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This paper presents a generalization of the Lockhart equation for plant cell/organ expansion
in the anisotropic case. The intent is to take into account the temporal and spatial variation
in the cell wall mechanical properties by considering the wall ‘extensibility’ (F), a time- and
space-dependent parameter. A dynamic linear differential equation of a second-order tensor is
introduced by describing the anisotropic growth process with some key biochemical aspects
included. The distortion and expansion of plant cell walls initiated by expansins, a class
of proteins known to enhance cell wall ‘extensibility’, is also described. In this approach,
expansin proteins are treated as active agents participating in isotropic/anisotropic growth.
Two-parameter models and an equation for describing a- and b-expansin proteins are
proposed by delineating the extension of isolated wall samples, allowing turgor-driven poly-
mer creep, where expansins weaken the non-covalent binding between wall polysaccharides.
We observe that the calculated halftime (t1/2 ¼ eF0 log 2) of stress relaxation due to expansin
action can be described in mechanical terms.
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1. INTRODUCTION

The Lockhart [1] equation has gained a prominent place
among the key milestones in the field of plant growth
mechanics. This model, however, in its raw form, has
many shortcomings that limit its usefulness. These
include the formulation of uniaxial cell growth, when
in fact cell growth involves strain rates along three
directions. Moreover, the mechanical anisotropy of the
cell wall was completely ignored. This latter aspect
has been considered by many authors, and recently a
local (coordinate-dependent) tensor growth equation
was developed to address the problem of phototropism
[2] and gravitropism [3]. Yet, there is still a need for
an all-encompassing local equation of volumetric cell/
organ growth complemented by a space- and time-
dependent cell wall extensibility coefficient, retaining
positive aspects of the original Lockhart equation.

The extensibility coefficient (F0) was originally defined
as aconstant; however, it shouldbenon-constant toaddress
the changes taking place in the walls of the growing plant
cell. It should have directional dependence as well. Also,
numerous experiments provided evidence that the extensi-
bility coefficient is susceptible to many environmental
stimuli. These include phytohormones or growth inhibitors
and temperature, and especially a time-dependent change
in the value of the extensibility coefficient. From a purely
mathematical point of view, not to mention a huge body
of observational data, the extensibility coefficient
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magnitude should gradually decrease with time, ceasing
altogether when the cell matures. In fact, the conventional
treatment of the Lockhart equation (with F0¼ const.)
delivers exclusively an exponential solution for the
expanding cell volume V, which is clearly flawed.

In this paper, a consistent solution of anisotropic
plant cell/organ growth is presented in the form of a
dynamic tensor equation. The latter is supplemented
by an important application to the role of expansin
proteins in the problem of cell wall extension.
2. RESULTS

2.1. Theory

The Lockhart equation in its original form is given by

1
V

dV
dt
¼ F0ðP � Y Þ; ð2:1Þ

where V denotes the volume of a growing cell. In
equation (2.1), P and Y describe the turgor pressure
and turgor threshold, respectively; the constant F0

stands for the ‘extensibility’ coefficient. The formal sol-
ution of equation (2.1) gives V ¼ V0e

F0(P2Y )t, where
V0 ¼ V(t ¼ t0) is the initial volume. In a more general
case, F0 is time-dependent (e.g. [4]), F0! F(t), and
then the integration of equation (2.1) gives

V ðtÞ ¼ exp
ðt

0
Fðt 0ÞðP � Y Þdt0

� �
: ð2:2Þ
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Figure 1. Schematic diagram of a plant cell undergoing stress
due to internal pressure. Stress in a loaded deformable cell
wall is assumed to be a continuum. Stress at any point in
an object, assumed to be a continuum, is completely defined
by the nine components of a second-order tensor known as
the Cauchy stress tensor, s (here P 2 Y ). (Online version in
colour.)
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An even more general treatment of the extensibility
coefficient F0 demands space- and time-dependence:
F0! F(t, x1, x2, x3). As noted elsewhere [2], the con-
dition is that the local equations should reproduce the
global ones by assuming homogeneity and isotropy,
but we may, nonetheless, formally introduce the
dynamic tensor equation in the form

X3

k¼1

ðu�1Þikð _uÞkj ¼
X3

k¼1

FikðtÞðP � Y Þkj ð2:3Þ

(the lower indices i, j and k take values 1, 2 and 3 for the
cartesian coordinates, e.g. we use x1, x2 and x3 notation
instead of the usual x, y, z, respectively; the summation
is performed over repeating indices, here: k ¼ 1,2,3)
representing the anisotropic cell growth owing to the
internal stress field1 (figure 1). In equation (2.3),
where uij ¼ ji,j þ jj,i ; f@ji/@xj þ @jj/@xig, the left
side stands for the dynamic deformation of the cell
volume, while (P 2 Y )ij denotes the stress field caused
by the turgor pressure; j ¼( j1, j2, j3) is the displace-
ment vector within the time interval Dt ¼ t0 2 t; dot
represents, as usual, the time derivative. Strictly speak-
ing, ji,j ¼ @ji/@xj represents the rate of change of the ith
component of vector j in xj direction. Coefficient Fik(t)
corresponds to the dynamic intrinsic extensibility due
to biochemical reactions taking place in the cell wall
and is represented by a second rank tensor. Assuming
the cell sap as an incompressible fluid, and making
use of Pascal’s principle, which states that pressure
applied to a confined fluid at any point is transmitted
undiminished through the fluid, then

ðP � Y Þij ¼ dijðP � Y Þ; ð2:4Þ

where dij stands for the Kronecker delta function. Thus,
we may rewrite the right side of equation (2.3) in the
following manner:

X3

k¼1

FikðtÞðP � Y Þdkj ¼ FijðtÞðP � Y Þ: ð2:5Þ

Then, after inserting this result into equation (2.3),
it takes the form

d
dt
ðuijÞ ¼

X3

k¼1

uikFkjðtÞðP � Y Þ; ð2:6Þ

and corresponds to equation _u ¼ uFðP � Y Þ in matrix
1In continuum mechanics, stress is a measure of the average force per
unit area of a surface within a deformable body on which internal
forces act. In other words, it is a measure of the intensity of the
internal forces acting between particles of a deformable body across
imaginary internal surfaces [5, p. 46]. These internal forces are
produced between the particles in the body as a reaction to intrinsic
(e.g. local) activation of expansins (a class of proteins known to
enhance cell wall extensibility) due to Hþ influx causing buffer
acidification (acid-facilitated creep) and external forces (here:
effective turgor P 2 Y ) applied on the body. Because the loaded
deformable body (here cell wall) is assumed as a continuum, these
internal forces are distributed continuously within the volume of the
material body, i.e. the stress distribution in the body is expressed as
a piecewise continuous function of space coordinates and time.
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form. Equation (2.6) can be solved to receive

uij ¼
X3

k¼1

uð0Þik exp
ðt

0
Fðt0ÞðP � Y Þdt0

� �
kj
: ð2:7Þ

The biochemical aspect of cell wall extension can be
recalled [4] when considering the right-hand side of
equation (2.7). In the simplest approximation, the
change in the number of expansin proteins in the inves-
tigated system will be proportional to concentration x
and to the kinetic coefficient k0 responsible for the inter-
action of endogenous expansins with the cell wall.
Initial efforts started with a time-differential equation
for the kinetic chemical reaction with 0 � x � 1 2

expansin concentration in the growing hypocotyl/
coleoptile fragment, and k0 is the kinetic coefficient
(responsible for chemical reaction rate) bound with
expansin interaction with the growing segment, leading
to stress relaxation in the expanding wall. The differen-
tial equation was integrated to yield x(t) ¼ x0

exp(2k0t), where x0 ¼ x(t ¼ 0) stands for the initial
expansin concentration of the investigated system.
This latter equation describes the exponential degra-
dation of an initial pulse of the cell wall loosening by
expansins. This approach also suggests a mechanism
for finite cell extension: the cell becomes rigid as the
initial pulse of stress-relaxing expansin protein expires.
The above argument implies that the latter solution
may be treated as a modifying factor for F0. Thus, we
substituted F(t)! F0x(t), to obtain

FðtÞ ¼ F0½x0expð�k0tÞ�; ð2:8Þ

where F0 ¼ const. is the original (Lockhart) coefficient.
Assuming the rules imposed by growth geometry

(principal growth directions) and spatially inhomo-
geneous concentration x0 leading to the relation
[x0 exp(2k0t)]ij¼x0

ij exp(2k0t), substituting F(t)!
Fij(t) ¼ x0

ij exp(2k0t) and performing insertion into
equation (2.7) we arrive, after integration over time
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variable, at (henceforth F0 ¼ 1) the local solution

uij ¼ u0 exp � 1
k0ðTÞ

Xe�k0ðTÞtðP � Y Þ
� �� �

ij
; ð2:9Þ

where X ¼ (x0
ij) (i,j ¼ 1,2,3) is a matrix,2 u0 ¼ exp[c] ¼

const. and can be determined by initial conditions.
The bracket [. . .]ij represents the following properties:
the diagonal elements [. . .]ii are normal stresses (i.e. per-
pendicular to the corresponding surfaces), while the
off-diagonal elements [. . .]ij, i = j are the tangential
stresses. The solutions of equation (2.9) are continuous
functions of X matrix (in fact X represents a stress
field). Obviously, by assuming isotropic conditions,
taking the trace operation on equation (2.9) and
by using ji,i ¼ div( j) ¼ dV/V, we return to the
global equation.

The above equation can be applied easily to the prin-
cipal growth directions of plant cells, organs, roots or
shoots. The approach also takes into account a non-
homogeneous distribution of expansin proteins that
has been reported (e.g. [6]). This equation, in contrast
to kinematic considerations presented by other authors,
is a fully dynamic tensor equation, including some of
the basic forces (turgor pressure, turgor threshold)
involved. Furthermore, the environmental temperature,
decisive for growth processes, can be taken into account
by a well-justified assumption that k0 ¼ k0(T ), where T
stands for the absolute temperature. The effect of temp-
erature on rates of reaction for a given plant species can
be easily established empirically (cf. [4]; see fig. 8 and
footnote 2 therein). There, the kinetic coefficient k0

for maize (Zea mays L.) changes in the interval of
20–308C about two times. This is in good agreement
with the ‘Q10 law’ stating that the rate at which the
chemical reaction proceeds will approximately double
for each 108C increase in temperature (for plants, for
obvious reasons, there is some variability: for maize it
was found that this ratio is about 1.8 [4]).

Since we are seeking here the most general semi-
phenomenological equation of growth, we may advance
one step further by accepting, as an example, one of a
two-parameter models (for details, see the derivation
of equations (2.22) and (2.25)), describing a- and b-
expansin protein participation in the cell wall loosening
and relaxation process. Similar procedures, as in the
case of equation (2.9), can be performed to give a
deformation field due to internal stress field in the form

uij ¼u0 exp � P � Y

ðka � kbÞ2
If 0
abðtÞ

 !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

isotropic

� exp � P � Y

ðka � kbÞ2
Xf 1

abðtÞ
 !" #

ij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
anisotropic

;

ð2:10Þ
2In mathematics, the matrix exponential is a matrix function on
square matrices analogous to the ordinary exponential function. Let
X be an n � n real or complex matrix. The exponential of X,
denoted by exp(X ), is the n � n matrix given by the power series,
eX ¼

P1
k¼0 ð1=k!ÞXk .
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where f ab
0 (t) ¼2kb þ e(kb2ka)tkb þ kakbt 2 kb

2t,
f ab
1 (t) ¼ 2kaþe(kb2ka)tka þ kb 2 e(kb2ka)tkb and I

stands for the identity (diagonal) matrix. The resulting
local solution has two terms, namely isotropic and ani-
sotropic (see also figure 2). The first term can be
recognized as originating from the Lockhart-type (iso-
tropic) term, while the second term can be considered
as an anisotropic correction to growth. Direct calcu-
lation transforms equation (2.10) to equation (2.9) by
assuming ka ¼ k0 and kb ¼ 0. Obviously, as in equation
(2.9), in general we have ka ¼ kb(T ) and kb¼kb(T ).
The method of how to assign experimentally based
values to the kinetic coefficients (ka and kb) is described
in detail in §3.

