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Abstract: Computational protein design methods can complement experimental screening and
selection techniques by predicting libraries of low-energy sequences compatible with a desired

structure and function. Incorporating backbone flexibility in computational design allows

conformational adjustments that should broaden the range of predicted low-energy sequences. Here,
we evaluate computational predictions of sequence libraries from different protocols for modeling

backbone flexibility using the complex between the therapeutic antibody Herceptin and its target

human epidermal growth factor receptor 2 (HER2) as a model system. Within the program
RosettaDesign, three methods are compared: The first two use ensembles of structures generated by

Monte Carlo protocols for near-native conformational sampling: kinematic closure (KIC) and backrub,

and the third method uses snapshots frommolecular dynamics (MD) simulations. KIC or backrub
methods were better able to identify the amino acid residues experimentally observed by phage display

in the Herceptin–HER2 interface than MD snapshots, which generated much larger conformational and

sequence diversity. KIC and backrub, as well as fixed backbone simulations, captured the key mutation
Asp98Trp in Herceptin, which leads to a further threefold affinity improvement of the already

subnanomolar parental Herceptin-HER2 interface. Modeling subtle backbone conformational changes

may assist in the design of sequence libraries for improving the affinity of antibody–antigen interfaces
and could be suitable for other protein complexes for which structural information is available.

Abbreviations: AFR, average amino acid frequency recovered; AUC, area under the ROC curve; Fv, variable region; HER2, human
epidermal growth factor receptor 2; KIC, kinematic closure; MD, molecular dynamics; PDB, potein data bank; ROC, receiver–opera-
tor curve; RMSD, root mean square deviation; VL, light chain variable region; VH, heavy chain variable region.
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Introduction

Computational design methods aim to predict low-

energy sequences compatible with a given structure

or interaction1,2 and can provide information on the

diversity of sequences tolerated in proteins and pro-

tein–protein interfaces.3–5 In particular, for the lat-

ter application, incorporating backbone flexibility in

design simulations6 has been shown to expand the

predicted sequence diversity7–12 by capturing amino

acid substitutions that require small backbone

adjustments.13–15 Recently, our laboratory developed

a computational design method that incorporates

backbone flexibility by generating near-native con-

formational ensembles.16,17 When applied to the

human growth hormone in complex with its recep-

tor, the computational predictions were found to be

in good qualitative agreement with the tolerated

sequence space observed experimentally.16

Here, we use a similar computational strategy

that first generates an ensemble of backbone confor-

mations and then searches the tolerated sequence

space, but we employ it to investigate two new

aspects: first, how do different protocols for modeling

conformational ensembles compare in terms of cor-

rectly identifying functional protein sequences?

While different flexible backbone design methods

have been applied to a variety of applica-

tions,7,8,11,16,18–23 no direct comparison has been

made within the context of the same general design

protocol on the same experimental dataset. Second,

we test whether flexible backbone computational

design is useful to predict sequence libraries to

increase the affinity of an antibody–antigen inter-

face, an important application given the considerable

success of therapeutic antibodies.24

To address the first question, we compare com-

putational design predictions obtained using three

different protocols to generate conformational

ensembles, in each case employing RosettaDe-

sign16,19 in the subsequent sequence space simula-

tions. The first two methods use Monte Carlo sam-

pling strategies to generate conformations with

small deviations from the native input crystal struc-

tures. The ‘‘backrub’’ protocol models subtle confor-

mational changes observed in high-resolution struc-

tures by considering local backbone rotations about

axes between Ca atoms of protein segments.15,25 The

‘‘kinematic closure (KIC) refinement’’ protocol iter-

ates backbone moves on protein segments that

adjust all torsional degrees of freedom together with

NACaAC bond angles.26 In this work, a new KIC

option is used to sample near-native backbone con-

formations (see Methods section). The third method

uses snapshots from a molecular dynamics (MD)

simulation for modeling backbone flexibility, as also

done in Ref. 23.

