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Summary
In this paper, we propose a multivariate growth curve mixture model that groups subjects based on
multiple symptoms measured repeatedly over time. Our model synthesizes features of two models.
First, we follow Roy and Lin (2000) in relating the multiple symptoms at each time point to a
single latent variable. Second, we use the growth mixture model of Muthén and Shedden (1999) to
group subjects based on distinctive longitudinal profiles of this latent variable. The mean growth
curve for the latent variable in each class defines that class’s features. For example, a class of
“responders” would have a decline in the latent symptom summary variable over time. A Bayesian
approach to estimation is employed where the methods of Elliott et al (2005) are extended to
simultaneously estimate the posterior distributions of the parameters from the latent variable and
growth curve mixture portions of the model. We apply our model to data from a randomized
clinical trial evaluating the efficacy of Bacillus Calmette-Guerin (BCG) in treating symptoms of
Interstitial Cystitis. In contrast to conventional approaches using a single subjective Global
Response Assessment, we use the multivariate symptom data to identify a class of subjects where
treatment demonstrates effectiveness. Simulations are used to confirm identifiability results and
evaluate the performance of our algorithm. The definitive version of this paper is available at
onlinelibrary.wiley.com.

1. Introduction
Interstitial Cystitis (IC) is a chronic syndrome characterized by multiple urinary symptoms
in the absence of any identifiable cause. The cause of the disease and effective treatments
have both remained elusive (Mayer et al., 2005). Analysis of data from IC studies presents
several challenges. First, due to the complex nature of the disease, it is difficult to determine
one primary endpoint that would indicate improvement with treatment over time. In the
clinical trial that motivated this work, multiple symptoms were recorded at multiple time
points, however the primary outcome for the trial was the final Global Response Assessment
(GRA), which records how a subject feels overall relative to the beginning of treatment.
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Thus, the information in each patient’s multiple symptom profiles was ignored in favor of a
more subjective outcome for the efficacy analysis.

An additional challenge is the extreme heterogeneity of the population diagnosed as having
IC. As is the case with other conditions of unknown etiology (e.g., fibromyalgia, chronic
prostatitis/chronic pelvic pain syndrome), heterogeneity of experienced symptoms suggests
the possibility of distinct disease subgroups. In the case of IC, there is also pathological
evidence that there are different disease processes at work in different individuals and that
these different disease processes are associated with different expressed symptoms (Leiby et
al., 2007). Consequently, not all subjects diagnosed with IC would be expected to respond to
a given treatment. A model that accounts for the full range of symptoms reported over time
while grouping subjects based on their reported multivariate symptom profiles would be
crucial in identifying clinically important subgroups for further study. Such a model could
be useful in identifying subjects for whom certain treatments are effective.

Statistical models for longitudinal studies typically evaluate the behavior of a single
continuous outcome over time (e.g., mixed effects models Laird and Ware, 1982). When
there are several outcomes of interest measured repeatedly over time, modeling becomes
more complicated. Several authors have suggested approaches for jointly modeling
multivariate longitudinal profiles through the use of correlated random effects (Shah et al.,
1997; Gueorguieva, 2001; Fieuws and Verbeke, 2006). Roy and Lin (2000) proposed a
latent variable model to address the situation where the multiple outcomes are not only
correlated but may be measuring the same underlying quantity of interest. Their model
combines features of the factor analytic model (Bartholomew and Knott, 1999) with the
mixed effects model. That is, the multiple manifest variables at each time point are reduced
to a single normally-distributed latent variable which is then assumed to follow a mixed
effects model. As several authors have noted, both factor analytic models and mixed effects
models are types of latent variable models (Muthén and Curran, 1997; Palta and Lin, 1999).
In factor analysis, the variance of the latent variable is fixed in order to estimate its
coefficients or factor loadings. In mixed effects models, the coefficients of the latent
variable are fixed (the random effects design matrix) and the covariance matrix of the
random effects is estimated. The Roy and Lin model utilizes both types of latent variables.

Latent variable models using categorical latent variables can be used to estimate unobserved
population stratification or clustering. Verbeke and Lesaffre (1996) extended the mixed
effects model to allow for finite mixtures of normal distributions for the random effects thus
implying a categorical latent variable. Among the most widely used models with categorical
latent variables are latent class models (see Clogg, 1995; Garrett and Zeger, 2000) where the
focus is to identify the latent groups or classes and predictors of those classes. In the past
decade, many researchers have focused on the integration of categorical and continuous
latent variable models using categorical latent variables to account for unobserved
population heterogeneity while accounting for correlation among observed variables not
represented by the latent classes through the use of random effects (Bauer and Curran,
2004). When applied to longitudinal data, these models are often referred to as growth
mixture models as they model mixtures of longitudinal trajectories or growth curves. Roeder
et al. (1999) used a latent class model to group subjects based on the observed longitudinal
trend of a single outcome where conditional on class membership a subject’s observations
are assumed to be independent across time. Muthén and Shedden (1999) and Muthén et al.
(2002) developed a general framework which allows for correlation among the repeated
measurements in addition to that induced by the latent class structure. That is, the
continuous outcomes are assumed to follow a mixed effects model conditional on class
membership.
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Other authors have proposed models for classification of subjects with multivariate
longitudinal data. Nagin and Tremblay (2001) developed a model with two sets of latent
classes for two longitudinal outcomes. Correlation between the two outcomes is modeled by
allowing for correlation between the latent class variables. Elliott et al. (2005) developed a
Bayesian growth curve mixture model to combine two items that were measured repeatedly
over time where conditional on latent class membership, the items follow independent
mixed effects models.