Hitherto, we have considered and rearranged the
cell wall ‘extensibility’ term in equation (2.1). Now,
we reconsider the pressure term (P 2 Y ). In the
following, we will assume constant water uptake, since
the case where a plant is deprived of water sources
has already been delineated previously [4]. In our
recent paper [7], we have considered the dynamic bal-
ance between the water uptake and cell wall yielding
mainly by considering the pressure term and taking
into account an auxiliary Lorentz-like distribution.
There, we also considered the environmental tempera-
ture T as one of the main abiotic factors influencing
growth. We put forward the hypothesis that some
other external factors, like stimulators/inhibitors or
light-influencing growth, should be present in the
pressure term (figure 3). Therefore, we accepted the
right side of equation (2.1) and performed the following
substitution

P � Y ) P � Y|fflfflffl{zfflfflffl}
Lockhart term

ðþDPÞ|fflfflffl{zfflfflffl}
osmotic pressure

þ p1uðt � t1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
stimulator/inhibitor

� p2|{z}
light

ðþPextÞ|fflfflfflfflffl{zfflfflfflfflffl}
ext. pressure

;

ð2:11Þ

where p1 (stimulator: p1 . 0, inhibitor: p1 , 0) and p2

represent intracellular pressures relevant to the
growth-influencing stimulators/inhibitors, and to the
phytochrome-mediated growth retardation upon
irradiation with incident light, respectively. The osmo-
tic pressure DP term may also be used when needed.
The function u stands for the Heaviside theta distri-
bution, which is coupled to the stimulator (þ) or
inhibitor (2) switch at a time t1. The external pressure
term can be adopted in various extensometric exper-
iments by substituting Pext ¼Mg/S, where the
nominator represents the load (tension) and S rep-
resents the relevant cross-section surface. (The model
of linear/nonlinear growth response including light
radiation, and the energy irradiation has been
developed in extenso elsewhere [7].) Now, we may
merge both approaches, represented by equations
(2.10) and (2.11), into one all-encompassing
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Figure 2. Plot of the functions entering equations (2.1)–(2.10)
and equation (3.2): (a) exp(2t), (b) exp(2exp(2t)), (c) its
derivative exp(2t 2 exp(2t)), (d) exp(1 2 exp(2t)) and (e)
the divergent solution of equation (2.1) exp(t), as a function
of time.
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thermodynamic tensor equation
1
u0

uijðtÞ ¼ exp �
f 0
abðtÞ

ðkb � kbÞ2
I

 !
P þ p1uðt � t1Þ � p2 þ Pext � Yð Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

isotropic term

� exp �
f 1
abðtÞ

ðkb � kbÞ2
X

 !
P þ p1uðt � t1Þ � p2 þ Pext � Y
	 
" #

ij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
anisotropic term

ð2:12Þ
representing plant cell/organ growth at a given temp-
erature T, in either acidic or neutral pH, influenced by
internal (biochemical: a- and b-expansin proteins)
and external (chemical: growth stimulator/inhibitor or
physical: pressure or light) factors. This equation
takes into account both the existing anisotropies and
inhomogeneities in expansin distribution in the volume-
trically growing cell/tissue region, but can also be

reduced to a much simpler isotropic form. Temperature,
decisive for growth processes, enters this equation in
several places: (i) the kinetic coefficients ka ¼ ka(T )
and kb ¼ kb(T ), connected with cell wall properties
[4],3 (ii) the effective pressure term P 2 Y through the
state equation P(T,V)/ T/V (or just P/ T ), valid
3Cell walls have important roles in mediating cell responses to external
environment. Exposure to abiotic stresses such as drought, heat and
salinity, have been shown to cause cell wall modification [8]. There
is evidence for expansin activity in modulating cell responses to
dehydration and rehydration in the resurrection plant Craterostigma
plantagineum [9,10], salt, osmotic stress and ABA signalling [11,12],
and heat tolerance in C3 grass species [13].
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from low temperatures to the optimum growth tempera-
ture T* (e.g. [7,14]), and (iii) the ‘light’ term through
the integral over Planck’s distribution ([7], eqn (17))
in the optical range (OR), where the efficiency of this
process can be taken into account by inserting the coef-
ficient h [ [0,1] in the right-hand side of this equation.
Obviously, we may always omit some additive terms in
equation (2.12) irrelevant for a given experiment.
2.2. Application to expansins: an isotropic case

A novel class of cell wall loosening proteins called
expansins was discovered 20 years ago, and evidence
continues to accumulate for their important role in
plant cell growth [15–17]. Expansins are plant proteins
that mediate changes in cell wall plasticity during cell
extension or differentiation (e.g. [16,17]). Expansins
appear to have the capacity to induce extension in
isolated cell walls and are thought to mediate
pH-dependent cell enlargement. Expansin proteins
have been identified as wall-loosening factors and as
facilitators of cell expansion in vivo and are generally
accepted to be the key regulators of wall extension
during plant growth.

Expansins are a superfamily of plant proteins involved
in cell wall extension and stress relaxation, abscission,
fruit softening, the response to biotic and abiotic stresses,
and development of leaf, floral organ, root hairs and
grain size [8,9,17–28]. Expansins are subdivided into four
families: a-expansin, b-expansin, expansin-like A and
expansin-like B [29]. The proteins typically have a length
of 250–275 amino acids and contain a signal peptide and
two domains. Domain 1 has homology to glycoside hydro-
lase family 45 proteins, which are fungal b-1,4-D-
endoglucanases [29]. Domain 2 has homology to G2A pro-
teins, and is hypothesized to bind cell wall polysaccharides
[29]. Cell wall modification has been experimentally
measured fora-expansin and b-expansin proteins, whereas
expansin-like A and expansin-like B proteins are identified
as family members only because of the gene sequence.
a-Expansin and b-expansin proteins have been implicated
in cell growth stimulation at low extracellular pH (acid-
growth), and are thought to loosen cell walls via a
non-enzymatic mechanism that induces slippage of
cellulose microfibrils [16,24,29–34]. This action is pre-
sumed to occur by disruption of hydrogen bonds between
the cellulose polysaccharides in cell walls strained
mechanically by turgor pressure [31]. The cessation of
cell growth during development and differentiation
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appears to be due to a loss of cell wall sensitivity to expan-
sin activity [35,36].

