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Models for infectious diseases usually assume a fixed demographic structure. Yet, a disease
can spread over a region encountering different local demographic variations that may signifi-
cantly alter local dynamics. Spatial heterogeneity in the resulting dynamics can lead to
important differences in the design of surveillance and control strategies. We illustrate this
by exploring the north–south gradient in the seasonal demography of raccoon rabies over
the eastern USA. We find that the greater variance in the timing of spring births character-
istic of southern populations can lead to the spatial synchronization of southern epidemics,
while the narrow birth-pulse associated with northern populations can lead to an irregular
patchwork of epidemics. These results indicate that surveillance in the southern states can
be reduced relative to northern locations without loss of detection ability. This approach
could yield significant savings in vaccination programmes. The importance of seasonality
in many widely distributed diseases indicates that our findings will find applications
beyond raccoon rabies.
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1. INTRODUCTION

Many models of infectious disease dynamics assume
that the demographic processes governing host/patho-
gen interactions are invariant over space. However, a
pathogen spreading through a host with an extensive
geographical range may encounter substantial spatial
variation in the demography of the host. As a conse-
quence, there may be considerable differences in the
epidemiological dynamics between locations. One
instance of this is the observed latitudinal gradient in
the seasonality of epidemics. Seasonality is a regular
annual cycle in the prevalence of infection and is a pro-
minent feature in the time series of many infectious
diseases [1,2]. The regularity of seasonal outbreaks
suggests a connection to annual cycles in climate or
weather, such as temperature, photoperiod or rainfall.
A number of mechanisms have been proposed connect-
ing climatic cycles to seasonal outbreaks of disease,
including changes in host physiology keyed to photo-
period [3], annual emergence of vectors [4] and
seasonal increases in contact between hosts associated
with migration and breeding [5]. Over an extended
orrespondence (smd3729@louisiana.edu).
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geographical range latitudinal gradients in climatic
cycles can result in different patterns of host/pathogen
interaction causing a latitudinal gradient in the seaso-
nal pattern of infection. Infectious diseases such as
polio [3], cholera [6], human influenza [7], rotavirus
infection [8] and avian conjunctivitis [5,9] all exhibit
pronounced latitudinal gradients in the seasonality of
infection.

The interaction between seasonality and space has
consequences that can be observed at two distinct
spatial scales. At continental to global scales, there
are latitudinal gradients in the seasonality of disease
[3]. These are a result of spatial heterogeneity in the
form of seasonal climatic processes that change in a pre-
dictable manner corresponding to distance from the
equator. At a local spatial scale, the latitudinal gradi-
ents are not detectable and a single seasonal process is
experienced by the host and pathogen. At this spatial
scale seasonal forcing of epidemic dynamics can create
spatial heterogeneity in the timing of epidemics at dis-
tinct, but locally connected, subpopulations. In
particular, the seasonal forcing of a host population
can effect the spatial synchronization of epidemics
between connected subpopulations [10–16]. Grenfell
et al. [17] explored the spatial synchronization of
measles epidemics that emerge under a common
This journal is q 2010 The Royal Society
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seasonal process. They used a metapopulation model to
show that the lag in the timing of measles outbreaks
between London and its surrounding communities can
emerge as a result of repeated waves of infection
expanding from the seasonal outbreak of measles in
London. What remains unclear is how the spatial struc-
ture of epidemics within a metapopulation that emerges
under a particular seasonal cycle changes as the season-
ality of the environment changes over an extended
geographical range.

Our objective in this paper is to examine the unex-
plored potential of latitudinal gradients in seasonality
to shape the spatial synchronization of epidemics. We
report results from a model of the local spatial dynamics
of a host population experiencing seasonal variations in
its demography and the spread of an infectious patho-
gen. We use our model to investigate questions about
the interface between seasonality and spatial dynamics
at two distinct spatial scales. One scale represents the
spatial dynamics of a local host population occurring
at a particular position along the seasonality gradient.
At this scale, all individuals within the population
experience a common pattern of seasonal environmental
changes, and we determine the degree of epidemic
spatial synchronization that emerges within the popu-
lation. The second, larger, scale represents an
extended geographical region over which latitudinal
changes in the seasonality of annual environmental
cycles are important. At the regional scale, we are inter-
ested in how the spatial synchronization of epidemics
changes along the latitudinal gradient in seasonal
forcing.

