the basis of the chi square ratio, and being the last set considered, we call it the 'residual' set.

MATERIALS AND METHODS

A sample of 579 sequences of mammalian DNA, for a total length of 1.601 Mb, was selected from Genbank(R) release 55.0. The selected entries are reported in Table I. The criteria for selecting

^{*} To whom correspondence should be addressed

⁺ Present address: Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, UK

552 Nucleic Acids Research, Vol. 20, No. 3

Table I. The 579 mammalian sequences used in this study

HUMA1ATP	HUMG6PD	HUMMHCP52	HUMUK	HUMENKB1
HUMACCYBA	HUMGCB	HUMMHCW3	HUMVPNP	HUMENKPH1
HUMACHRA7	HUMGCRA	HUMMHDC3B	HUMVWFM	HUMERRNA
HUMAGG	HUMGCRB	HUMMHDCB	HUMAIACM	HUMETRD
HUMAI BAF4	HUMGG	HUMMHDRBI	HUMAIATM	HUMFBRB
UUMALDCC	UUMCUN		LUMA1AT7	LUMEIVA
HUMALDOC	HUMOHN		HUMATATZ	HUMEMEN
HUMANFA	HUMGLUIKN	HUMMHDRBS	HUMAZIPI	HUMFMSN
HUMANG	HUMHBAI	HUMMHDRHA	HUMACBPAI	HUMFOLI
HUMAPOA2I	HUMHBA3	HUMMHSBB1	HUMACBPB1	HUMFXM
HUMAPOAI1	HUMHBA4	HUMMIS	HUMACTASK	HUMG3PD
HUMAPOAII	HUMHBBRT	HUMMYCC	HUMACTCA2	HUMG3PDP
HUMAPOB	HUMHMGCOA	HUMNGFB	HUMADAM2	HUMGAST2
HUMAPOBA	HUMHP2ES	HUMOAT	HUMADHIAB	HUMGC
HUMAPOCII	HUMHPARSI	HUMOPS	HUMADHIG	HUMGCBL
HUMADOE/	HUMHDADS?	HUMD53D	HUMALAD	HUMGEI2
	HUMIENA04	LUMD071		HUMGEIR
HUMCS	HUMIFNAGS	HUMPGKPS	HUMALDBA	HUMHBAZ
HUMC9	HUMIFNB3	HUMPGKPX	HUMALDHI	HUMHBAPS
HUMCERP	HUMIGCC4	HUMPHH	HUMALDH2	HUMHCII
HUMCG1PA1	HUMIGCC8	HUMPLA	HUMAMYAP	HUMHMG17
HUMCG1PAT	HUMIGCD1	HUMPOMC	HUMAMYAS	HUMHPA1S
HUMCG2A1	HUMIGCD2	HUMPRCA	HUMARS2A	HUMHPA2B
HUMCINHP	HUMIGCD6	HUMRASH	HUMAS1PS	HUMHPA2R
HUMCRE	HUMIGCD7	HUMRENA3	HUMAS3PS	HUMHPRT
HUMCPPG	HUMICHAD	HUMPENAA	HUMASA	нимнум
HUMCRI	HUNDERVIL	HUMRENA	IUMASCODI	HUMIENA01
HUMCSI	HUMIGKVII	HUMROLA	HUMASOFKI	HUMIFINAU
HUMCTHD	HUMILIP	HUMRGM	HUMASGPR2	HUMIFNA03
HUMCYP145	HUMIL2A	HUMRGNTSA	HUMATCI4	HUMIFNA20
HUMCYPNO	HUMIL2RA	HUMRPS14	HUMBLYMI	HUMIFNAA
HUMEGFRN	HUMINS1	HUMRSKP08	HUMC1A22	HUMIFNAB
HUMEGFRS	HUMINSPR	HUMRSKPNA	HUMC1AIN1	HUMIFNAD