The experimental procedure to detect expansin
activity follows several steps [15,24]. The heat-inactivated
plant cell walls are excised from the growing region of
young seedlings, abraded and clamped at constant axial
load in an extensometer coupled to the linear variable
differential transformer position transducer, which then
measured changes in the length of the wall specimen (see
also fig. 1 in [16]). Expansin proteins were collected from
growing cells and extracted for wall proteins. These, in
turn, were added to the solution surrounding the wall
sample (figure 4).

To model the above-described experiment in mathe-
matical terms, several ingredients are required. A new
equation that is able to describe the basic cell wall
mechanical properties for elastic and plastic defor-
mation was introduced previously [4]. This
generalization of the canonical Lockhart equation
retains the proportionality of the turgor pressure P
exceeding the turgor threshold Y and the relative
volume change defined as 1/V dV/dt. However, in the
generalized Lockhart equation, the extensibility
J. R. Soc. Interface (2011)
coefficient F0 is treated as time-dependent (cf. equation
(2.2)) instead of as a constant. We develop a biochemi-
cal approach that is a simple time-differential equation
of the kinetic reaction for expansin activity, and incor-
porate it into the mechanical approach. We briefly
review the previously published one-parameter model
[4], and introduce 2 two-parameter models with special
emphasis on the dynamical description of a- and
b-expansin protein activity. By introducing relevant
concentrations and kinetic coefficients for a- and
b-expansins and superimposing a completeness con-
straint, we describe the effect of the parameters on
the expansin concentration and decay (and the oppo-
site) in our model. In all cases mentioned above, an
exact solution of growth equation is found. Also, in
these situations where excess fluid (as occurs in exper-
iment) is squeezed out of the cell wall volume, we put
P 2 Y, representing the relative turgor pressure, as
equal to zero, in order to map ex vivo creep.

The final equations of the volumetric expansion, as
produced by both biomechanical and biochemical
approaches, may be calculated to include growth rate
(GR) and creep rate (CR). An analytical solution to
differentiate both GR and CR, which may address
some long-lasting controversy, is then proposed. We
take the simplest one-parameter biochemical model
equation to show which GR and CR process dominates
in the course of time. We conclude with the statement
about the possible link between biochemical and biome-
chanical aspects of growth (or wall creep) by showing
some useful analytical relations connecting the two.
We also stress that the final solutions resulting from
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both the methods not only describe the experimental
assay but also, in an almost unchanged manner, may
serve to characterize the action of endogenous expansins
on cell wall loosening and consequent expansion.
In all considerations, we are restricted to homogeneous
expansin distribution in the specimen under study.
2.2.1. Biomechanical model. To find an analytical
description of the experimental studies on plant cell
wall creep and growth in the framework of the biome-
chanical model, consider the model Ansatz as a
time-differential equation for the cell wall extensibility
coefficient, F [4]

F00 þ 2lF0 þ v2
0F ¼ 0 ð2:13Þ

describing the elastic and plastic features of the wall
(strictly speaking, in the non-isotropic case, F should
be a second-rank tensor). Time-dependent wall extensi-
bility seems to be a reasonable assumption—during
growth, plant cells secrete a protein called expansin,
which unlocks the network of polysaccharides, permit-
ting turgor-driven cell enlargement. We assume that
the cell wall behaves as governed by a damped motion
equation (2.13), with wall elasticity acting as a restoring
force, an inertial wall mass and a viscotic friction due to
plastic deformation of the wall. In equation (2.13), l ¼
b/m and v0 ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
, where b is the viscous damping

(reflecting changes in wall plasticity of the expanding
cell), k is the restoring (elastic) constant and m the
specimen mass (we may always put m ¼ 1 to set the
unit system and get rid of the third (m) parameter).
The prime denotes, as is usual, the time derivative.
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The general solution of equation (2.13) for l2. v0
2

takes the form of aperiodic damping [4]

FðtÞ ¼ F0 c1exp t �l�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � v2

0

q� �� ��

þc2 exp t �lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � v2

0

q� �� ��
;

ð2:14Þ

where c1 and c2 are constants determined by the initial
conditions and F0 ¼ const. is the original (Lockhart)
coefficient. Assuming the generalized form of the Lock-
hart [1] equation for the expanding volume V, with
extensibility coefficient F as being time-dependent,
F ¼ F(t)

1
V

dV
dt
¼ FðtÞðP � Y Þ; ð2:15Þ

introducing an external constant force Mg (correspond-
ing to extensometer uniaxial load) in the form of
applied pressure, and incorporating equation (2.14)
into equation (2.15), we get

1
V

dV
dt
¼F0 c1exp t �l�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�v2

0

q� �� ��

þc2exp t �lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2�v2

0

q� �� ��
� P �Y þMg

S

� �
;

ð2:16Þ

where M is the attached mass and S the horizontal
cross-section surface of the investigated coleoptile/
hypocotyl fragment; acceleration due to gravity, g ¼
9.81 m s22. This differential equation can be integrated
to produce the solution in the form
V ðtÞ ¼ V0 exp e�t lþ
ffiffiffiffiffiffiffiffiffiffi
l2�v2

0

p	 

e2t

ffiffiffiffiffiffiffiffiffiffi
l2�v2

0

p
c2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 � v2
0

q
� l

� c1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � v2

0

q
þ l

0
B@

1
CA P � Y þMg

S

� �2
64

3
75; ð2:17Þ
where V0 denotes the initial volume (F0 may be just
considered as a convenient scaling factor, and may be
omitted by setting to unity: F0 ¼ 1). The resulting for-
mula, equation (2.17), represents the volumetric
expansion of a cell or non-meristematic tissue (no cell
divisions) in the course of time with an additional
(external) pressure present. We may obviously put
P 2 Y ¼ 0 in equation (2.17) when considering cell
wall mechanical properties itself. For a possible quanti-
tative description of expansin activity in the isolated
cell wall extension assay as in figure 4 (P 2 Y ¼ 0),
equation (2.17) may serve as a good candidate. This
can be accomplished under the justified assumption of
this expansin activity being proportional to the investi-
gated specimen wall surface area (because of
interactions). To be precise, we propose equation
(2.17) (with P 2 Y ¼ 0) as able to describe the
change in the cell/organ volume due to expansins in
case of application of an external force Mg in the
framework of mechanical approach.
2.2.2. Biochemical model. Two wall proteins, expansin
[16] and yieldin [37], are known to be involved in acid-
facilitated wall extension. The biochemical mechanism
of cell wall-loosening underlying elongation growth of
plant organs represents an unsolved problem and is
still a matter of current debate. Hence, we put forward
some ideas in the following biochemical models.
2.2.2.1. The one-parameter model. In the simplest
approximation [4], the change of expansin content in
the investigated system will be proportional to its initial
(t ¼ 0) concentration x0 in the solution and to the kin-
etic coefficient k0 (proportional to the reaction rate),
responsible for the interaction of expansins with the
investigated sample.