In this paper, we extend recent models for continuous and categorical latent variables to the
case of correlated multivariate continuous outcomes measured repeatedly over time. The
proposed model incorporates the model of Roy and Lin (2000) into a latent class structure,
allowing for model parameters to vary by class, and it extends the model of Muthén and
Shedden (1999) to allow for growth mixture modeling of a latent summary variable of
multivariate manifest variables. Estimation proceeds using a Bayesian approach adapted
from Elliott et al. (2005). Our approach differs from that of Nagin and Tremblay and Elliott
et al. in that it allows for correlation among the multiple outcomes conditional on latent class
membership. In addition, our focus is on the trajectory of an unobserved underlying variable
which we view as the real measure of interest. We apply our model to data from a
randomized clinical trial evaluating the efficacy of Bacillus Calmette-Guerin (BCG) in
treating symptoms of Interstitial Cystitis. In contrast to conventional approaches using a
single subjective GRA, we use the multivariate symptom data to identify a class of subjects
where treatment demonstrates effectiveness.

This paper is organized as follows: Section 2 presents the proposed model and describes the
method of estimation. Section 3 presents results from application of the proposed model as
well as from existing models to data from a randomized trial in IC. Section 4 presents results
of a simulation study to assess model identifiability and validate our estimation procedure.
Finally, section 5 discusses our results and suggests some extensions for future research.

2. A Multivariate Growth Curve Latent Class Model
In this section, we describe a growth curve mixture model for repeated measurements of
multivariate outcomes over time. At each time point, the multivariate outcome is
summarized by a single latent variable through an extended factor analytic model. The latent
variable is then assumed to follow a mixed effects model to account for within subject
correlation of the repeated measures and to describe its behavior over time. The factor
analytic and fixed effects parameters are allowed to vary by latent class membership
allowing for different trajectories and different relationships among the multivariate
outcomes in each class. We implement the model in a Bayesian framework by specifying
prior distributions for all parameters and computing the posterior distribution using Markov
chain Monte Carlo (MCMC) methods.

2.1. Model Notation
Define Yijm to be the mth variable (m = 1,…,M) measured at the jth time point (j = 1,…,ni) for
the ith subject (i = 1,…,N). The Yijm are the manifest or observed outcome data. Let Ci be the
latent class membership of subject i with Ci = k if subject i belongs to class k (k = 1,…,K).
Conditional on Ci = k, Yijm follows the modified factor analytic model of Roy and Lin such
that

(1)
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where  and . Conditional on the latent variable Zij, the M
outcomes at each time point are assumed to be independent, and conditional on Zij and bim,
the ni repeated measures of the mth outcome are also independent. The outcome-specific
intercepts (αmk) and factor loading parameters (λmk) vary by class but are static with respect
to time. The factor loading parameters express the strength of association between the latent
variable and the manifest variables and are a function of the correlation among the manifest
variables.

Conditional on Ci = k, Zij is assumed to follow a mixed effects model:

(2)

(3)

where  is an r × 1 vector of observed covariates for Zij and γk is the mean of ηi, the
vector of coefficients. In a typical growth curve model the covariates will include an
intercept and polynomials in time and may contain other baseline or time-varying covariates
or possibly interaction terms. The vector ai ~ N (0, Ψa) specifies the random effects while
fixed effects are specified by setting the appropriate variance components equal to 0. The
probability of class membership, πik, follows a reference category multinomial logistic
regression model:

(4)

where δK ≡ 0 and  is a p × 1 vector of observed subject-level covariates.

By assuming that the mean of the vector of coefficients varies by class, we allow for
different trajectory shapes for the latent variable. Allowing for different factor loadings in
each class admits the possibility that the observed outcomes may be more strongly related to
the latent variable in one class than another. For example, it may be that in one class all
outcomes have relatively large factor loadings and are thus strongly correlated and equal
contributors to the definition of the latent trajectory shape. Another class may have one
outcome with a factor loading much larger than the others in which case the variables would
be less strongly correlated and only the variable with the large factor loading would
contribute to the definition of the latent trajectory.

2.2. Identifiability
As is the case with all latent variable models, not all parameters are simultaneously
identifiable, and therefore, the following constraints have been applied. For the loading
parameters λmk and outcome-specific intercepts αmk to be identified, we assume

, λ1k is constrained to be positive, and the mean of the intercept in the model for
Z is fixed at 0. These constraints should provide for identifiability of all remaining
parameters provided that the number of manifest variables (M) is 3 or greater. For the case
of 2 manifest variables other conditions apply. In a one class model with a random intercept
in the model for Z, all parameters should be identified if γ ≠ 0. In our application, this means
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that the trajectory of the latent symptom variable would not be flat, having nonzero slope.
When γ ≠ 0 the factor loading λmk appears in both the mean and variance of the observed
data. When γ = 0, the mean of the latent variable Zij is 0, λmk disappears from the mean of Y,
and all information about λmk must come from the covariance matrix of Y (see appendix A
for a more detailed discussion of this issue). When there are two or more classes the
variance components , and Ψa are the same across classes, and the model may still be
identified if γk ≠ 0 for some classes. However, if the class with mean zero is also the largest
class, there may not be enough information in the covariance matrix to fully identify all
variance parameters and computation problems may result. We explore some of these issues
further with simulations (see section 4).