To reveal regional scale patterns, we explore the sen-
sitivity of the local spatial dynamics to changes in the
length of reproductive season of the host. Many species
have well-defined reproductive seasons and the length of
their reproductive seasons may vary with latitude [18].
Since the length of the reproductive season is correlated
with latitude, we interpret our analysis as an array of
unlinked populations distributed along the north–
south gradient. By treating the metapopulations as
independent units, we eliminate the confounding effects
of movement between populations and can then attri-
bute all of the changes in the local spatial structure of
epidemics to changes in the seasonal signal.

In our model, seasonal reproduction ranges from a
short northern breeding period associated with a
shorter growing season at northern latitudes to a long,
southern breeding period associated with a longer grow-
ing season. Our initial intuition was that the narrow
birth-pulse in northern populations would tend to
entrain population dynamics at each location and
have a strong synchronizing effect on metapopulation
dynamics. This expectation is consistent with the
forced spatial synchronization of measles epidemics
associated with the seasonal aggregation of school-
aged children [19]. Even for very low dispersal rates, a
shared narrow birth-pulse should tend to synchronize
epidemics across a population since all newly born indi-
viduals would emerge at roughly the same time. On the
other hand, we hypothesized that the longer southern
signal would not entrain patches across a metapopula-
tion and that the local populations would be subject
J. R. Soc. Interface (2011)
to their own locally determined trajectories. Instead of
the patterns we expected, the narrow seasonal pulse
produced spatially asynchronous patches of epidemics
while the southern populations experienced epidemics
that were synchronized over the metapopulation.
2. MATERIAL AND METHODS

We illustrate the role of latitudinal gradients in season-
ality with the case of raccoon rabies. Raccoon rabies is
currently endemic in the eastern USA and the length
of the raccoon breeding season varies from 72 days in
Maine to approximately 330 days in Florida [20]. The
local-scale dynamics that we analyse represents the
spatial dynamics of raccoon populations occurring in
human population centres. Raccoons readily adapt to
an urban landscape where they find plentiful foraging
opportunities and adequate locations for denning
[21,22]. Urban settings are important since it is in this
context that most human/raccoon interactions are
likely to occur and are foci for human exposure to
rabid raccoons. The regional scale of our model rep-
resents the eastern USA and we investigate changes in
the synchronization of epidemics occurring in different
urban centres along the north-to-south gradient of
increasing birth-pulse width.

2.1. Model description

Our model follows a standard SEI (susceptible–
exposed–infectious) compartment-based approach to
disease modelling in which the host population is struc-
tured in terms of the infection status of individuals
[23,24]. For raccoon rabies, the host population is divided
into susceptible, exposed and infectious classes. No
recovered class is included since there is no indication
of recovery from rabies infection in wild raccoon popu-
lations [25,26]. To add spatial structure, we divide the
host population into a one-dimensional array of 100,
1 km patches to form a metapopulation [17,27].
Within each patch the disease dynamics are governed
by a system of ordinary differential equations (ODEs):

S 0i ¼ aðtÞ½Si þ Ei� � d½Si þ Ei�Si � bIiSi

� fSi þ f
XN

j¼1
kijSj ; ð2:1Þ

E 0i ¼ bIiSi � d½Si þ Ei�Ei � sEi

� fEi þ f
XN

j¼1
kijEj ; ð2:2Þ

I 0i ¼ sEi � aIi � cIi þ c
XN

j¼1
kijIj ð2:3Þ

and Sð0Þ ¼ S0; Eð0Þ ¼ E0; I ð0Þ ¼ I0; ð2:4Þ

where N is the total number of locations and the spatial
location is indexed by i and j (with i, j ¼ 1 . . . N), and t
represents time since the beginning of each year. At
each location i, the density of susceptible, exposed
and infectious individuals is represented by the state
variables Si, Ei and Ii, respectively. The per capita repro-
ductive rate, a(t), is a periodic function and is applied to
all subpopulations, i, resulting in synchronous reproduc-
tion over the entire metapopuation. In our model, we
assume only non-infectious individuals are involved in
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reproduction (because of the short life expectancy and
behavioural changes in rabies-infected raccoons) [26].
Newborn individuals are assumed to be susceptible.