HUMENKPH2	HUMINSRA	HUMSISM	HUMC1INHA	HUMIFNAH2
HUMER41	HUMKEREP	HUMSOMI	HUMC4BP	HUMIFNAI
HUMERMCE	HUMKIN10	HUMSPI	HUMC5	HUMIENAPS
HUMERD			UUMCATE	LUMIENATA
HUMERP			HUMCC2A1M	HUMIENATA
HUMESIK	HUMLDLKIN	HUMIBBS	HUMCGSAIM	HUMIFNATB
HUMFBRAA	HUMMETIA	HUMTBB/P	HUMCG5B	HUMIFNAIC
HUMFBRG	HUMMETIF1	HUMTBBM40	HUMCG6B	HUMIFNBIF
HUMFBRGAB	HUMMG1	HUMTCBJB	HUMCMOS	HUMIL2R8
HUMFIXG6	HUMMH	HUMTFRR	HUMCN2	HUMKER56K
HUMFNMC	HUMMHA2	HUMTGFB	HUMCRAS2P	HUMKIN01
HUMFOL5	HUMMHA3	HUMTHBNB	HUMCSF1M3	HUMLAMC
HUMFOS	HUMMHBC	HUMTNFA	HUMDBP	HUMLCAT
HUMFTRRA	HUMMHBGEN	HUMTPAR	HUMEIE2A	HUMLDHA
LUMEVII		UIMTDODED	HUMENK1	
		HUMTURAC	HUMENV2	
HUMFXI	HUMMHCPSI	HUMIUBBM	HUMENKA	HUMLHKH
HUMLT	MUSCRYA5A	RATACCYB	RAISVSIVG	MUSMETII
HUMMET2	MUSCYP14X	RATACSKA	RATTATR	MUSMHBDA
HUMMETIE	MUSCYP345	RATAGPA1G	RATTGB	MUSMHC4T
HUMMG2	MUSEGF	RATALAC	RATTGDCL	MUSMHCQ1
HUMMG3	MUSERFV41	RATANF	RATTHY1G	MUSMHDB
HUMMHDCAM	MUSERP	RATAPOA01	RATTNTG	MUSMHSEC
HUMMHDR5B	MUSFOS	RATAPOA02	RATTUBAL2	MUSMLC13P
HUMMHDRB	MUSGFAPD	RATAPOA03	RATTUBAPS	MUSP53M
HUMMHDRB?	MUSGKALL	RATAPOEA	RATUDEGTR	MUSPRIMP
HUMMUCM	MUSCED	DATCATI	DATVDNDA	MUSPENIN
	MUSUFD	DATODSIO	MUCCONDE	MUSRENIN
HUMMINISDA	MUSH	RATCPSIUL	MUSUONFF	MUSRUE
HUMMHSBAP	MUSHBBHU	RAICKIG	MUSABL2	MUSKPLPSA
HUMMILMC2	MUSHBBH3P	RAICIRPB	MUSACACM	MUSIAI
HUMOIC	MUSIL3C	RATCYC	MUSACSM	MUSTGDEG
HUMOTNPI	MUSINTI	RATCYCPD	MUSACCYB	MUSTNF
HUMP33	MUSKTEPII	RATCYPD45	MUSACHRD	MUSTUBAIM
HUMPNU	MUSLBPA	RATCYPRM	MUSADAM	RATALBM
HUMPOLB	MUSMAL	RATELAIII	MUSAMY1M	RATALDA
HUMPRL1	MUSMHAB3	RATENKB	MUSAMY2G	RATAMLS
HUMPRL3	MUSMHCQ3	RATFBA5E	MUSAMY2M	RATAPOAIV
HUMPRPC	MUSMHDD	RATFBB5E	MUSARAF	RATATCOX8
HUMPTH2	MUSMHIEAD	RATEBG5E	MUSASPATC	RATCASA
HUMRAF19	MUSMHEBD	RATEN3M1	MUSCAIIM	RATCASBI
HUMRAF2PS	MUSMHKK	RATGHI	MUSCCPA	RATCASES
HIMPRDI	MUSMUTIAC	RATGICE	MUSCOD	RATCRYDA
HUMPCITIA	MUSMUTI DC	RATCI TPC	MUSCRYCOD	RATCEM
LUMDGAD2	MUSMOS	DATINE	MUSCRYC42	DATCMOS
HUMINGALD	1410314103	111101	MUSCK1042	ICHIC/100