2.3. Estimation
The hierarchical nature of latent variable problems suggests a Bayesian approach to
estimation which we apply here. MCMC methods including the Gibbs sampler (Gelfand and
Smith, 1990; Gelman and Rubin, 1992; Gilks and Wild, 1992) and the Metropolis-Hastings
algorithm (Hastings, 1970) can be used to obtain the posterior distribution of the model
parameters and the latent variables quite easily. We implement a Gibbs sampler with
Metropolis draws where necessary for non-conjugate distributions. The Bayesian approach
eliminates the need for numerical integration and provides for more straightforward interval
estimation.

When the number of classes (K) is two or greater, informative, proper priors are required for
all class-specific parameters (αmk, λmk, γk, and δk) to allow for the possibility of empty
classes in the computation of the posterior distribution and to ensure a proper posterior
distribution. Following Elliott et al. (2005), we specify data-based priors for αmk, λmk, and γk.
The priors are centered at the median posterior estimates ( , and ) for the 1-class
(i.e., Roy and Lin) model. The variance of the prior distributions is specified by multiplying
the variance of the posterior distribution from the one-class model by the sample size (N) so
that with moderate sample sizes the priors are relatively non-informative. For the one-class
model, we specified p(α1,…,αM; λ1,…,λM;γ) ∝ 1. For the k-class models we specified the
following priors:

where ψαm and ψλm are the variances of the posterior distribution for the appropriate
parameter from a one-class model and Ψ0 is a diagonal matrix of variances of the γ
parameters from the one-class model. Following Garrett and Zeger (2000), we specify the
priors for δk as

when class probability model 4 contains more than an intercept. Otherwise, we place a
Dirichlet prior directly on the class probabilities.

To ensure proper posterior distributions, we specify independent, proper non-informative
inverse-chi-square (1 df) priors for the variance components of the factor model (1) and an
inverse-Wishart prior for the variance of the random effects in 3:
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where ν = 1 and S = diag(1).

The posterior distribution of all model parameters is computed via a Gibbs sampler. We
view Zi, bi, ai, and Ci as missing data and treat them as additional parameters to be
estimated. Each parameter is drawn sequentially from its full conditional distributions:

(5)

where Θ = (θ1; θ2,…,θq) is the vector of all model parameters. For the parameters δk, the full
conditional distribution does not have a closed form and so we use a Metropolis-Hastings
step within the Gibbs chain. (See Appendix B more details on the Gibbs sampler.)

Because the subjects are reassigned to a class at each iteration without regard to the class
labels (e.g., class 1 in one iteration may more resemble class 2 at another iteration), it is
sometimes necessary to reassign labels to properly associate similar classes across iterations.
When necessary, the decision-theoretic approach of Stephens (2000a) was applied to sort
class labels. Multiple chains of substantial length were run to achieve convergence to the
posterior distribution which was assessed using visual checks of traceplots and calculation
of the Gelman-Rubin statistic ( ) (Gelman and Rubin, 1992). Values of  were
considered to indicate adequate convergence.

All models were fit using SAS macros written utilizing SAS/STAT and SAS/IML software,
Version 9.1 of the SAS System for Windows. Copyright 2002–2003, SAS Institute Inc.,
Cary, NC, USA.

2.4. Model selection and goodness of fit
Model selection is challenging in all latent variable models, regardless of the method of
estimation. This is particularly the case with determining the dimension of the latent
categorical variable, as standard likelihood ratio methods are inappropriate because of the
non-nested model structure. In most frequentist applications, the number of classes is chosen
by comparing summary statistics of fit such as the χ2 statistic or likelihood-based criteria
such as AIC and BIC. The Deviance Information Criterion (DIC), proposed by Spiegelhalter
et al. (2002), is a similar measure of complexity and fit within the Bayesian setting. Like the
AIC and BIC, the DIC is based on the likelihood. The DIC estimates the “effective” number
of parameters for the penalty term using the deviance function (D(θ) = −2L(θ) + 2 log(f(y))).
We evaluated the DIC at the median of the posterior distribution and chose the model
yielding the smallest DIC value. In addition, we applied graphical methods such as the
Latent Class Identifiability Display (LCID) of Garrett and Zeger (2000) to assess the ability
of our data to identify parameters. To assess goodness-of-fit, we used an omnibus posterior
predictive check (Gelman et al., 1996). We generated yrep|θj for each vector of parameters
Θj in a random sample of draws from the posterior distribution and calculated the Chi-
square statistic
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for the replicated data  and the observed data y at each θj. We plotted

 and calculated the Bayesian p-value . Small or large
values of p̂ indicate poor fit to the data.

3. Application to data from an IC clinical trial
In this section the proposed model is applied to data from a multi-center clinical trial to
evaluate the efficacy of Bacillus Calmette-Guerin (BCG) in treating IC symptoms. Two
hundred sixty-five (265) subjects were randomized to receive intravesical BCG or
intravesical placebo. Symptoms and other variables were recorded at baseline and 4
subsequent visits (approximately 8, 18, 26, and 34 weeks after randomization). At the end of
the trial 21% of BCG subjects and 12% of placebo subjects identified themselves as
moderately or markedly improved since the initiation of treatment (“responders”) as
measured by the GRA. This difference did not achieve the prespecified threshold for
statistical significance (p=0.06). Longitudinal analyses of the two secondary outcomes pain
and urgency to void showed that the interaction between treatment assignment and time was
not significant for either outcome, giving further evidence that treatment was not effective
(Mayer et al., 2005). The goal of our analysis was to use the multivariate symptom profiles
to classify patients in hopes of identifying a subset of true treatment responders. We applied
our model to the symptoms pain and urgency. Both symptoms are measured on a 10-point
(0–9) Likert scale with 9 indicating the most severe symptoms, and we model both as
normally distributed random variables as was done in Mayer et al. (2005). In section 3.1 we
report results from preliminary analyses which considered each outcome separately. In
section 3.2 we report results from the application of the multivariate model to the bivariate
repeated measurements of pain and urgency. In section 3.3 we compare the results from the
univariate and multivariate analyses.