To address the second question, we use the ther-

apeutic antibody Herceptin (trastuzumab) bound to

the proto-oncogene human epidermal growth factor

receptor 2 (HER2) as a model system, because an ex-

perimental analysis of the tolerated amino acid

mutations at the interface of this complex [Fig. 1(A)

and Supporting Information Table S1] by phage dis-

play is available.27 In this manner, we can directly

compare experimentally and computationally

selected sequences.

Results and Discussion

The computational protocol to predict sequences tol-

erated at the interface of protein complexes16 con-

sists of two stages: (1) model protein conformational

variability by generating an ensemble of backbone

conformations over the entire protein–protein com-

plex and (2) search sequence space using fixed back-

bone design on each ensemble member to generate a

‘‘tolerance profile,’’ which lists the predicted amino

acid residue types for each of the designed positions.

Figure 1(B) depicts the conformational diversity of

ensembles generated using the backrub, KIC refine-

ment, and MD protocols (see Methods section). The

first two methods generate near-native ensembles,

where the different ensemble members have confor-

mations close to the starting crystal structure,

while the ensemble obtained by MD is more diverse

(Table I).

We define an amino acid residue type as pre-

dicted to be tolerated at a given position of the Her-

ceptin–HER2 interface if its frequency in the compu-

tational tolerance profile is above a cutoff value (an

adjustable parameter). Previous work in our labora-

tory selected a cutoff of 10% for the interface

between human growth hormone and its receptor.16

We used the same value here for the Herceptin–

HER2 interface (for assessment of the influence of

cutoff values, see Supporting Information text and

Table S2). Because we perform design simulations

over ensembles of backbones, we obtain distributions

of frequencies from these ensembles, which we rep-

resent as boxplots [Fig. 1(C)]. We apply the 10% cut-

off to the third quartile value of these distributions,

as in Ref. 16 (i.e., an amino acid is set to be toler-

ated if the 75th percentile of the predicted distribu-

tion (from the boxplot) is at least 10%; see Methods

section for details).
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Figure 1(C) shows an example of an amino acid

tolerance profile predicted computationally (box-

plots) when compared with the tolerance profile

obtained by phage display in Ref. 27 (red lines) at

one position in the Herceptin–HER2 interface. Box-

plots for all positions randomized in each of the

libraries for the different protocols are shown in

Supporting Information Fig. S1–S4.

To assess the overall agreement between compu-

tationally and experimentally selected sequences, we

used the following metrics (see Methods section for

details).

Average amino acid frequency recovered

(AFR). Experimental amino acid frequencies from

phage display recovered by considering all computa-

tionally predicted amino acid types at a sequence

position, averaged over all 17 randomized positions.

Sensitivity (true positive rate). Ratio of the

number of computationally predicted amino acid

types that are present in the phage display profile

(with �10% frequency) to the total number of amino

acid types observed in the phage display profile.

Positive predictive value. Ratio of the number

of computationally predicted amino acid types that

are present in the phage display profile (with

�10% frequency) to the total number of amino

acid types predicted computationally.

The protocols using near-native conformational

ensembles generated by the KIC and backrub meth-

ods recover a considerable fraction [69% and 62% av-

erage amino acid frequency recovered (AFR), respec-

tively] of the tolerated sequence space observed

experimentally for the Herceptin–HER2 complex

Figure 1. Comparison of flexible backbone protein design methods to predict the sequence tolerance in the Herceptin

antibody interface with its target HER2. (A) Structure of the Herceptin antibody–HER2 complex (pink: HER2 C-terminal

domain; green: antibody Fv light chain; blue: antibody Fv heavy chain; spheres: Ca atoms of the residues chosen for design).