HUMRSH3	MUSMX	RATINSII	MUSCYCIMC	RATCRF
HUMRSSA1A	MUSMYBM	RATLCAI	MUSCYCP22	RATDBP
HUMSISA1	MUSMYCNA	RATMT12C	MUSCYCP4	RATEIF2A
HUMTBB11P	MUSMYSA	RATMT1PA	MUSCYP34A	RATELAII
HUMTGKQL	MUSNGFAG2	RATMT1PB	MUSEIF4AL	RATFBRGA
HUMTGLU	MUSNGFAG4	RATMYHAB2	MUSERE1M	RATGAPDHB
HUMTHYS	MUSODC	RATMYL2G	MUSFO5E	RATGBA2US
HUMTK	MUSP53PG	RATPDI	MUSFOLTER	RATGNPAS
HUMTPI	MUSPER	RATPECG1	MUSGI	RATHDP
HUMTPIPSA	MUSPIM1	RATPKCI	MUSGS	RATIGFI11
HUMTPIPSB	MUSPKCD	RATPKCII	MUSHBA	RATLDH
HUMTROPA	MUSPRP	RATPKL	MUSHBBH1	RATLHB
MUS45SRNA	MUSPRPMPB	RATPLPX	MUSHBBH2P	RATLL
MUSACAP	MUSREN2IA	RATPRLHR4	MUSHBBY2E	RATMABPA1
MUSAFP	MUSRGEB3	RATPRLSD1	MUSHPRT	RATMABPA2
MUSAPOIVA	MUSRNRM1	RATPTRY24	MUSIFNA1M	RATMABPC
MUSASP	MUSRPL30	RATPTRYI	MUSIFNA7	RATMABPPS
MUSASPATM	MUSRPL3A	RATRGEB4	MUSIFNG	RATMAPA1
MUSBAND3	MUSRPOII2	RATRGMX	MUSIFNPS	RATMBP
MUSBFIGE	MUSRPS16	RATRHLI	MUSIL2REC	RATMT1PC
MUSC31	MUSRRM	RATRII51	MUSKTCEB	RATMYHCA
MUSC3B	MUSRSRP2	RATSCD	MUSL10	RATNMOR
MUSCMYC1	MUSUPA	RATSOM141	MUSMETI	RATNNE
RATOTC	BOVFGFB	BOVTHBNM	RABHBB3	
RATOXTNP	BOVFX	BOVTRNA1	RABHBB4	
RATP1A75	BOVGG	BOVTRNB	RABIFRCP	
RATPHH	BOVGH	BOVVP	RABLDLRM	
RATPECG6	BOVGLYAA3	DOGCK	RABMHI191	
RATPOLB	BOVGSAR	DOGINS	RABMYSAC	
RATPRLHR1	BOVHBB	GOTHBAI	RABMYSBC	
RATPTR1	BOVHBG	GOTHBAII	RABPRCAM	
RATRSIDC	BOVHBP1	GOTHBBEI	RABTNF	
RATS100	BOVHBP2	GOTHBBEII	RABUG	
RATSBP	BOVHBPP3	GOTHBBEVP	SEAMG3	
RATSPOT14	BOVIFNAC	GOTHBBPS1	SHPATPAA	
RATTGE3	BOVKERVIC	GOTHBBZPS	SHOCRF	
RATTGPK4	BOVKIN1HW	HRSHBA1	SHPKERB2A	
RATUG11	BOVLDLRX	PIGENKB	ATRBIGLOP	
RATWAP1	BOVLHB	PIGPOMC	BABA1AT	
BOVACHRA	BOVMIS	PIGUPA	BABHBDPS	
BOVACHRB	BOVOT	RABALDA	CHPHBAPS	
BOVCHYMOA	BOVPBC	RABATPAC	CHPHBBC	
BOVCNP	BOVPOMC7	RABCPK	CHPHBBPCH	
BOVCSAA1B	BOVPRLP1	RABCY450A	CHPRGMC	
BOVCYPC21	BOVPTHG	RABHBAPT	GORHBBPG	
BOVENKEPH	BOVS	RABHBB1		
BOVFBRB	BOVTG	RABHBB2PS		