3.1. Application of a Univariate Growth Curve Mixture model
Each symptom was analyzed using a simplified version of the model of Muthén and
Shedden (1999) (the “univariate” models). Each subject’s symptom profile was assumed to
follow a quadratic curve in time adjusted for age (centered at the mean) and log10
transformed duration of symptoms with the intercept and slope allowed to vary with
treatment assignment. A quadratic curve was chosen based on the plots of raw data means
over time. Such a curve allows for the possibility that symptoms may rebound after
treatment ended between weeks 6 and 10. Models with subject-specific random intercepts
and random intercepts and slopes were considered. Curves were grouped into latent classes
by allowing for the mean growth curve parameters (intercept, slope, quadratic effect, age,
duration of symptoms, treatment, and treatment by time interaction) to vary by class. No
covariates were included in the model for the probability of class membership. Bayesian
models were fit using a simplified version of the Gibbs sampler described above. For the
univariate models, chains of 10000 iterations, discarding the first 500 iterations for “burn-
in”, were sufficient for convergence. Two-, three-, and four-class models were considered
for each outcome.

The DIC values for the 2-, 3-, and 4-class models for random-intercept only models for pain
were, respectively, 4891, 4859, and 4861. When a random slope was included the values
were 4897, 4869, and 4870. For urgency, the values were 4768, 4751, and 4743 for the
random-intercept model and 4766, 4755, and 4748 for the random-slope model. Based on
the DIC, the three-class model is favored for pain while the four-class model is favored
slightly for urgency. In both cases, the random-intercept models are favored over the
random-slope models. Figures 1 and 2 show the mean curves by class for the best-fitting
models. For both pain and urgency, the two-class models identify a “non-responder” and a
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“responder” class. For the three class model for pain, the non-responder classes remains and
the responder class was divided into “responders” and “temporary responders” (U-shaped
profiles). The four-class model for urgency also produces a large non-responder class, two
responder classes, and one small class of temporary responders. In the first class of
responders (class 2), placebo and treatment arms had similar symptom trajectories while in
the second class (class 3), treated subjects had a greater improvement in urgency than did
those randomized to placebo.

Using the median of the posterior for all model parameters, subjects were assigned to classes
based on the posterior probability of class membership (i.e., Pr(Ci = k|y; Θ)). A significant
number of subjects (41) belonged to one of the responder classes on one of the symptoms
but were classified as non-responders on the other.

3.2. Application of the Multivariate Growth Curve Mixture Model
In considering the two symptoms simultaneously, pain and urgency were modeled as a
bivariate manifestation of Z, which we call the underlying IC symptom severity (see
equation 1). This latent variable was assumed to follow a quadratic curve over time. Fixed
effects for treatment arm and treatment by time interaction were included to allow for the
possibility that treatment may impact symptoms in one or more classes. Age and log10-
transformed duration of symptoms were included as clinically important variables. Models
with random intercepts only and random intercept and random slopes (see equations 2 and
3) were considered. Initial models were fit with only an intercept in the class membership
model (4) as the metropolis step required when covariates are present in the logistic model
greatly slows the algorithm. Given the results of the univariate analyses, two- and three-class
models were considered. In addition to the quadratic curve in time, we considered a
“saturated” model where we included fixed effects for each time and treatment group
combination, again adjusting for age and log10 duration. As in Muthén et al. (2002), we
assume that each subject belongs to a certain latent class and that this membership does not
change over time. Active treatment is assumed to modify the class-specific trajectory from
that expected under placebo.

Longer chains were needed to achieve convergence to the posterior distribution in the
multivariate models. Multiple chains of 200,000 iterations were run assuming different sets
of starting values for each chain for each model. Converged chains were combined to
calculate posterior medians and measures of fit (DIC). The first 100,000 iterations from each
chain were discarded when calculating the posterior distribution for quantities of interest.
When necessary, the online algorithm of Stephens (2000b) was applied to correct for label-
switching.

As in the univariate models, the two-class model yielded a flat and a responder class. The
three-class model had the smallest DIC among those considered and is the one that is
presented in detail (see Table 1. Figure 3 shows the mean curves for the latent variable by
class at the median of the posterior distribution. Lower levels of the latent variable indicate
greater improvement in symptoms. In the three-class model, the largest class is class 2
(Pr(C=2)=0.49) which includes both placebo and treatment responders. Response occurs
early, during the intervention period, and levels off during the post-treatment follow-up
period. The next largest class (class 1 Pr(C=1)=0.34) displayed relatively flat symptoms
over the entire study period in both treatment arms. The third class (Pr(C=3)=0.16) exhibited
substantial improvement in the placebo group but not the treatment group. The latent class
identifiability display (figure not shown) indicated that the classes are well-identified by our
data and the posterior predictive check yielded a “p-value” of 0.66 for the three-class model
indicating that there is little evidence of poor fit for this model using the omnibus fit
statistic. In addition, to check the assumption of normality of residual errors, we assigned
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each subject to its most likely class and calculated the residual between the predicted mean
symptom score and observed symptom score. Histograms and q-q plots (not shown) gave no
evidence of lack of normality.