(B) Conformational ensembles generated by the backrub and KIC methods and MD snapshots. For clarity, only 20 snapshots

were included in the MD ensemble depicted (100 ensemble members were used in simulations for all methods). (C)

Comparison of the amino acid tolerance profile determined experimentally by phage display27 (red lines, library B) and

predicted computationally using the different design protocols for position H91VL; shown are boxplots for the fixed backbone

(yellow), backrub (cyan), KIC (green), and MD (orange) methods. (D) Upper: Comparison of the amino acid tolerance profile

determined experimentally (red lines) and predicted computationally (boxplots) using backrub for the position D98VH; Lower:

Mutation of residue D98VH on the Herceptin heavy chain from Asp to Trp likely increases packing interactions in the interface

with HER2. Left panel: native structure of the Herceptin-HER2 complex (PDB 1nz8). Right panel: structural model of the

lowest energy designed sequence for the top scoring backrub conformer. Residues located within 6 Å from the residue at

position 98 (dark blue) are shown as spheres. Figures were made using Pymol http://www.pymol.org/.
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(Table I). Supporting Information Figure S5 depicts

the conformational diversity modeled for the anti-

body binding site loops in the near-native ensembles.

When only the crystal structure backbone was used

for design simulations (fixed backbone protocol), the

sensitivity was reduced (see below). Using MD snap-

shots, which have greater conformational diversity

[Fig. 1(B)], led to lower sensitivity and AFR. In this

case, the predicted profiles for many of the designed

positions are flat (frequencies of nearly all amino

acids are less than 10%) with no particular amino

acids preferred (Supporting Information Fig. S4).

Incorporation of appropriate filters improved the

performance of the MD method (see Supporting In-

formation text for further details). Although not

tested here, it is possible that using restraints in the

MD simulations to reduce modeled conformational

diversity would improve design predictions. For a

list of all amino acids predicted using the different

computational approaches and experimentally

observed at each position by phage display in

Ref. 27, see Supporting Information Table S3.

We also compared the design predictions to the

divergence from the native sequence, and a control

model (‘‘naı̈ve’’ prediction) considering only chemi-

cally similar amino acid substitutions (Table I). As

the affinity of the starting Herceptin sequence for

HER2 is already high (KD ¼ 0.35nM27), the experi-

mentally observed sequence divergence from the

starting amino acid is modest: in 10 of 17 random-

ized positions, wild-type amino acid residues were

strongly preferred (frequency � 45%27). Employing

the KIC or backrub protocols predicted sequence

profiles that contained the wild-type amino acid in

10 or 9 of these cases, respectively (Supporting In-

formation Table S3). In contrast, the fixed backbone

protocol predicted wild-type residues in fewer

(seven) of these positions. This somewhat counterin-

tuitive observation could be explained by the limita-

tions of the discrete rotamer libraries used for com-

putational design: small adjustments to the

backbone may be required to select native-like

rotamers that are missed when using the crystallo-

graphic backbone and excluding the native side

chain coordinates from the simulation. To test this

idea, we performed fixed backbone design simula-

tions that included the native side chain conforma-

tions. As expected, the wild-type residue is now cap-

tured in 9 of 10 of the positions above and the AFR

value improves to 0.61 from 0.43 (Supporting Infor-

mation Table S4).

The ‘‘naı̈ve’’ control model performs equally well

to the ensemble simulations for many positions (Ta-

ble I). However, phage display27 identified some

positions with preferences for amino acids with sig-

nificantly different size and chemical properties

from the Herceptin starting sequence (Supporting

Information Table S3, positions 30VL, 94VL, 98VH,

and 102VH). The most prominent case is the Hercep-

tin heavy chain position 98, in which the wild-type

aspartate residue was replaced by a tryptophan in

23% of phage display selected sequences.27 More-

over, a single Asp98Trp mutation led to a threefold

improvement in Herceptin affinity for HER2. This

substitution was successfully captured in the design

simulations when the backbone was retained fixed

or subtle backbone conformational changes were

introduced by the KIC or backrub methods

Table I. Comparison of Predictions to Phage Display Data

Phage
display

KIC
ensemble

Backrub
ensemble

Fixeda

backbone
MD

ensemble Nativeb Naı̈vec

AFRd :1.00 0.69 (0.71) 0.62 (0.69) 0.43 (0.64) 0.22 (0.51) 0.46 0.66
Library Sizee n.a. 1 � 108 (2 � 108) 7 � 106 (5 � 107) 9 � 105 (1 � 107) 240 (1 � 103) 1 2 � 108