GenBank(R) entries were: (a) sequences had to be longer than 1 Kb and shorter than 30 Kb; (b) all individual sequences available in the database under condition a) were included, taking care to avoid duplications and (c) the presence of a vast excess of mammalian, highly conserved similar genes was avoided. These latter, due to high degree of homology, could lead to a biased selection of regulatory regions.

We wrote and used three programs for our study. The program HYPERSCAN generates the frequency distributions of all the k-tuples up to k=10 in any set of sequences from GenBank(R). The program ESTRAZ extracts the progeny with their observed frequencies, from a list of query decamers. BOOTMUT performs the bootstraps, namely it repeats for an arbitrary number of cycles the operations on the distribution of decamers to obtain a standard for significance tests on results, using random queries. The program LOCALIZ was also written and used to identify and count k-tuples in short DNA sequences.

Our programs were written in Turbo Pascal version 5.0 and accept entries from the Genbank(R) database release 55.0. We used an IBM PC AT with IBM 3363 optical disk, and two PS/2 PCs with Hitachi CDR 1503S CD ROMs.

 Table II. Distribution of 1,048,576 decanucleotides in 1.601 Megabases of mammalian DNA.

Occurrences	Frequency	Occurrences	Frequency
0	440526	50	4
1	245538	51	3
2	142693	52	4
3	84179	53	4
4	50462	54	2
5	30591	55	1
6	18785	56	3
7	11829	57	1
8	7486	58	4
9	4914	59	4
10	3206	60	2
11	2158	61	4
12	1529	62	1
13	1056	63	3
14	780	71	2
15	628	75	1
16	435	76	2
17	319	77	1
18	260	78	1
19	216	81	1
20	140	82	3
21	112	87	2
22	90	88	1
23	73	90	1
24	55	97	1
25	63	98	1
26	46	99	1
27	36	101	1
28	38	105	1
29	22	107	1
30	29	109	
31	28	114	2
32 32	23	110	2
33 24	18	127	
34 25	17	128	
55 26	9	139	1
30 27	11	150	1
3/ 29	11	152	1
20	4	150	1
59 40	12	158	2
40	10	160	1
+1 17	0	250	1
42	2	250	1
ч.5 АЛ	5	256	1
45	5	362	1
46	6	365	2
47	3	403	2 1
48	0	5 01	1
49	7	743	1
12	1	744	1
		/ ***	L

RESULTS AND DISCUSSION

Frequency distribution of decamers within the sample of mammalian sequences

The frequency distribution of all possible decanucleotides in the mammalian sample is given in Table II. The mean occurrence is 1.53 and its variance is 7.60; the ratio variance/mean is 4.98, much larger than unity; thus the Poisson distribution is excluded. The distribution of the frequency of occurrence is represented in Fig. 1 in logarithmic scale (base 2). Unity is added to all occurrences, to include the zero class in the diagram. The distribution shows a striking regularity of shape, up to 16-20 occurrences, then it has a long and irregular tail. There are 2216 decamers with frequency higher than 16, and these constitute our

Table III. The 56 decanucleotides which occur 60 or more times in the 1601 kilobases of 579 sequences of mammalian DNA selected from GenBank(R) 55.0

tctatctatc	60	gacaggggtg	101
gctgctgctg	60	gtgtggggac	105
tttttttc	61	tgt gggga ca	107
gaggaggagg	61	aggggtgtgg	109
cttccttcct	61	gtggggacag	114
c ggggcggg g	61	ggtgtgggga	114
taaaaaaaaa	62	gggtgtgggg	116
tctgtctgtc	63	ggggtgtggg	116
caaaaaaaaa	63	ggcacaggca	127
ctgtctgtct	63	gcacaggcac	128
agaaagaaag	71	aggcacaggc	139
gaaagaaaga	71	tggggacagg	150
atttatttat	75	caggcacagg	152
aaaaaaaag	76	ggacaggggt	158
tctttctttc	76	cacaggcaca	158
ttatttattt	77	ggggacaggg	160
ctttctttct	78	acaggcacag	168
tttatttatt	81	agagagagag	250
aaagaaagaa	82	gagagagaga	258
aagaaagaaa	82	acacacacac	356
ctttttttt	82	tctctctctc	362
atatatat	87	cacacacaca	365
tttctttctt	87	ctctctct	365
ttctttcttt	88	tgtgtgtg	493
tatttattta	90	gtgtgtgt	501
tatatatata	97	aaaaaaaaaa	743
acaggggtgt	98	tttttttt	744
caggggtgtg	99		

Distribution of decanucleotides in 1.6

Figure 1. The distribution of the frequency of the occurrences of decanucleotides is represented in bi-logarithmic scale in the base 2. One unity was added to each occurrence to permit representation of the zero class of occurrence in the logarithmic scale. Note the regularity of the log-log distribution up to occurrences of 16-20.

first set. The set of 2216 corresponds to about 1 in 473 of all possible decamers and to 1 in 274 of the observed ones.

The 56 most frequent decamers, which occur 60 or more times, are listed in Table III. Note the vast excess of deca-A and deca-T, and of the overlapping contigs poly-AG poly-GA, poly-AC poly-CA, poly-CT poly-TC, and poly-GT poly-TG. The last two were also the most frequent in animal viruses (13), indicating some correlation between infectors and their hosts also for higher order oligonucleotides (16).

Identification of a set of decamers enriched in signal sequences

We calculated two variance/mean chi squares for each parent decamer, one including both parent and progeny, with 30 degrees of freedom, and the other including the progeny only, with 29 degrees of freedom.

Plotting in a scatter diagram the two chi squares for each of the 2216 parent decamers practically gave a hardly readable L-

Figure 2. Scatter diagram of the chi squares with 29 and 30 degrees of freedom calculated for each of the 2216 decanucleotides with occurrence of 16 and above. Abscissa, chi square for progeny only; ordinate, chi square for progeny plus parent. Log scale.

Distribution of the ratio between the X² with 30 df and 29 df 1.4 1.3 1.2 1.1 0.9 0.8 Frequency of r (Thousands) 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 10 Ratio 30/29

Figure 4. Frequency distribution of the ratio between the chi square with 30 and the chi square with 29 degrees of freedom in the query of 2216 decanucleotides. Out of 2216 ratios in the query, 346 or the 15.6% are greater than 1.9

Figure 3. Frequency distributions of the chi squares with 29 and 30 degrees of freedom. The distributions for the query of 2216 decanucleotides are separated, but not as widely as in Viruses (ref. 13). The abscissa is in logarithmic scale to compact the drawing.

shaped graph, due to the large size of a few chi squares. Then, we logarithmically transformed the chi square values and, with some surprise, obtained a graph (Fig. 2) which is almost superimposable to the one obtained for viral decamers in the linear scale (13). Apparently a large fraction of the decanucleotides had almost equal chi squares with 29 and 30 df, but there was also a sizable fraction showing altered behaviour. This is indicated by the points above the diagonal in Fig. 2.