Table 2 gives the median of the posterior distribution and 95% credible intervals for all
parameters for the three-class multivariate model. The responder class for the three-class
model includes both placebo and treatment responders, with those randomized to the
treatment arm improving faster than those in the placebo arm γ6 = −0.21 95% credible
interval=[−0.43,−0.0047]). In classes 1 and 2 pain and urgency contribute roughly the same
amount of information to the latent variable. The responder class (class 2) had the strongest
association between the observed variables and the latent variable (λpain = 1.31, λurgency =
1.30). Class 1 had the lowest association between the observed and latent variables λpain =
0.39,λurgency = 0.49). Class 3 differed from the other two in that there was a strong
association for pain but a weak association for urgency λpain = 1.31, λurgency = 0.41). Plots of
the symptom-specific predicted curves (not shown) suggest that class three is composed of
subjects randomized to placebo whose pain improved but whose urgency did not and
subjects randomized to treatment who had a small temporary relief in pain, but no
improvement in urgency. There is substantial evidence that subjects in class 2 had more
improvement the longer they had been experiencing symptoms prior to entering the study
(γ4 = −0.39 95% CI=[−0.84,0.034]). In class 3, there was evidence that older subjects had
greater improvement (γ3 = −0.13 95% CI=[−0.31,0.025]).

After selecting the number of classes, subjects were assigned to the class with the highest
subject-specific posterior probability of class membership (i.e., Pr(Ci = k|Yi, Θ)). Potential
predictors of class membership were evaluated using logistic regression. No potential
predictors of class membership were identified, and so the extended model was not run.

3.3. Comparison of Univariate and Multivariate Models
Table 3 gives the cross-tabulation of the classes assigned in the 3-class multivariate model
with those from both univariate models. For simplicity, the class assignments from the
univariate models were grouped as non-responders (class 1 for both variables) vs.
responders (classes 2–3 for pain and 2–4 for urgency). The multivariate responder class
appears to reflect the union of the both groups of univariate responders rather than an
intersection of the two groups and captures most of the responders identified by either
univariate model. In addition, the multivariate model identified 38 additional subjects as
responders who were classified as non-responders by both univariate models.

The growth trajectories from the univariate models and the multivariate models show some
similarities. All two-class models indicate the presence of a “responder” class whose
symptoms improved over time. The three-class models indicate that there is some evidence
of a small class that improves over time and then worsens towards the end of the study. This
is most evident with pain in the univariate models.

Table 4 compares class assignments from the multivariate models to treatment assignment
and to the primary study endpoint, the Global Response Assessment. The distribution of
class assignments for subjects randomized to BCG is roughly the same as that of Placebo.
For the comparison with GRA, any subject missing the GRA at the final visit (n=19) was
classified as a GRA non-responder. In the three-class model, 96 subjects who did not report
improvement in their subjective assessment of their condition were assigned to the
responder class based upon their multivariate profile for pain and urgency. Subjects
experiencing actual improvement in symptoms may be underestimating their improvement
at the end of the study. The multivariate model identified the largest number of responders
(134 vs. 43 using GRA and 109 when combining the univariate responders).
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4. Simulations
Data were simulated under five scenarios to explore the conditions necessary for model
identifiability (scenarios 1–3) and to test the ability of our algorithm to correctly identify
model parameters and classify subjects. In the first scenario, data were generated under a
one-class model for two observed symptom scores. The latent variable underlying the
symptom scores had mean zero (i.e., no trend over time). The second and third scenarios
were similar to the first, except the slope of the mean growth curve for the latent variable
was assumed non-zero. In the fourth scenario, data were generated under a three-class model
with two observed symptom scores where the slope of the latent variable in all classes was
non-zero. The final scenario considered data generated from a three-class model with three
observed symptom scores. In this simulation, the slope and quadratic effects for the largest
class were specified to be zero. For each scenario 100 data sets were considered, each with
200 subjects measured at 5 time points. Results of the simulation study are given in tables 5–
7. Average bias and nominal 95% coverage are reported for all model parameters.

Our simulation results provide evidence for the non-identifiability of some parameters in the
one-class model for two outcomes when the mean of the latent variable is zero. While the
bias and coverage for the mean parameters (α and γ) are acceptable, as expected, there is
substantial bias for the variance parameters. This bias is substantially reduced when the
slope of the mean growth curve for the latent variable is nonzero. The results for both sets of
three-class simulations show that our estimation procedure performs well with regard to the
criteria of average bias and nominal coverage in a multi-class setting.

The results presented in Table 6 show that with two outcomes and non-zero means in all
classes, our procedures was able to identify all parameters accurately with moderate sample
sizes. Table 7 shows that for the case of 3 manifest variables, even with a large class with
zero mean, all parameters are identified with fairly good bias and coverage.