The birth-pulse is implemented as a periodic step
function:

aðtÞ ¼ arate þ p Bstart � t � Bend

0 otherwise;

�
ð2:5Þ

where t is time measured in days since the beginning of
each year (electronic supplementary material, figure
S1). The total per capita number of births is held con-
stant at atotal ¼

Ð 365
1 aðtÞdt ¼ 5 kits per adult per year

over the latitudinal gradient. As a consequence,
the daily birth rate (arate) is a function of the birth-
pulse width (Bwidth) and narrower northern
birth-pulses have higher amplitudes than southern
birth-pulses (electronic supplementary material, figure
S1). The birth-pulse parameters Bstart and Bend define
the start and the end dates of the parturition period,
respectively, and are adjusted based on the metapopu-
lation’s position along the north–south gradient to
produce appropriate birth-pulse widths (Bwidth). Thus,
for a birth-pulse width of Bwidth days and a mean
birth date Bmean, Bstart ¼ Bmean 2 Bwidth/2, Bend ¼

Bmean þ Bwidth/2. We set the average birth date to be
5 May based on reported peaks in birth date for
raccoons for all model results [20,28,29].

We introduce a simple white noise process into the
model with the term p. The addition of the stochastic
term to the birth-pulse function can be interpreted as
the effects of random inter-annual variation in the
environment that either increases or decreases the
reproductive capacity of the host population. Following
the approach taken by Rand & Wilson [30] and
Ellner & Turchin [31] we allow the birth rate to vary
from year to year by adding Gaussian-distributed
noise to the reproduction term, where p is a random
variable with a mean equal to zero, and a variance
equal to 0.1atotal.

The addition of the white noise term addresses the
often observed structural instability associated with
the chaotic dynamics produced by the periodic forcing
of ODEs. An analysis of the single-patch dynamics of
our model (i.e. without a spatial dimension) without
white noise (p ¼ 0) reveals positive Lyaponov expo-
nents over a substantial range of birth-pulses
indicating the presence of chaotic dynamics (electronic
supplementary material, figure S2b). Chaotic dynamics
emerge in our model because the natural period of the
system (0.904 years) is close to the 1 year period of
external forcing and we expect chaotic dynamics to
appear as a consequence of resonance effects [32]. Chao-
tic dynamics are present in other seasonally forced SIR
(susceptible–infectious–recovered) models [10–12,14,33]
and there is scepticism about the role chaos plays in
the dynamics of natural populations [31]. In particular,
models with chaotic dynamics exhibit a degree of struc-
tural instability such that adding environmental noise
can profoundly change model dynamics [30]. We include
the white noise process to ensure that our results are not
a peculiarity associated with the emergence of chaotic
dynamics over certain ranges of seasonal forcing.
J. R. Soc. Interface (2011)
We assume the disease-free host population size is
regulated by density-dependent effects on the rate of
mortality arising from intraspecific competition for lim-
ited food and habitat. We incorporate the effects of
density-dependent mortality using a standard logistic
term governed by the model parameter d. Density esti-
mates for disease-free raccoon populations in urban
areas range from 21.1 to 66.7 ind km22 (45.7 ind km22

[34], 21.1 km22 [35], 66.7 ind km22 [21], 35.7 ind km22

[36] and 28.2 ind km22 [20]) with an arithmetic mean of
approximately 39 ind km22. We use this value as the
per-patch disease-free carrying capacity for the model
(K¼ a/d) and assume a constant daily birth rate (a¼
5/365¼ 0.0137 d21) to obtain 3.51 � 1024animal21 d21

as an estimated value for d. With seasonal reproduction,
numerical results show the disease-free dynamics converge
on a limit cycle with a period of 1 year with average
densities between 39.2 ind km22 and 39.5 ind km22 for
birth-pulse widths from 72 to 330 days.

Exposed individuals become infectious after a mean
latency period of 1/s ¼ 22 days [37], yielding a per
capita latency rate (s) of 0.045 d21. We use a mean
life expectancy of infectious raccoons of 1/a ¼ 12.5
days [26]. Given the other model parameters, our esti-
mate for the transmission rate (b ¼ 0.04) is chosen to
give a basic reproduction rate (R0) of 1.6, which is
within the reported range for rabies [38].

We initiate epidemic dynamics in each simulation by
introducing a single-infected individual into a host
population at its disease-free limit cycle.