There [4], we arrived at the formula (for brevity, we
put F0 ¼1 onwards, but in all applications it must be
resumed because of its dimensionality and order of
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magnitude: (1/MPa s) ¼ 1026 (1/Pa s))

V ðtÞ ¼ V0 exp
ð1� e�k0tÞx0ðP � Y þMg=SÞ

k0

� �
; ð2:18Þ

where the initial condition V(t ¼ 0) ¼ V0 has been
used. In the above equation, the external force term
Mg has been added to reflect the experimental con-
ditions (figure 4). The above equation can be
considered, similar to equation (2.17), as for volumetric
extension of a cell/tissue under the tension of an uniax-
ial force (as before, we need to put P 2 Y ¼ 0,
corresponding to cell fluid being squeezed out, to con-
sider the wall properties itself ).

However, as we also want to address the problem of
GR versus CR analytically, we need to perform one
more calculation. Namely, we need to take the time
derivative of equation (2.18) to receive the GR. Thus,
another calculation delivers

1
V0

dV ðtÞ
dt
¼ x0 exp �k0tþ

ð1�e�k0tÞx0ðP�Y þMg=SÞ
k0

� �

� P�Y þMg
S

� �
:

ð2:19Þ

Equation (2.19) represents the GR (P 2 Y . 0) or
CR (P 2 Y ¼ 0).

However, in order to describe more complicated exper-
imental situations, the extension of the one-parameter
model may be unavoidable. Additional effects (e.g.
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creation/annihilation of expansins or the possible coexis-
tence of expansin proteins of different kinds observed in
experiments (e.g.a- and b-expansins)) require more soph-
isticated models. These are discussed in next.

2.2.2.2. The two-parameter models. (a) Consider n(t) as
the number of expansin proteins in the cell (or coleoptile/
hypocotyl fragment) that can varywith time and n0 as the
initial number (n0 ¼ n(t ¼ 0)). Let us assume that expan-
sin proteins are being created or received from the external
reservoir at a steady rate k1. Furthermore, let there be a
mechanism for clearing these proteins from the plant frag-
ment under consideration. This must be obviously
proportional to the actual number of proteins. If the rate
constant is k2, the rate of change of the expansin protein
number in the coleoptile/hypocotyl fragment is given by
the differential equation

dnðtÞ
dt
¼ k1 � k2nðtÞ: ð2:20Þ

The solution to equation (2.20) has the form

nðtÞ ¼ k1

k2
þ k2n0 � k1

k2
expð�k2tÞ; ð2:21Þ

where the initial condition n(t ¼ 0) ¼ n0 has been used.
Having in mind what has been said regarding the F0

term in the context of equation (2.8), we may insert
the properly modified equation (2.21) (x(t) ¼ n(t)/n0)
into equation (2.15), add an external force Mg acting
on the system and integrate the resulting differential
equation to get:
V ðtÞ ¼ V0 exp
ðe�k2tððek2t � 1Þk2n0 þ k1ð1þ ek2tðk2t � 1ÞÞÞ P � Y þMg=Sð Þ

k2
2n0

� �
; ð2:22Þ
where the initial condition V(t ¼ 0) ¼ V0 has been
used. Similar to equation (2.18), equation (2.22) can
be considered as an explicit formula for volumetric
extension of a cell/tissue under the tension of an exter-
nal axial load Mg. With P 2 Y ¼ 0, it can be directly
applicable to the cell wall creep experiments provided
that the approximate initial number of expansin pro-
teins n0 is known.

(b) With the completion of the Arabidopsis genome, we
learn that expansins belong to a large superfamily
of genes, divided into two major expansin families,
a-expansins and b-expansins, and two smaller families
of unknown function [29]. The two kinds of expansins
probably act on different polymers of the cell wall, work-
ing coordinately in all situations where wall loosening
occurs [16]. It seems quite natural to extend the above
one-parameter model to describe this situation using a
suitable form of the dx(t)/dt ¼ 2k0x equation (eqn (7)
in [4]), and subsequent changes of the following equations.
By introducing x fora-expansin and Y forb-expansin con-
centration, and superimposing a completeness constraint,
x þ y ¼ 1 for a total amount (concentration), we get the
following time-differential equation

dxðtÞ
dt
¼ �kax � kbð1� xÞ; ð2:23Þ

with the solution in the form

x tð Þ ¼ � kb
ka � kb

þ kb þ kax0 � kbx0

ka � kb
exp kb � ka

	 

t

� 
; ð2:24Þ

where the initial condition x(t ¼ 0) ¼ x0 has been used.
The calculations for the volume (V )2time dependence
are then similar to previously performed calculations
and straightforward. After solving equation (2.15) for
this special case, V as a function of time equals
V tð Þ ¼ �V0 exp
k2
bt þ kb 1� kat þ e kb�kað Þt x0 � 1ð Þ � x0