The distributions of the chi squares with 30 and 29 degrees of freedom are plotted in Figure 3, where the abscissa is in logarithmic scale. Since the two distributions were considerably separated by the single degree of freedom (consider that the scale is logarithmic), we decided not to compare them to bootstrap

Figure 5. Frequency distribution of the number of signals in 210 bootstraps of 346 decanucleotides and in the residual set. The number of signals, 23, in the residual set is 1.82 standard deviations above the mean of the bootstraps, with empiric probability P=0.0477.

distributions, but to proceed directly to the study of the ratio between the chi square including the parent (30 df) and the chi square without it (29 df). In Fig. 4, the distributions of the ratios for the sample of 2216 decamers are plotted. It is apparent that, although most decanucleotides in the query set do not show an anomalous behaviour, there is a group with large 30/29 ratios which demands further study.

In analogy with our procedure with viruses we obtained the residual set using the ratio of 1.9 as a threshold. We accepted then the 346 decanucleotides with a 30/29 ratio of 1.9 or greater. A cursory reading of this residual set allowed identification of binding sites such as TGGGGA, GGGGCGGG and others.

Finally, to test the efficiency of the procedure in producing an enrichment for transcription signals, we compared the set of 346 decanucleotides with a sample of eukaryotic signals (Table Table IV. Eukaryotic transcription regulating signals of 5 to 10 bp in length according to Wingender (1988). Alphabetic order.

aacccccc	ccccgcccc	gtcaaa
aagataagg	cccgcc	gtgacga
aagatggc	CCGCCC	gtgacgt
aagggcgc	ccgcccg	gtggaaa
acagctg	ccgcccgcgg	gttttaa
accacctg	ccgtgcgg	tagaaca
accccgccca	cctgc	tataaaa
accctgctt	ccttaagagt	tcccca
actgaccgc	cgtgac	tgacgtca
actgttct	ctgagtgca	tgactaa
agaaatg	ctgggga	tgcacaccg
agaacagatg	ctgtaca	tgcgcccgg
agaacat	ctttgcat	tgcgctcgg
agccaat	gaacag	tgcgctcgt
aggggacg	gaagggaaaa	tgctttgcat
aggtaag	gaggagggg	tgggcgggac
agtccttt	gaggcgtggg	tgggcgtggt
agtgttct	gatgtcc	tgggga
agttgc	gattgg	tggtttg
atgaaaat	gatttc	tgtcct
atgagtcaga	gccaac	tgtggaaa
atgcaaat	gccacctg	tgtggtat
atgcaaatag	gccccgcccc	tgttct
attcctctgt	gcgccacc	tgttctcc
attgg	gcgcgaaa	tgtttgct
atttgcat	gctccgcctc	ttagtcag
atttgtat	ggacatc	tttcca
attttgtaat	gggactttcc	tttcgcgc
caaccac	999099	
cagctggc	ggggagtggc	
caggata	ggggcggagc	
caggtggc	ggggcggcgc	
catgtggc	9999c999	
ccaat	9999c9999c	
ccacacccg	gggggcgggc	

Table V. Data from the search in 346 random decamers of the signals listed in Table IV. One residual set and 210 bootstraps.

Signal length	5	6	7	8	9	10	Total
Bootstraps	1346	1393	376	76	6	1	3198
Residual set	3	12	1	6	0	1	23

Signals of length 9 and 10 pooled for the calculation of the X²

1. Chi square for equality of frequencies of signals between the bootstrap and the residual set:

 $X^{2}_{[4]} = 72.162$, P vanishing 2. Chi square for equality of the fraction of signals in the 23/346 decamers of the residual set and in the 3198/72660 decamers of the bootstraps:

 $X^{2}_{[1]} = 4.119$, P = 0.042

3. Chi square with 1 df testing for linear (17) increase of the frequency of the longer signals in the residual set:

 $X^{2}_{[1]} = 26.128$, P vanishing

IV) from the compilation by Wingender (1). In this table, there are 98 signals listed alphabetically. In the same table published in (13) there are four repetitions, and the present one, alphabetically ordered, corrects that error.

Out of 346 decamers, 18 matched 23 transcription signals. To evaluate the significance of this result, we bootstrapped 210 series of 346 decanucleotides and counted the compilation (1) signals present in these bootstraps.