Host dispersal links patches within the metapopula-
tion. The per capita rate of emigration is f and the per
capita rate of immigration to patch i, from all other
patches, j, occurs at the rate fSjkijSj, where kij is the
fraction of the emigrants from location j arriving in
location i. A similar term in equation (2.2) describes
the dispersal of exposed individuals. The model bound-
aries are reflecting and the overall population is closed
with respect to dispersal. That is, the sum of the disper-
sing fractions from any location, j, to all other locations,
i = j, equals unity (i.e. Si=j kij ¼ 1). For simplicity, we
assume dispersal is symmetric and that individuals only
move to immediate neighbours (i.e. kj21,j ¼ kjþ1,j ¼ 0.5,
kij ¼ 0 otherwise). The per capita emigration rate of
infected individuals in equation (2.3) is given by c and
the immigration rate into patch i is given by cSjkijIj,
where the kij’s are the same as those used for the non-
infectious classes. The immigration rate used in the
model is f ¼ c ¼ 0.025 d21. When combined with the
dispersal coefficients (kij), the speed of the travelling
wave of simulated infections is approximately
40 km yr21, consistent with reported rates of spread for
rabies (38.4+3.8 km yr21) [38,39]. All of the model par-
ameters are summarized in table 1.
2.2. Measure of spatial synchronization

To measure the spatial synchronization of epidemics we
compute the phase coherency [17] between the number
of infectious individuals across locations (Ii, i ¼ 1 . . . N).
Phase coherency is a wavelet-based approach that com-
putes the correlation between the phase angles of two
time series [40]. We define a coherency function C(l )



Table 1. Model parameters, ‘baseline’ values and the parameter value variation used in the sensitivity analysis.

parameter units definition ‘baseline’ value 215% þ15%

a(t) day21 birth-pulse function — — —
atotal yr21 total annual per capita

birth rate
5 4.25 5.75

Bmean — mean birth date 5 May 1 January 2 July
Bwidth day birth-pulse width variable
Bstart — start of the parturition

period
Bmean 2 Bwidth/2

Bend — end of the parturition
period

Bmean þ Bwidth/2

d animal21

d21
density-dependant

mortality rate
3.51 � 1024 2.98 � 1024 4.03 � 1024

s d21 latency rate 0.045 0.038 0.052
a d21 disease-induced

mortality rate
0.08 0.068 0.092

f d21 emigration rate for
susceptible and
exposed individuals

0.025 0.021 0.029

c d21 emigration rate for
infected individuals

0.025 0.021 0.029

b animal21

d21
transmission rate 0.04 0.034 0.046

kij — fraction of emigrants
from j that move to i

0:5 j ¼ i þ 1; i � 1
0 otherwise

�
kij ¼

0:459
0:00459

0

8<
:

j ¼ i � 1; i þ 1
j ¼ ½i � 10; i � 1Þ; ði þ 1; i þ 10Þ

otherwise
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describing how phase coherency changes with l, the dis-
tance between patches. The coherency function is
defined as the non-parametric cross-correlation function
based on a smoothed spline fitted to the phase corre-
lation between all unique pairs of patches using the R
package ncf [41]. We computed the phase coherency
function from our model results after first log-trans-
forming the time series from each location and
normalizing it to have zero mean and unit variance.
To reveal the changes in spatial synchronization
across a wide range of birth-pulse widths we distil the
results of the phase coherency analysis to a single
value characterizing the degree of synchronization.
The degree of spatial synchronization produced under
each birth-pulse is the distance, l*, at which the phase
coherency C(l ) is equal to the regional average corre-
lation. Small values of l* indicate synchronization over
short distances while large values indicate synchroniza-
tion over longer distances. Additional details describing
how we compute phase coherency are provided in the
electronic supplementary material.
2.3. Model application at the regional scale

To investigate how spatial synchronization of epidemics
within the metapopulation changes over the latitudinal
gradient in seasonality we ran our model for birth-
pulses from 72 to 330 days. This range of birth-pulse
widths is based on reported parturition periods for
northern and southern raccoon populations [20,28,29].
The degree of spatial synchronization at each birth-
pulse width is computed as the average distance, �l�,
taken for 10 replicate runs. In each replicate, we com-
puted l* from the last 10 years of a 20 year
simulation. For all birth-pulse widths, the model
J. R. Soc. Interface (2011)
entered into its long-term dynamic by the 10th year.
Experiments with longer runs did not produce substan-
tially different results.
3. RESULTS