� �
� e kf�kað Þt � 1
� �

kax0

� �
P � Y þMg=Sð Þ

ka � kb
	 
2

2
4

3
5; ð2:25Þ
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Figure 7. The calculated GR minus CR from equation (2.19).
A cross-over from the dominating CR at low times to the dom-
inating GR at greater times is clearly visible. The maximum,
due to the turgor pressure, P 2 Y gradually ceases until the
equilibrium is reached. The model parameters are: P 2 Y ¼
1 2 0.2 ¼ 0.8 for GR and P 2 Y ¼ 0 for CR; k0 ¼ 0.5 in
both cases.
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Figure 5. The calculated relative volume V(t) ¼ VS 2 Vcontrol

under a constant load Mg in the course of time, according to
equation (2.17). Expansin action is treated as being pro-
portional to the interacting wall surface area (see the text).
(a) S ¼ 1.1, (b) S ¼ 1.2, (c) S ¼ 1.3, (d) S ¼ 1.4. For the
intact coleoptile fragments of the same length, we assign
S ¼ 1 corresponding to Vcontrol. Plots (a–d) correspond to
the solutions of equation (2.17) for the non-abraded fragments
(S ¼ 1 is control) subtracted from abraded ones. System
response modification owing to the constant uniaxial gravita-
tional force used to induce extension of isolated wall
specimens: mass M ¼ 1 (solid lines) and with M ¼ 1.2
(dashed lines). The remaining model parameters (arb. units)
are: l ¼ 2, v ¼ 1, V0 ¼ 1, P 2 Y ¼ 0 and c1 ¼ c2 ¼ 1. The
arrow indicates the time of expansin application. The reaction
kinetics at a constant temperature can be seen, which involves
a sharp rise and then the relaxation of an equilibrium process.
The plot will change its shape in the descending part when we
accept for the control volume, Vcontrol, the linear base line
instead of the sigmoid function. A similar remark relates to
figures 8 and 9.
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Figure 6. The calculated creep rate, V0 ¼ dV/dt (arb. units)
as given by the time derivative of equation (2.17). The
model parameters are the same as in figure 5, except M ¼
0.1; P 2 Y ¼ 0. Similar plot can be obtained directly for
equation (2.19).

982 Analytical study of expansin activity M. Pietruszka
where the initial condition V(t ¼ 0) ¼ V0 has been
used. Equation (2.25) represents a formula for volu-
metric extension of a cell or non-meristematic tissue
axially loaded by the force Mg. As such, it can be
useful to the cell growth or wall creep experiments,
where the a- and b-expansin proteins may be identified
separately. Remarkably, our biochemical model is extre-
mely flexible and can be easily modified to specifically
address any given system under consideration.

Now, equipped with equations (2.17)–(2.19), (2.22)
and (2.25) derived above, we may proceed to interpret-
ations and applications.
2.2.3. Numerical results. This paper introduces an
extension of the Lockhart model that significantly
expands the predictive capacities of this equation. Pre-
liminary outcomes of calculations, as described by the
equations derived in the preceding paragraphs, are
collected in figures 5–9. In order to avoid redundancies
and save space, most of the numerical results are
described in detail and appear exclusively in the
captions coupled to the relevant figures.

By way of introduction, we provide some basic sol-
utions. Considering figure 5 (see also the caption), in
J. R. Soc. Interface (2011)
order to obtain reliable and easy to interpret results,
we need to perform a kind of background subtraction
of the control volume Vcontrol (t) of an in-abraded frag-
ment (no interaction with exogenous expansin) as it is
also usually done in experiment. Consequently, the
net area under the relative volume DV plots may be
identified as equal to the result of expansin action
(loosening of plant cell walls caused by expansins, per-
mitting turgor-driven cell enlargement in natural
conditions). Thus, we may write the net ‘action’, pro-
portional to the involved intrinsic kinetic processes
owing to the expansins from the reservoir (or endogen-
ous), as a definite integral:

Sexpansinð0! tÞ ¼
ðt

0
ðVSðt0Þ � Vcontrolðt0ÞÞ dt0; ð2:26Þ

where by VS we understand the volume change in time
under the ‘load þ external expansins’, while Vcontrol is
understood as the change owing to the ‘load without
expansins in the container’ (and, depending on the
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Figure 8. The calculated relative volume, V(t) ¼ VS 2 Vcontrol under a constant load Mg in the course of time from equation
(2.22). Expansin protein total action is treated as being proportional to the interacting wall surface area (see the text). For
the intact coleoptile fragments of the same length, we assign S ¼ 1 corresponding to Vcontrol. Plots (a–c) correspond to the sol-
utions of equation (2.22) for the non-abraded fragments (S ¼ 1 – control) subtracted from abraded ones. System response
modification with the initial number n0 ¼ 10 000 of expansin proteins is presented: (a) k1 ¼ 0.3, k2 ¼ 0.2, (b) k1 ¼ 0.3, k2 ¼

0.3, and (c) k1 ¼ 0.3, k2 ¼ 0.4. Left chart: Wall creep, with the net turgor pressure, P 2 Y ¼ 0. Right chart: Vacuolated
growth, with P 2 Y ¼ 0.5 2 0.1 ¼ 0.4. The remaining model parameters (arb. units) are: S ¼ 2, V0 ¼ 1 and M ¼ 1.
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Figure 9. The calculated relative volume, V(t) ¼ VS 2 Vcontrol

under a constant load Mg in the course of time from equation
(2.25). a- and b- expansin protein action is treated as being
proportional to the interacting wall surface area (see the
text). For the intact coleoptile fragments of the same
length, we assign S ¼ 1 corresponding to Vcontrol. Plots (a–
c) correspond to the solutions of equation (2.25) for the
non-abraded fragments (S ¼ 1 – control) subtracted from
abraded ones. System response modification due to the con-
tent of a2 and b 2 expansins is presented: (a) k ¼ 0.9, k ¼
0.1, (b) k ¼ 0.85, k ¼ 0.15, and (c) k ¼ 0.8, k ¼ 0.2. The
remaining model parameters (arb. units) are: S ¼ 2, V0 ¼ 1,
x0 ¼ 1, P 2 Y ¼ 0 and M ¼ 1.
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results of the experiment, the latter may also be
reflected by the linear function); t is the time of the
experiment duration (time of the interaction of the
wall specimen with the expansins from the external
reservoir). Even though the explicit analytical formula
J. R. Soc. Interface (2011)
is accessible by direct substitution of equation (2.17)
(also equations (2.18), (2.22) or (2.25)) to the above
equation, it can also be retrieved by numerical calcu-
lation of cumulative integral of the curves presented
in figures 5a–d, 8 (left plot) and 9. As was already men-
tioned, the area under the curves in figure 5 (and
figures 8 and 9) corresponds to the net expansin partici-
pation in volumetric expansion (without turgor
pressure). Under the assumption of cylindrical geome-
try of the investigated sample, it is directly
proportional to the measured length increment Dl ¼
DV/Dr2, with r as a specimen (hypocotyl) radius.
This also gives a simple empirical method for
theory falsification.