5. Discussion
In this paper we have presented a Bayesian latent variable mixture model that jointly models
multivariate outcomes repeatedly measured over time. This method provides a way of
characterizing population heterogeneity in observed responses by clustering subjects based
on their unobserved latent growth curve profiles. This model was applied to clinical trial
data and identified a class of subjects who showed substantial improvement in their
symptom scores. The 49% “response” rate for the three-class model was substantially higher
than the response rate reported for the primary endpoint in the original clinical trial (16%)
indicating that a subjective evaluation of improvement may not capture all actual
improvement in experienced symptoms and argues for a more complete assessment of
symptom data as presented here. Our method also identified more responders than either of
the univariate growth curve mixture models including 38 subjects who were not identified as
responders in either outcome individually. This suggests that there may be a substantial
advantage in considering outcomes together rather than separately if the goal is to identify
all subjects with potential for response. In contrast to conventional longitudinal analyses of
individual symptoms stratified by subjective response status, we were able to identify a class
of subjects where active treatment was more effective than placebo in reducing the symptom
severity as summarized by the latent variable.

This framework allows for joint modeling of the multivariate normal longitudinal outcomes
while simultaneously clustering subjects based on their underlying latent variable growth
curves thus properly accounting for uncertainty in all parameter estimates. The joint model
for the multivariate outcomes can flexibly account for within subject correlation through the

Leiby et al. Page 10

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2011 May 31.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



combined latent variable and mixed effects structure similar to Roy and Lin (2000). Study
subjects were also classified into groups based on their underlying latent variable growth
curve while accounting for the uncertainty in the class assignment through the use of a
mixture model. We allow for the probability of class membership and the growth curve
trajectory to depend on covariates and could easily incorporate covariates into the factor
analytic model. While we did not identify any potentially interesting predictors of class
membership in our post-hoc analysis, these tests are known to be biased toward the null.
When covariates of interest can be specified a priori, they should be included in the joint
model to avoid this bias.

Our use of the Gibbs sampler provides a full posterior distribution for the model parameters
which is a more complete picture of the uncertainty in parameter estimates when compared
with the alternative EM algorithm which identifies only the mode of the posterior
distribution. Use of Gibbs samplers for finite mixture models has been criticized as they
have difficulty moving among the potentially multiple modes of the posterior distribution
(Celeux et al., 2000). We did not observe these problems in our data application, and our
simulations showed that given an identifiable model, the Gibbs sampler performed well.

The proposed model allows for missing data under the assumption that the data are missing
at random which seemed appropriate for this application as the missing data does not appear
to be related to response, i.e. subjects with missing data appear in all classes. Also, less than
10% of the subjects withdrew before the end of the study, and any bias caused by data
missing not at random will likely be minimal. Roy and Lin (2000) extended their model for
the case of nonignorable missing data and there may be situations where a latent class
extension of that model would be useful. Allowing for non-normally distributed outcomes is
a subject of future work.

The proposed models require a priori specification of the number of classes. The DIC was
used to guide our selection of the number of latent classes. The DIC is attractive as it is easy
to compute and can be used to compare models of varying types. Some authors have
suggested that the DIC may not correctly adjust for additional parameters when applied to
mixture models and may favor overly complex models (Richardson, 2002). This was
apparent in our univariate models where the DIC favors more classes. A fully Bayesian
approach (e.g., see Richardson and Green, 1997) to selecting the number of classes is
challenging both conceptually and computationally but warrants further research.
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APPENDIX

A. Identifiability of model parameters
In this section we show that the variance parameters and factor loadings in the two-variable,
one-class model with a random intercept for the latent variable are not simultaneously
identifiable if the mean of the latent variable is zero. The variance parameters and factor
loadings for the three-variable, one-class model are identifiable regardless of the mean of the
latent variable. Consider the case of two manifest variables measured at three times. For j =
1, 2, 3, and m = 1, 2 we have:

If γ = 0 then E(Yijm) = αm and there is no information about λm available from the mean.

Define  to be the variance of the mth variable at the jth timepoint and  to be the
covariance of the mth at the jth timpoint with the m′th outcome at the j′th timepoint. For three
repeated measurements we have 21 observed covariance parameters.

Using the model specification, there are only six unique covariance terms. They are:

Thus, when solving for moment estimators this yields a system of six equations in seven
unknowns indicating that one of the variance components is not identifiable using
information from the observed covariance matrix alone.

When three manifest variables are observed, there are 12 covariance terms with 10
parameters:
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Thus, all parameters involved in the variance can be identified from the covariance matrix
alone.

For a model with K classes, the covariance terms involve functions of the class-specific
means. For example, with two classes, k = 1, 2:

If at least one γk ≠ 0 and E(Yijm|Ci = 1) ≠ E(Yij′m′|Ci = 2) for all combinations of j; j′, m and
m′, then for a two-class model with two variables measured at 3 time points and one column
in Xz (the fixed effects matrix design matrix in 2), the mean and covariance equations form a
system of 27 equations in 16 unknowns and the model is identifiable. If γk = 0 or E(Yijm|Ci =
1) = E(Yij′m′|Ci = 2) for all (or a sufficiently large number of) combinations of j; j′, m and m′,
the model will not be identifiable. Difficulties in estimation may result if class-specific
means are not well-differentiated.

B. Details of the Gibbs Sampler for the multivariate model with continuous
outcomes

Parameters are drawn from their full conditional distributions as follows:

•
Draw βmk = (αmk, λmk)T from N2(μβkΣβk) where 

and . Here
, and Θβm = N*diag(ψαmψβm).

•
Draw γk from N(μγkΣγk) where  and

. Here .

•
Draw zij from N(μzij;σzij) where  and

. Here .

•
Draw ai from Nq(μaiΣai) where  and
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•
Draw Ψa from Inv - Wishart(N + 1, Sa) where 

•
Draw bim from  where  and .