On the average there were 15.2 signals per bootstrap, with a standard deviation of 4.29 signals. This locates the residual set, with its 23 signals, 1.82 standard deviations above randomness (Fig. 5). Out of 210 bootstraps, 10 had 23 or more signals, namely 23 or more signals were seen with a probability of 0.0477, which makes the excess of signals in the residual set significant. A slightly higher level of significance is obtained when one compares the 23/346 signals in the residual set to the 3198/72660 in the bootstrap. The X from the 2×2 table is 4.12 with 1 df, with P=0.042.

The numbers of signals of increasing length in the bootstrap and in the residual set are compared in Table V. Longer signals

Tab	le	VI.	The	set	of	346	mamn	alian	deca	mer	s high	lig	htin	g the	
mat	che	s to	b the	sam	ple	of	23 tr	anscri	ption	al	elemen	ts,	acco	ording	
to	Wir	ngeno	der(1)). TI	he	indiv	vidual	freq	uency	is	given	at	the	right	
of	the	dec	amer.												

aaaaaaaaa	743	aggcacaggc	139	ttacagatga	20	tgggattaca	39
aaaattagc	28	aggeceacea	19	ttacaggcat	19	tgggatgaga	16
aaattagcc	20	agcagaaatc	17	tttatttatt	81	TGGGGAcagg	150
aatacttcc	17	agcagatgtg	19	tttagtagag	22	tgggggtggg	37
aattagcca	16	agcactttgg	22	ttttagtaga	24	tggggcacag	34
aatcatgag	17	agccaaagtc	20	tttttagtag	25	tgcaaatgca	16
aagtgctgg	31	agccatctct	24	tttttttt	744	tgcagtgagc	30
aagtcacag	22	agcctgggca	34	ttttttgag	29	tgcactgtga	18
aactgaggc	21	agcccttgtg	18	ttttttgaga	33	tgcactccag	27
atacttcca	16	acaaacaaac	29	ttttgagaca	18	tgctgggatt	40
attagccag	19	acaaggacca	18	tttgagacag	19	tgcctgggag	22
atgaggact	18	acaacaacaa	27	tttgggaggc	34	tcaagccatc	16
atcccagca	42	acagtgagga	23	tttcaccatg	17	tcattcattc	30
agaaagaaa	82	acaggggtgt	98	tttctttctt	87	tcagagcaga	23
agtgctggg	39	acaggggtcc	37	ttgttgttgt	34	tcaggctcag	30
agtcaagga	16	acaggcacag	168	ttgtggggca	33	tcaccatgtt	17
agtcacagg	25	acagccaaag	25	ttgtcagagc	17	tctatctatc	60
aggaaggaa	50	acacacacac	356	ttgcagtgag	21	tctactaaaa	26
aaggttaggt	16	actaaaaata	26	ttcaacaaac	16	tctttctttc	76
aagccacaag	16	actttgggag	31	ttcattcatt	33	tcttcagcac	21
aacaacaaca	30	acttccaaag	16	ttcaccatgt	18	tctgtctgtc	63
actcctgac	20	actgcactcc	27	ttctttcttt	88	tctcaaaaaa	30
atatatatat	87	actcatctgc	16	ttct CCTGC c	43	tctctactaa	23
attattatta	46	actccagcct	35	ttccttcctt	48	tctctctctc	362
atttatttat	75	acggcttgtg	25	tgaatgacct	17	tctccagggg	22
attcattcat	29	acgccacact	26	tgaaggacag	22	tct CCTGC ct	45
attctCCTGC	31	accactgagc	18	tgagaacttc	18	tcggctcact	18
atgtatgtat	23	accttccaga	31	tgaggcagga	30	tccttccttc	46
atgctaaagg	16	taatcccagc	46	tgtaatccca	32	tcctgagaac	18
atctatctat	56	tatatatata	97	tgtatttta	28	tcccaaagtg	32
atcccagcac	31	tattattatt	56	tgttgttgtt	36	tcccagcact	33
agaaagaaag	71	tatttattta	90	tgtgagccac	20	tcccagctac	31
agagagagag	250	tatgtatgta	23	tgtgtgtgtg	493	tccctccctc	41
agaccttcaa	29	tatgctaaag	16	tgTGGGGAca	107	gaaagaaaga	71
agttccagaa	26	tatctatcta	53	tgtggggcac	30	gaaggaagga	41
agtgcagtgg	28	tacaggcatg	24	tgtgcctggg	25	gaaccttcca	18
agtgctggga	40	tactaaaaat	27	tgtctgtctg	58	gattacaggc	39