Growing cell walls differ from mature walls in many
ways. They are generally thinner, have a different poly-
mer composition and are not highly cross-linked by
covalent bonds. They are also pliant and easily
deformed by mechanical forces. Such wall pliancy is
important for growing cells, because the wall surface
must enlarge as the cell grows. The pliancy of growing
walls is special in that it enables prolonged wall exten-
sion (creep) and stress relaxation. Turgor is required
for wall stress relaxation and to provide the driving
force to cell growth [38]. The underlying molecular
basis for wall pliancy is complex. It seems to be due
partly to polymer physics and partly to reactions that
alter the bonding relationships of the wall polymers
[16]. In this context, the CR can be obtained by calcu-
lating the time derivative of the volume V as given by
equation (2.17), but with P 2 Y ¼ 0. The effect can
be seen in figure 6 (compare with fig. 5 in [15]). We
stress that this solution is not quite a smooth curve
but also possesses a characteristic bending at low
times, as in the experimental plot (fig. 5 in [15]).

An important, and still unresolved, question is the
physiological significance of the wall extension studied
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here. It includes the correlation between CR and long-
term GR. Experimental conditions make it difficult to
compare ex vivo creep with in vivo growth in a quanti-
tative fashion. It seems that the model equation (2.19)
may deliver a proper tool to differentiate both processes
and provide a reasonable interpretation (figure 7): at
early time points, owing to the high concentration of
expansins and consequent weakening of the non-
covalent binding between wall polysaccharides, the
CR is dominating. Then, after a cross-over, the GR
starts to dominate because of the existing turgor
pressure and after a maximum is reached, both pro-
cesses tend to equilibrium. This result is consistent
with the experimental results of Schopfer [39], who
reported that the initially high CR coefficient slows
down continuously with time. With this view, equation
(2.19), or the time derivative of equation (2.17), may
prove useful in future studies to identify both processes
of GR and CR involved.
2.3. Application to unidirectional stimulus: an
anisotropic case

Many experiments in plant physiology are subjected to
specific and directional outer perturbations. Equations
(2.9) and (2.10) can be used to analyse growth effects
caused by a unidirectional stimulus, like the action of
collimated light, gravitional field or external pressure.
A similar approach has been used to describe spatial
auxin redistribution during phototropic response and
the connection between light perception and auxin
protein carrier’s (PIN’s) relocation [2]. Also, its applica-
bility to the problems of gravitropic response has also
been shown [3]. Based on this experience, there is a
hope that further use of equations (2.9) and (2.10)
derived in the previous section will provide, as a new
mathematical tool, more insight into biological pro-
cesses where the problem of unilateral stimulus is
considered.
3. DISCUSSION

The above derived equation (2.12) can be treated as a
new all-purpose dynamic (and thermodynamic) tensor
equation of plant cell growth. In particular, it may
form an appropriate frame for all observed plant
phenomena where the orientation of space matters
(this is usually induced by an external unidirectional
factor like light or gravity). In this sense, the solution
given by equation (2.12) may play a key role in elucidat-
ing phototropism and gravitropism. Also, the possible
uneven initial concentration of expansin proteins,
responsible for cell wall expansion, is represented in
equation (2.12) by X (¼x0

ij) matrix.
It is also important to recall that our dualistic sol-

utions (of mechanical and biochemical origin) are
obtained by independent reasoning (equations (2.17),
(2.18), (2.22) and (2.25)), yet they converge to the
same functional that possesses a desirable normalization
property:

V ðtÞ/ exp½� expð�tÞ� ! 1 for t ! þ1: ð3:1Þ
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This fact is also reflected not only in these global
solutions but also in the introduced local solutions—
equations (2.9) and (2.10). The convergence to the
double-exponent function of all the derived models is
a very important property that allows us to compare
results and establish empirical relations between differ-
ent models (parameters) via interpolation to the
experimental data. Also, as we see, we are dealing
with the upper bound for V(t) corresponding to
growth cessation when a cell matures (maximum
growth is considered as normalized to unity, and in
order to obtain significant results one should always
subtract the control value), as opposed to the divergent
(exponential) Lockhart solution. Straightforward calcu-
lation also yields V(t ¼ 0) ¼ 1/e ¼ 1/2.718 ¼ 0.367,
where e stands for the Euler number (this value, if
needed, may be subtracted to give V(0) ¼ 0).
The calculated double-exponent function [4], V(t) ¼
exp[2exp(2t)], appears to be a good representation of
a sigmoid curve able to describe the volumetric
growth either by mechanical or biochemical properties.
We have also obtained another, even more convenient
to use in experimental practice (with the initial
volume V0 normalized to unity: V(t ¼ 0) ¼ V0 ¼ 1),
form of sigmoid-shaped growth functional that appears
in calculations, namely:

V ðtÞ/ exp½1� expð�tÞ� [ ½1; e�: ð3:2Þ

It seems that equation (3.2) can be directly appli-
cable as an analytical representation of sigmoidal
growth. In fact, growth of any plant organ can be
split into three basic phases: the initial phase of slow
growth, the intense growth phase and, eventually, the
final phase of slow growth. Such regularity can be rep-
resented by a sigmoid curve (like equation (3.2); see
also fig. 7 in [4]) that characterizes the time course of
individual cell growth and the growth of plant organs
as a whole [40].

Furthermore, the application of both kinds of
equations to experimental data (by standard interp-
olation) may result in the simultaneous determination
of all parameters ((b, k) and k0 ((k1, k2 ) or (ka, kb))
from both competing approaches. Consequently, the
link between mechanical and biochemical models can
be established at a quantitative level. Thus, we can
draw further conclusions either on the influence of
biochemical parameters (x0, k0) ((k1, k2), (ka, kb))
onto mechanical features (b, k), or, conversely, deter-
mine the mechanical properties (b, k) by knowing the
biochemical basis.