Sensitivity :1.00 0.65 0.55 0.43 0.22 0.34 0.64
PPV :1.00 0.49 0.49 0.43 0.47 0.82 0.51
Ensemble

RMSD [Å]f
n.a. 0.3 (0.1–0.7) 0.3 (0.2–0.4) 0 1.8 (0.9–3.3) n.a. n.a.

Missed
Positionsg

0 2 3 5 11 3 2

Abbreviations: AFR, average amino acid frequency recovered; KIC, kinematic closure; MD, molecular dynamics; n.a., not
applicable; PPV, positive predictive value; RMSD, root mean square deviation.
a Including an initial side chain repacking step.
b Including only the wild-type amino acid present in the starting complex structure.
c Including the wild-type amino acid and chemically similar residues (groups: [D,E,N,Q], [R,K,H], [L,I,V,M], [F,Y,W],
[P,A,G], and [S,T] as in Ref. 16).
d Average amino acid frequency recovered, as defined in the main text. The numbers in parentheses give AFR values when
the wild-type amino acid type is added to the predictions.
e Calculated for the 17 positions analyzed (for the four positions randomized in two libraries, the average was calculated;
cysteine residues are excluded in the simulations; the upper limit for library size is 1917 � 5 � 1021. The numbers in paren-
theses include the native amino acid residue.
f Median pairwise ensemble backbone root mean square deviation (minimum and maximum RMSDs in parentheses).
g Number of positions at which none of the amino acids experimentally observed (those with experimental frequency �
10%) were identified computationally in any of the libraries (supporting Information Table S3).
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(Supporting Information Table S3). A predicted

structural model of the Asp98Trp mutation suggests

that the increase in binding affinity is likely a result

of improved packing interactions across the interface

[Fig. 1(D)]. This mutation would not be detected

when considering only conservative substitutions (as

in the naı̈ve model). Interestingly, MD was the only

method that captured another non-conservative sub-

stitution observed in the dataset: a replacement of

the wild-type threonine at position 94 in the light

chain with a tryptophan (Supporting Information

Fig. S6). Thus, in some cases ensembles with larger

conformational variability may be required to cap-

ture tolerated mutations. For the other two positions

(30VL and 102VH), none of the computational meth-

ods captured observed nonconservative substitu-

tions. It should be noted that water molecules are

not explicitly represented in the RosettaDesign

method; thus, small residues forming water-medi-

ated hydrogen bonds could be missed, with larger

amino acid residues being selected instead. This

may be the case for the asparagine at light chain

position 30 (Supporting Information Table S3).

Conclusions

We have compared computational design predictions

for the binding site of a high-affinity therapeutic

antibody using different protocols for modeling back-

bone conformational flexibility. We found that the

KIC refinement and backrub protocols, which are

fast and introduce subtle backbone changes, capture

a considerable fraction of the sequence diversity

experimentally observed by phage display (Table I).

Furthermore, these methods lead to better predic-

tions than those obtained by allowing larger back-

bone conformational changes by MD. The fixed and

flexible backbone Monte Carlo methods were also

able to predict the key Asp98Trp substitution that

leads to a threefold improvement in the already sub-

nanomolar affinity of the Herceptin antibody for

HER2.27 Thus, computational design can help to

reduce the complexity of experimental libraries and,

at the same time, enrich the sequence pools for func-

tional variants.16,28,29 This strategy could facilitate

the engineering of protein variants with new or

modified functions, such as improved therapeutic

antibodies that bind with higher affinity to their

protein target.