The rabies epidemic in a population experiencing the
narrowest, northern, birth-pulse (72 days) forms a frag-
mented landscape of local outbreaks (figure 1a). In the
first 3 years, infection spreads through the population in
three waves corresponding to the seasonal addition of
newly born individuals into the susceptible class. In
subsequent years, seasonal reproduction does limit the
timing of outbreaks, but within each year it does not
synchronize population dynamics over space; instead
it results in the creation of patches of asynchronous dis-
ease outbreak (figure 1a). The spatial asynchrony of
outbreaks is reflected in a small value for the phase
coherency, indicating that the correlation was only sig-
nificant over a short distance (�l� ¼ 5 km). The patchy
distribution of epidemics that emerges under the short-
est birth-pulse width (72 days) persists even though
locally, individual patch dynamics converge on a limit
cycle for every initial condition (see Lyapunov exponent
less than zero in the electronic supplementary material,
figure S2b). In contrast to the northern populations, the
spatial dynamics at the southernmost end of the latitudinal
gradient (Bwidth¼ 330 days) are highly synchronized
during the endemic phase and result in large values for �l�

indicating substantial spatial synchronization over long
distances (�l�¼40 km; figure 1b).

Seasonally forced models can exhibit multiple attrac-
tors and both cyclic and chaotic dynamics may coexist
over certain parameter ranges [11]. In such systems, the
attractor that governs the long-term dynamics depends
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Figure 1. (a) Asynchronous and (b) synchronous spatial dynamics produced under the strong (72 day) and weak (330 day) birth-
pulse. In each figure, time (years) proceeds from left to right, space is shown along the axis moving into the figure and the height
is the density of infectious raccoons. Colour is added to each plot for clarity and indicates the density of infectious individuals; a
colour gradient from blue to red is used to indicate densities ranging from low to high.
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on the initial conditions. We analysed our model to
explore the possible coexistence of chaotic and period
attractors as an explanation for the patchy distribution
of epidemics. Bifurcation diagrams computed from our
model with 2, 3 or 4 patches show that model dynamics
converge on periodic orbits (electronic supplementary
material, figure S3). These figures indicate that for
narrow birth-pulse widths, the long-term dynamics of
our model are not influenced by chaotic dynamics. To
evaluate the model behaviour during the initial stage
of the epidemic we computed the direct finite-time Lya-
punov exponents (DLEs) for the single-patch version of
our model based on a 50 year simulation [42]. The DLEs
are generally lower for short birth-pulse widths (elec-
tronic supplementary material, figure S4) indicating a
short-term dynamics with lower sensitivity to initial
conditions than for longer birth-pulse widths. Collec-
tively, these results suggest that chaotic behaviours
are not the drivers of the loss of synchronization when
the length of the birth-pulse is short.

Results computed over the latitudinal gradient in
birth-pulse widths indicate an overall trend towards
increasing spatial synchronization from north to south
(figure 2). The trend is divided into three ranges, with
spatial synchronization increasing at different rates as
the birth-pulse width is increased (figure 2). Over the
first range, from 72 to 200 days, there is a modest
increase in the degree of spatial synchronization. From
200 to 270 days, there is a slight decrease in spatial
synchronization, followed by a rapid increase from
J. R. Soc. Interface (2011)
�l� ¼ 12 km to �l�¼40 km for birth-pulse widths from
270 to 330 days.