Here . Jni is an ni × 1 vector of 1’s

•
Draw  from Inv - χ2(N +1 Sbm) where .

•
Draw  from  where

.

•
Draw Ci from  where  and

(6)

• When the class probability model contains only an intercept, draw the class
probabilities directly from the full conditional distribution

(7)

where .

When the probability of class membership is a function of covariates, draw δk via a
Metropolis algorithm where the proposal distribution is

.  is the mode of the full conditional posterior

distribution of δ found using a Newton-Raphson routine and  is R
times the inverse of the Hessian at the mode. R inflates the variance and is chosen
to achieve an acceptance rate of 15–20%. Each complete iteration in the Gibbs
chain includes 20 iterations of the Metropolis algorithm to ensure that at least one
new δk is accepted.

All chains were started with different initial estimates for the parameters.
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Fig. 1.
Mean symptom growth curves at the median of the posterior distribution for the 3-class
univariate model for Pain. Solid line=Placebo; Dashed line=Active Treatment.
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Fig. 2.
Mean symptom growth curves at the median of the posterior distribution for the 4-class
univariate model for Urgency. Solid line=Placebo; Dashed line=Active Treatment.
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Fig. 3.
Mean latent variable growth curves at the median of the posterior distribution: three-class
multivariate model for pain and urgency. Solid line=Placebo, Dashed line=Active
Treatment.
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Table 1

DIC values for the multivariate models.

Fixed Effects and number of classes

Random Effects

Random Intercept Random Intercept and Slope

One-Class Quadratic 9229 9057

Two-Class Quadratic 8933 8873

Three-Class Quadratic 8813 8771

Three-Class Saturated 8820
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Table 2

Median posterior estimates and 95% posterior intervals

Parameter Class 1 Non-responder Class 2 Responder Class 3 Mixed

Pr(Ci = k) 0.34 (0.25,0.43) 0.49 (0.40,0.59) 0.16 (0.098,0.24)

αpain 7.49 (7.19,7.78) 6.40 (6.04,6.77) 6.35 (5.61,7.09)

αurgency 7.25 (6.90,7.60) 6.44 (6.06,6.84) 7.58 (7.17,8.02)

λpain 0.39 (0.22,0.54) 1.31 (1.20,1.42) 1.31 (1.10,1.53)

λurgency 0.49 (0.30,0.65) 1.30 (1.20,1.41) 0.41 (0.24,0.54)

γ1 (time x 10−1) −0.0040 (−0.57,0.60) −1.38 (−1.72,−1.05) −1.43 (−2.21,−0.75)

γ2 (time2 x 10−2) 0.025 (−0.13,0.19) 0.31 (0.23,0.40) 0.27 (0.11,0.46)

γ3 (age) −0.13 (−0.31,0.025) −0.016 (−0.085,0.052) 0.061 (−0.091,0.22)

γ4 (log10(duration)) 0.61 (−0.81,1.70) −0.39 (−0.84,0.034) −0.52 (−1.23,0.22)

γ5 (trt. arm) −0.87 (−2.17,0.14) 0.084 (−0.29,0.45) 0.50 (−0.35,1.41)

γ6 (trt. x time x 10−1) −0.21 (−0.63,0.15) −0.21 (−0.43,−0.0047) 0.37 (−0.025,0.82)

Ψa11 0.22 (0.10,0.43)

Ψa12 0.055 (−0.015,0.12)

Ψa22 0.15 (0.10,0.23)

0.30 (0.16,0.48)

0.59 (0.43,0.80)

0.50 (0.37,0.63)

0.58 (0.49,0.69)
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Table 3

Multivariate 3-class model vs. univariate models for pain and urgency.

Multivariate Non-Responders

Pain Class Urgency Non-Responder Urgency Responder Total

Non-Responder 100 1 101

Responder 0 0 0

Total 100 1 101

Multivariate Responders

Pain Class Urgency Non-Responder Urgency Responder Total

Non-Responder 38 20 58

Responder 8 68 76

Total 46 88 134

Multivariate Mixed

Pain Class Urgency Non-Responder Urgency Responder Total

Non-Responder 18 0 18

Responder 12 0 12

Total 30 0 30

J R Stat Soc Ser C Appl Stat. Author manuscript; available in PMC 2011 May 31.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Leiby et al. Page 22

Table 4

Class assignment from multivariate models vs. treatment assignment and subjective response assessment.

Multivariate Three-Class

Treatment Arm GRA

Placebo BCG Non-responder Responder

Non-Responder 55 46 99 2

Responder 65 69 96 38

Mixed 14 16 27 3
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Table 5

Simulation results. Data generated under one-class model.

Simulation 1

Parameter True Value Mean (SD) Average Bias Coverage

α1 6.89 6.91 (0.15) 0.019 88

α2 6.79 6.80 (0.14) 0.007 93

λ1 1.10 1.06 (0.11) −0.04 87

λ2 1.22 1.28 (0.13) 0.058 92

γ1 0 0.00021 (0.01) 0.00021 93

γ2 0 −0.00002 (0.00033) −0.00002 91

Ψa 1 1.00 (0.17) 0.0036 95

1 1.07 (0.27) 0.078 91

1 0.85 (0.32) −0.15 93

1 1.06 (0.23) 0.06 88

1 0.85 (0.31) −0.15 88

Simulation 2

Parameter True Value Mean (SD) Average Bias Coverage

α1 6.89 6.92 (0.15) 0.027 87

α2 6.79 6.80 (0.14) 0.01 94

λ1 1.10 1.10 (0.056) 0.001 92

λ2 1.22 1.23 (0.056) 0.0009 95

γ1 −0.05 −0.049 (0.011) 0.00066 96

γ2 0.0003 0.0003 (0.00033) −0.00004 95

Ψa 1 1.01 (0.18) 0.0099 96

1 1.03 (0.22) 0.031 92

1 0.97 (0.24) −0.03 93

1 0.99 (0.10) −0.013 97

1 0.99 (0.13) −0.0074 92

Simulation 3

Parameter True Value Mean (SD) Average Bias Coverage
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Simulation 1