Methods

Source of experimental sequence tolerance
data

Experimental sequence tolerance data for the Her-

ceptin–HER2 interface were taken from Ref. 27. The

authors screened antibody positions [Fig. 1(A)] in

groups of five to seven positions, using four different

phage display libraries (Supporting Information Ta-

ble S1). Note that some positions were randomized

in more than one library.

Generation of backbone ensembles

Rosetta command lines for ensemble generation

methods are given in the Supporting Information

text.

Backrub protocol. A backrub move25 is a local

backbone motion, that consists of rotating a peptide

segment (up to 40�) around the axis defined by the

Ca atoms of the segment’s first and last residues;

the rotation is followed by optimization of the posi-

tions of the branching Cb and hydrogen atoms.15

Within Rosetta, backrub moves are iterated with

side chain rotamer changes in a Monte Carlo proto-

col, as described in Ref. 15. As an initial equilibra-

tion step, a backrub Monte Carlo simulation for the

starting crystal structure of the Herceptin–HER2

complex (PDB code 1n8z) was performed over all

sequence positions (excluding disulfides) at kT ¼ 0.1

for 10,000 steps with a maximum segment length of

12, as described in Ref. 30. The lowest energy struc-

ture from this simulation was used as the starting

conformation for 100 randomly seeded backrub sim-

ulations at kT ¼ 0.6 for 10,000 steps, using the full-

atom Rosetta scoring function as in Ref. 16. The last

structure from each of these simulations was

retained. This protocol resulted in an ensemble of

100 structures, with a median pairwise backbone

root mean square deviation (RMSD) of 0.3 Å

(Table I).

KIC refinement protocol. KIC also samples con-

formations of protein segments while keeping the

two segment endpoint Ca atoms fixed in space.26 A

KIC move begins with selection of a random seg-

ment in a protein containing at least three and at

most 12 residues. The Ca atoms of the first, last,

and middle residues of this segment are defined as

‘‘pivots.’’ In the implementation used in this study,

torsions around the remaining non-pivot Ca atoms

are then sampled from a normal distribution up to

three degrees above or below the values before the

KIC move (this is termed ‘‘vicinity sampling,’’ which

was not used in the original KIC implementation

described in Ref. 26 for de novo loop reconstruction)

and NACaAC bond angles are set to random values

within one-half the standard deviation (r ¼ 2.48�)
above and below the mean (110.86�) observed in

ultrahigh-resolution crystal structures (<1.0 Å reso-

lution) in the PDB. This step perturbs the segment

and breaks its continuity. KIC then determines the

possible rotations about the pivot phi/psi torsions

that restore the continuity of the segment and place

it into a new conformation.26
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For generating a near-native conformational en-

semble, we used the refinement mode (high-resolu-

tion stage) of the KIC protocol after an initial step of

repacking all side chains (Metropolis Monte Carlo

simulated annealing of rotameric conformations

excluding the native side chain coordinates), as

described in Ref. 26. Different from the original pro-

tocol, the entire complex (and not just a loop region)

was considered for KIC moves. A total of 200 Monte

Carlo iterations within the KIC refinement proce-

dure were applied, consisting of: (1) execution of a

KIC move (as above) on randomly selected overlap-

ping subsegments of the complex, with a constant

temperature equal to 1.2 kT and (2) side chain

repacking (every 20 steps) and rotamer trials (each

side-chain is set to the most favorable rotamer con-

formation, while all other side chains remain fixed,

until the energies converge), each within 10 Å of the

moved segment. Rotamer trials are followed by

energy minimization using the Davidon–Fletcher–

Powell method31 on the segment backbone and side

chains within 10 Å of the new segment conforma-

tion. This procedure resulted in an ensemble of 100

structures, with a median pairwise backbone RMSD

of 0.3 Å (Table I).

Molecular dynamics. A MD simulation was per-

formed for 10 ns at 300 K using the GROMACS

package v3.332 with the GROMOS96 force field.33 A

leap-frog algorithm was used for integrating the

equations of motion. The Protein Local Optimization

Program34 was used to build the missing segment

formed by residues 581–590 in the HER2 protein.