aggaaggaag	44	ttattattat	52	TGTCCTccat	17	gatggatgga	31
aggactcatc	17	ttatttattt	77	tggatggatg	30	gagagagaga	258
AGGGGACGCC	27	ttagtagaga	20	tggagtgcag	27	gagaggtgcc	17
aggggtgtgg	109	ttaggttgta	16	tggtgaaacc	21	gagtgcagtg	21
gaggaggagg	61	ggtg TGGGGA	114	gc GGGGCGGG	49	ctactaaaaa	26
gaggttgtca	17	ggtggctcac	23	gcggcggcgg	40	ctttgggagg	33
gaggcaggag	39	gggattacag	40	gccaaagtca	18	ctttctttct	78
gaggctgagg	52	gggagggagg	46	gccactgcac	20	cttgtggggc	31
gacaggggtg	101	gggacagggg	156	gcctgtaatc	26	cttcagcaca	20
gacggcttgt	25	gggacggctt	19	gcctgggagg	23	cttctctcca	34
gacgccacac	26	gggacgccac	25	gcctcccaaa	34	cttccttcct	61
gtaatcccag	34	gggtttcacc	19	gccgccgccg	40	ctgagaactt	22
gtattttag	24	gggtgtgggg	116	caaagaatca	16	ctgaggcagg	37
gtagctggga	28	ggggacaggg	160	caaagtgctg	31	ctgtaatccc	33
gtttgagacc	20	ggggacgcca	25	caagaaggtg	23	ctgtggtggt	21
gtttcaccat	18	ggggtttcac	17	caaggaggca	21	ctgtctgtct	63
gttgttgttg	25	ggggtgtggg	116	caagcgattc	16	ctggagtgca	31
gttgtcagag	19	ggggcacagg	37	caacaacaac	22	ctgggattac	38
gttgcagtga	16	GGGGCGGGGC	56	cattcattca	28	ctgggaggtt	19
gtgaaacccc	16	GGGCGGggcg	41	catgaagatc	16	ctgcactcca	32
gtgatctgcc	20	ggcacaggca	127	catggcaaga	16	ctcaaaaaaa	26
y cyagccacc	25	ggctaatttt	23	catetetgte	22	CTCaagccat	16
gtgtgtgtgtgt	501	ggcttgtggg	31	catectgget	32	CTCaggaCCT	10
g L g I G G G G A A C	105	yycttCatga	10	cayaaatCat	21	cicaggetea	30
y rocoon Cag	114	ggutgaggCa	32	cayitccaga	24	CLUAGCCTCC	49
aragetere	33	yyctytgagg	29	cagigaggag	24	ototactgcaa	25
atacactoco	21	gycicacigo	20		24	ctottosaca	20
gtgtagtggC	29	9909000000	45	canonatoto	20	ctototototot	365
atctatctet	54	44c44c44c4	10	0033337.313	152	ctconctcac	1.9
atcCTGGGGA	21	ancetecess	30	caggeacagy	20	ctcctoacct	20
atcotocato	17	ucaanaann+	19	Cancancano	44	ctrccaaac+	23
opagagecac	16	acacanacac	128	cagcagtagt	26	ctccctccct	54
ngaangeene	45	ocactttooo	24	canceasant	23	cotocotocot	20
ggattacaco	43	gcactccanc	27	cacaoocaca	158	CGGGGGGGGGG	61
ogantocart	23	octaattt+	25	cacagocaaa	25	caacttatoo	30
222222200000	59	acttataann	29	cacacacaca	365	CadCoocooc	40
agaggttate	18	octoaoocao	39	cacaccttct	17	cgccacactc	24
ggagggaggg	43	gctggagtgc	28	cactttggga	28	220220220	48
ggacagogot	158	octoooatta	49	cactotoaca	16	ccaaagtgct	27
ggactcatct	18	gctgctacta	60	cactgcactc	25	ccaaagtcac	18
ggacgoctto	25	gctcagoctc	30	caccctgagg	20	ccaagaccta	16
ggacgccaca	28	gctcacacct	19	ctaaaaatac	23	ccatgaagga	23
ggtgaaaccc	17	gctcactgca	29	ctatctatct	55	ccatctctgt	25
	34	ccto300**	a 10		cac	47	
COALCOLUGC	. 34 		a 10 c 26		toc	28	
ccancect++	20	cctoocee	C 34	CCCAGO	tan	37	
ccauctacte	23	cctccauna	a 26	CCCAQCA	ctt	28	
ccagectore	45	cctcctcct	c 58	cccauct	act	35	
ccacacaort	16	cctcccaaa	g 30	ccctccc	tcc	47	
ccactocact	25	cctccctcc	c 57		-		
ccttccttcc	58	ccgggacgg	c 24	L .			
		33393					

are more common in the residual set than in the bootstrap. The chi square for increase in frequency of longer signals is $X^{2}_{[1]}=26.128$, which is very highly significant (17).

The residual set of mammalian decamers is enriched in signals.