Parameter True Value Mean (SD) Average Bias Coverage

α1 6.89 6.89 (0.16) 0.0011 91

α2 6.79 6.79 (0.14) 0.002 95

λ1 1.10 1.10 (0.043) 0.002 91

λ2 1.22 1.23 (0.049) 0.0069 94

γ1 −0.20 −0.20 (0.013) 0.0015 97

γ2 0.0003 0.0003 (0.00033) −0.00004 93

Ψa 1 1.01 (0.18) 0.014 97

1 1.03 (0.18) 0.031 98

1 0.98 (0.21) −0.02 96

1 0.99 (0.087) −0.011 99

1 1.00 (0.12) −0.0020 87
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Table 6

Simulation results. Data generated under three-class model with non-zero mean for latent variable in each
class

Class 1

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.50 0.49 (0.06) −0.009 92

α1 7.0 6.97 (0.11) −0.031 95

α2 6.5 6.51 (0.19) 0.013 95

λ1 0.8 0.81 (0.12) 0.010 96

λ2 0.9 0.88 (0.09) −0.020 93

γ1 −0.10 −0.099 (0.013) 0.0009 97

γ2 0.002 0.002 (0.0004) −0.000038 97

Class 2

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.33 0.33 (0.029) 0.001 96

α1 6.0 6.02 (0.15) 0.021 92

α2 6.0 6.00 (0.15) 0.004 96

λ1 1.2 1.21 (0.05) 0.0077 97

λ2 1.2 1.21 (0.05) 0.0057 96

γ1 −0.25 −0.25 (0.016) 0.0029 95

γ2 0.0034 0.0033 (0.00047) −0.00007 98

Class 3

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.17 0.17 (0.055) 0.0056 96

α1 6.5 6.47 (0.25) −0.035 96

α2 7.5 7.47 (0.17) −0.028 94

λ1 1.60 1.59 (0.16) −0.012 88

λ2 0.30 0.31 (0.095) 0.011 94

γ1 −0.15 −0.15 (0.021) 0.0046 95

γ2 0.0032 0.0031 (0.0006) −0.00014 96

Variance Parameters

Parameter True Value Mean (SD) Average Bias Coverage

Ψa 0.20 0.21 (0.047) 0.014 98

0.20 0.21 (0.041) 0.011 97

0.20 0.21 (0.038) 0.008 96
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Class 1

Parameter True Value Mean (SD) Average Bias Coverage

0.30 0.30 (0.034) 0.0016 97

0.30 0.30 (0.029) 0.0017 96
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Table 7

Simulation results. Data generated under three-class model with three manifest variables. Zero mean for latent
variable in largest class

Class 1

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.50 0.52 (0.07) 0.019 91

α1 7.0 6.99 (0.15) −0.006 96

α2 7.0 7.05 (0.15) 0.05 94

α3 2.0 2.03 (0.10) 0.03 92

λ1 1.2 1.20 (0.05) 0.001 98

λ2 1.2 1.18 (0.07) −0.015 95

λ3 0.4 0.40 (0.03) 0.003 95

γ1 0 −0.0034 (0.01) −0.0034 95

γ2 0 0.00009 (0.0004) 0.00009 94

Class 2

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.33 0.33 (0.035) −0.007 94

α1 6.0 6.01 (0.18) 0.008 92

α2 6.0 5.99 (0.15) −0.014 98

α3 1.5 1.49 (0.14) −0.008 96

λ1 1.0 1.01 (0.05) 0.01 93

λ2 1.0 1.01 (0.05) 0.01 93

λ3 0.8 0.81 (0.04) 0.0056 94

γ1 −0.25 −0.24 (0.020) 0.0052 95

γ2 0.0034 0.0033 (0.0005) −0.0001 95

Class 3

Parameter True Value Mean (SD) Average Bias Coverage

Pr(Ci = k) 0.17 0.15 (0.066) 0.015 89

α1 6.5 6.42 (0.35) −0.085 96

α2 8.0 7.89 (0.34) −0.11 93

α3 3.0 2.89 (0.28) −0.11 98

λ1 1.10 1.15 (0.14) 0.05 95

λ2 0.50 0.60 (0.18) 0.10 92

λ3 0.50 0.54 (0.12) 0.04 91

γ1 −0.10 −0.09 (0.028) 0.0096 98

γ2 0.0032 0.0028 (0.0009) −0.00038 96

Variance Parameters

Parameter True Value Mean (SD) Average Bias Coverage
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Class 1

Parameter True Value Mean (SD) Average Bias Coverage

Ψa 0.40 0.40 (0.10) 0.002 91

0.50 0.53 (0.11) 0.029 96

0.60 0.62 (0.097) 0.021 96

0.30 0.32 (0.043) 0.02 97

0.40 0.40 (0.039) 0.0049 96

0.40 0.40 (0.040) 0.0049 93

0.30 0.30 (0.018) −0.0002 95
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