For segment building, only heavy atoms of flanking

residues (580 and 591) were allowed to move, but

hydrogen optimization was performed for all resi-

dues in the complex. Then, the complex was placed

in an octahedron box filled with simple point charge

water molecules.35 The minimum distance between

the protein complex and the wall of the unit cell was

set to 0.1 nm. Two positive counter ions were incor-

porated for a zero net charge of the system. The

SHAKE algorithm,36 with the default tolerance

value (10�4), was used to constrain all bonds involv-

ing hydrogen atoms. Periodic boundary conditions

were applied to avoid edge effects. Long-range elec-

trostatic interactions were calculated using particle-

mesh Ewald. The temperature was maintained con-

stant by coupling the protein and solvent to an

external heat bath with a Berendsen thermostat37 at

300 K. The pressure was coupled to an isotropic

pressure bath (1 bar). Following steepest descent

minimization, the system was heated up to 300 K

during 50 ps, then the pressure and temperature

were kept constant for 25 ps and finally the system

was equilibrated for 125 ps. Production runs were

carried out for 10 ns with a 2 fs time step. The MD

trajectory is shown in Supporting Information Fig-

ure S6. Conformational ensembles were generated

by writing out frames every 125 ps during the last 5

ns of the MD simulation. Finally, each of the

retained 100 structures was repacked (Metropolis

Monte Carlo simulated annealing of rotameric con-

formations) using Rosetta to equilibrate the system

to the Rosetta force field used in the design simula-

tions. The simulation resulted in an ensemble of 100

structures with a median pairwise backbone RMSD

of 1.8 Å (Table I).

Generation of sequence tolerance profiles

Predicted sequence tolerance profiles for the Hercep-

tin–HER2 interface were produced from computa-

tional design simulations with Rosetta as in Ref. 16,

except that here the sequences were propagated for

10 generations by the genetic algorithm rather than

5. Computational design runs were performed on

four different groups representing the four experi-

mental libraries described in Ref. 27.

We searched the tolerated sequence space by

performing a fixed backbone design simulation for

each of the conformers of a structural ensemble. As

described in Ref. 16, all sampled sequences with

binding and folding scores within 1% of the score of

the input ensemble member with the starting

sequence were recorded. The frequencies of each

amino acid (excluding cysteine, which was never

allowed to be sampled) were then obtained at each

designed position for each of the ensemble structures

to generate a position-specific tolerance profile. This

step ignores possible experimental or computational

covariations between positions. Then, the sequence

profiles for all ensemble structures were combined,

and the distributions of frequency values over the

ensemble members were represented as boxplots.

We defined an amino acid type as ‘‘computationally

predicted’’ when it had a third quartile frequency

value �10% obtained from the boxplots.

Performance metrics for comparing

computational and experimental sequence

tolerance

Assignment of frequencies to each of the amino

acid types predicted computationally. For each

computationally predicted amino acid type at each

position, the experimental frequency of the amino

acid type was retrieved from the phage display data,

as in Ref. 16. These frequency values were added for

each position.

Computationally predicted AFR. The frequency

values obtained for each of the positions in the com-

putational profiles (as defined above) were summed

(for positions occurring in more than one library, the

average value of the occurrences was calculated).

Babor et al. PROTEIN SCIENCE VOL 20:1082—1089 1087



Then, this sum was divided by 17 (the number of

randomized positions) to obtain the AFR.

For calculating the sensitivity and positive pre-

dictive value (as defined in the results section), the

10% frequency cutoff was used for both computa-

tional and experimental profiles. Thus, an amino

acid was considered as ‘‘predicted’’ if its third quar-

tile frequency from the boxplots was �10% (as

above) and considered as ‘‘observed’’ if its experi-

mental frequency in the phage display data was

�10%.
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