556 Nucleic Acids Research, Vol. 20, No. 3

The enrichment is significant at the bootstrap. The enrichment, however, is in no way comparable to the one obtained for mammalian viruses (13). The number of signals filtered through our deterministic procedure in the residual set is lower than, or equal to, that found in 10 over 210 random sets. However, one point makes the result of some interest: in the bootstraps there is an excess of the shorter signals, and a deficiency of the longer signals, in comparison to the residual set. This difference excludes the residual set from the bootstrap distribution ($X^2_{[1]}$ =26.128, P vanishing). Other signals may be present in the remaining 328 decamers, and it may be worth exploring them biochemically.

In Table VI we list all decanucleotides in the residual set, and highlight the signals they contain according to Wingender's compilation. Overlapping signals within a decamer are not highlighted. The most frequent signal containing decamer, occurring 150 times, was TGGGGAcagg. It should be emphasized that some eukaryotic signal sequences, TGGGGA as well as CCTGC, are present in several different decamers. In the 23 matches we found several signals which occured several times. Furthermore Sp1 signals overlap a few time within the same decamer.

Thus the selection procedure we presented in (13) is also valid for mammalian DNA. However, it is apparent that the complexities of mammalian genomes permit only limited, albeit significant, enrichment of the residual set with transcription signals.

CONCLUSIONS

The results obtained show that our algorithm selects, from a sample of mammalian genes, a set of 346 decanucleotides which are significantly enriched in transcription signals. The yield of **known** transcription factors is 23/346, close to 7% of the sample. This is not as high as the enrichment of 12% which we found in animal viruses (13). Among the frequent decamers containing binding motifs for nuclear proteins, some are of interest, particularly those containing the Sp1 binding sites.

Our conclusion is that through the statistical analysis of the distribution of oligomers in mammalian sequences, specific oligonucleotides may be identified and tested biochemically for protein interaction and assessment of transcriptional activity.

We emphasize again that the method described in the present report only selects for DNA elements whose molecular function, through high sequence selectivity in their interaction with proteins, does not allow nucleotide substitution.

ACKNOWLEDGMENTS

This work was supported by MURST grants 60% and 40%, and National Research Council grants CNR.88.03586 and CNR.89.00853 to I.B.; R.G. is supported by Istituto Superiore di Sanita' (AIDS-90), by CNR PF Ingegneria Genetica and by AIRC. We wish to dedicate this work to the VI Centennial Jubilaeum of the University of Ferrara, 1391–1991.

REFERENCES

- 1. Wingender E. (1988) Nucleic Acids Res. 16: 1879-1889
- 2. Boss, J.M. and Strominger, J. (1986) Proc. Natl. Acad. Sci. USA 83: 19139-19144
- Sullivan, K.E., Kalman, A.F., Nakanishi, M., Tsang, S.Y., Wang, Y., and Peterlin, B.M. (1987) Immunol. Today, 8: 289-292

- Grantham, R., Gautier, C., Gouy, M., Mercier, R. and Pave, A.(1980) Nucleic Acids Res. 8: r49-r62
- Grantham, R., Gautier, C., Gouy, M., Jacobzone, M. and Mercier, R. (1981) Nucleic Acids Res. 9: r43-r74
- 6. Barrai, I. (1983) J. Theor. Biol. 104: 633-645
- 7. Smith, T.F., Waterman, M.S. and Sadler, J.R. (1983) Nucleic Acids Res. 11: 2205-2220
- Sadler, J. R., Waterman, M.S. and Smith, T.F. (1983) Nucleic Acids Res. 11: 2221-2231
- 9. Claverie, J.-M. and Bouguerelet, L. (1986) Nucleic Acids Res. 14: 179-186 10. Volinia, S., Bernardi F., Gambari, R. and Barrai, I. (1988) J. Mol. Biol.
- 203· 385-390
- 11. Volinia, S., Gambari, R., Bernardi, F. and Barrai, I. (1989) CABIOS, 5: 33-40
- Seto, M.H., Brunck, T.K. and R.L. Bernstein et al. (1989) Nucleic Acids Res. 17: 2783-2800
- Volinia, S., Scapoli, C., Gambari, R., Barale, R., and Barrai, I. (1991) Nucleic Acids Res. 19: 3733-3740
- Williams, J.L., Garcia, J., Harrich, D., Pearson, L., Wu, F., and Gaynor, R. (1990) EMBO Journal 9: 4435-4442
- Kim, S., Ikeuchi, K., Groopman, J., and Baltimore, D. (1990) J. Virol. 64: 5600-5604
- Barrai, I., Scapoli, C., Barale, R. and Volinia, S. (1990) Nucleic Acids Res. 18: 3021-3025
- 17. Cochran, W.J. (1954) Biometrics, 10: 417-451.