The sparse set of parameters ((b, k) and k0 (or (k1,
k2), (ka, kb)), representing, respectively, mechanical
and biochemical features of the investigated system,
originating from both methods can be determined inde-
pendently from experimental data (usually obtained in
the form of V(t) or V 0(t) plots) by interpolation with
the help of, e.g., the Levenberg–Marquardt algorithm.
Combining both methods may result in the ability to
directly analyse biochemical and biomechanical aspects
of wall extension itself and finding experimental
relations between parameters. Such routine can be per-
formed with data taken directly from the experiment,
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giving the opportunity to interconnect parameters of
both kinds for volumetric plant cell elongation growth
or cell wall creep. Thus, we are able to address the pro-
blem of fine-tuning of macroscopic mechanical
properties using intrinsic biochemical parameters (e.g.
kinetic coefficients for a- and b-expansins), and vice
versa making at least rough predictions about some bio-
chemical relations by knowing the mechanical features.

The usual experimental routine that can be applied
is as follows. First, we need to obtain the volume
versus time [V(t)] data (curves) at a given temperature
T and fixed pH (usually in a neutral or acidic buffer)
under a constant load Mg. The interpolation of
measured V(t) points by our final, ready to use
equations (equations (2.17), (2.18), (2.22) and (2.25))
will return the values of desired parameters ((b, k), k0,
(k1, k2 ) or (ka, kb)). These, in turn, may be used to pre-
dict the behaviour of V(t) without the need to perform
further experiments in different conditions.

As was recently noted [4], the environmental temp-
erature, decisive for growth processes, can be taken
into account by the assumption that the kinetic coeffi-
cient (k0) depends on temperature. Such reasoning can
be obviously extended to the remaining two-parameter
biochemical models proposed in this paper. Let us focus
our attention on equation (2.25) derived for volumetric
expansion owing to a- and b-expansin protein action.
As in the case of the one-parameter model (see also
figs 7 and 8 [4]), the effect of temperature on the rates
of reaction for a given plant species can be easily estab-
lished empirically with the help of equation (2.25). By
eliminating in separate experiments the influence of
a-(or b-) expansins, the empirical values for ka, kb
coefficients can be determined by interpolation (Leven-
berg–Marquardt procedure) of the properly modified
equation (2.25) to the existing data. Then, the obtained
numerical values of ka, kb (temperature-dependent)
coefficients can be inserted back into equation (2.25)
to complete it for further calculations.

Stress relaxation is defined in material science as a
reduction in stress at constant strain. As has been
shown (eqn (8), Pietruszka [4]), the half-time for
stress relaxation (t1/2) due to expansin action can be
compared with Cosgrove’s [41] result (eqn (A9), [41])
to give k0 ¼ 1F0 that holds at least for t1/2. This relation
combines biochemical (k0) and biomechanical (1, F0)
aspects of plant growth (here 1 is Young’s modulus,
which is a measure of stiffness, as in the Ortega [42]
equation). F0 takes on the usual interpretation of exten-
sibility coefficient in the Lockhart equation, which is
essentially the inverse of viscosity. For many purposes,
it is convenient to measure the rate of stress relaxation
by a half-time t1/2, which calculated to give t1/2 ¼ log
2/k0 or yields t1/2 ¼ 1F0 log 2 when expressed in mech-
anical terms. However, one of the most interesting
results is that the biochemical equation (2.18) may be
treated formally (direct calculation) as a consequence
of the biomechanical equation (2.17) for l ¼ v ¼ k0.
This situation, however, corresponds to the critical
damping case, as described quite recently [4], especially
applicable for a juvenile cell or organ (the restoring
(elastic) term is not present in this case). Therefore,
both equations can be applied simultaneously for
J. R. Soc. Interface (2011)
detailed quantitative analysis emerging from this
dual picture.
4. CONCLUSIONS

This work is a biologically inspired analysis of expansin
enzyme activity on plant cell growth in the anisotropic
case. We solve a generalized form of the Lockhart
equation and make cell mechanical properties (cell
wall extensibility) a time- and space-dependent par-
ameter. This enables us to derive a linear differential
equation that accurately models enzymatically
mediated relaxation of the polymers composing plant
cell walls, thereby allowing pressure-driven polymer
creep and plant cell expansion growth.

The equations put forward here to describe cell
growth and deformation do have limitations, as they
are confined to describing the expansion component of
growth. Cell proliferation considerations have not been
included here. Also, such semi-phenomenology is not
like a microscopic model derived from first principles
on the quantum-mechanical level. Moreover, the val-
idity of the presented equations is limited to the non-
dissipative temperature region where no membrane
leakage takes place. Even though the detailed biochem-
istry is not discussed here, all the effects are implicit in
all functions that account for the effects like enzyme
activity, protein synthesis, cell respiration and biomass
production. It would be useful to have analytical
equations that include a reliable description of cell/
organ stretching based on verifiable numbers of mech-
anical or biochemical origin. In this sense, our model
is actually a possible start to a predictive guide for
further experimentation.

In spite of all the limitations, the model of expansin
action, in which expansins weaken the non-covalent
binding between wall polysaccharides, thereby allowing
turgor-driven polymer creep, can be successfully
described by a linear differential equation of tensors of
second order. This model is also consistent with the
lack of progressive weakening of the cell wall by expan-
sin and fits well the biophysical characteristics of cell
wall extension, the rate of which is dependent on the
wall stress P in excess of a minimum yield threshold Y.

On the topic of cell wall growth, most models have
traditionally concentrated on one biophysical aspect
of growth, namely either on the cell wall extensibility
properties or just water pressure-related effects
(e.g. hydrostatic pressure, osmotic pressure, turgor
threshold). Both components of cell wall growth were
usually treated separately and the mutual interactions
were not considered or combined into one mathematical
model equation. While it seems obvious that both cell
wall extensibility properties and water pressure-related
effects should be present, simultaneously, in one
equation to reflect the self-consistent (e.g. [14]) charac-
ter of plant cell growth, this has not been thoroughly
considered until now. Cell enlargement requires simul-
taneous water absorption to increase cell volume and
irreversible expansion of the cell wall to accommodate
the influx of water and to generate a new surface area.
Indeed, all environmental agents influencing growth
(like stimulators/inhibitors), especially temperature,
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should be present in the more complete model of cell
wall growth. Such an equation should also be suscep-
tible to other modifications, i.e. able to describe
phenomena where the direction of the stimulus matters
(e.g. phototropism). In this context, we believe that the
presented set of (ready to use) growth equations pre-
sented here, especially equation (2.12), will be helpful
in developing future computation models to reflect
quantitatively diverse phenomena observed in plant
physiological experiments.
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