We performed a sensitivity analysis of our model to
evaluate the robustness of the latitudinal gradient in
spatial synchronization. We found the pattern of
increasing spatial synchrony persists over a range of
values for each model parameter and for changes in
the initial conditions. For most parameters and initial
conditions, we considered the effects of increasing or
decreasing the value by 15 per cent relative to the ‘base-
line’ values (table 1). As an additional test of the initial
conditions, we examined the effects of initiating the
infection at five different locations between the edge
and the centre of the one-dimensional array (patches
10, 20, 30, 40 and 50). To test for sensitivity to the dis-
persal coefficients (kij) we added long-distance
translocations (LDTs; electronic supplementary
material, table S1). We also considered the effects of
moving the mean birth date (Bmean) to different times
of the year (1 January and 2 July), changing when
the simulated epidemic was initiated relative to the
annual peak in the number of susceptible hosts.
Moving the mean birth date (Bmean) to 1 January syn-
chronizes the start of the epidemic with the annual
susceptible peak while a mean birth date of 2 July syn-
chronizes the start of the epidemic with lowest number
of susceptible individuals. The effects of changing the
model parameters were evaluated relative to the base-
line results (i.e. the results based on the baseline
parameters in table 1).
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Figure 3. Model sensitivity analysis showing the change in the
relationship between spatial synchronization (�l�) and the
birth-pulse width (Bwidth) for a 15% change in (a) the total
birth rate (atotal), (b) the rate at which latently infected indi-
viduals become infectious (s) and (c) the mean birth date of
the birth-pulse (Bmean). In all panels, the results for the ‘base-
line’ parameters (table 1) are plotted in black. In panels (a)
and (b) the results of increasing the parameter value by 15%
are plotted in blue and the results of decreasing the parameter
by 15% are shown in red. In panel (c) the results of moving the
mean birth date to 1 January or 2 July are plotted in red or
blue, respectively. Each dot is the mean of 10 replicate runs.
Lines are smooth splines fitted to the data using 7 d.f. and
are included to clarify the changes in spatial synchronization
produced by varying model parameters. The shaded region
is a 90% confidence interval for the spline fitted to the base-
line results (black line and dots) and is included to assess
the sensitivity of the model results.
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The pattern of increasing spatial synchronization
was most sensitive to changing the total birth rate
(atotal), the rate at which latently infected individuals
become infectious (s), and the mean birth date
(Bmean; figure 3). However, in each case the overall pat-
tern of increasing spatial synchronization was still
evident. We applied smoothing splines to clarify the
sensitivity of our results to varying the model par-
ameters. We also applied a 90% confidence interval
(CI; computed for the spline fitted to the baseline
results) to assess the sensitivity of the model. Varying
atotal, s and Bmean produced patterns of increasing
spatial synchronization that fell outside the 90% CI.
The effects of increasing the total birth rate (atotal) on
the pattern of spatial synchronization were variable
(figure 3a). Increasing atotal reduced spatial synchroni-
zation relative to the baseline results for birth-pulse
widths from 72 to 150 days and 326 to 330 days, but
spatial synchronization increased over intermediate
pulse widths (150–326 days). The changes produced
by decreasing atotal were smaller and fell within the
90% CI for most birth-pulse widths. Increasing the
latency rate (s) resulted in a decrease in spatial syn-
chronization over all birth-pulse widths, while
decreasing the latency rate increased the degree of
spatial synchronization (figure 3b). The effects of
increasing or decreasing s were more pronounced as
the birth-pulse width increased and fell outside the
90% CI for birth-pulses longer than 200 days. Moving
Bmean to 1 January decreased spatial synchronization
over all but the longest birth-pulse widths while a
mean birth date of 2 July produced a pattern of spatial
synchronization similar to the baseline results
(figure 3c).

Our results were robust to changes in the rate of dis-
ease-induced mortality (a), the transmission rate (b),
the rate of density-dependent mortality (d) and the dis-
persal rates (f and c; electronic supplementary
material, figure S5a–e). A 15 per cent increase or
decrease in these parameters produced a relationship
between spatial synchronization and birth-pulse
widths that consistently fell within a 90% CI for the
baseline results. Adding LDT to the dispersal processes
J. R. Soc. Interface (2011)
also had a relatively small effect on the model results
(electronic supplementary material, figure S5f ).
Model results were also robust to changing the initial
conditions (electronic supplementary material, figure
S6). Results from a 15 per cent increase or decrease in
the initial density of susceptible individuals were similar
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to those for the baseline parameters (electronic sup-
plementary material, figure S6a). Furthermore,
changing where the epidemic started within the
metapopulation had little effect on the pattern of
increasing spatial synchronization (electronic sup-
plementary material, figure S6b– f).

In our results we focus on the spatial dynamics over a
20 year time horizon. This period of time is comparable
to the duration of the mid-Atlantic raccoon rabies epi-
demic that was initiated in 1977. However, we find
that the pattern of increasing spatial synchronization
shown in figure 2 persists for up to 200 years (electronic
supplementary material, figure S7). These results
suggest that the differences in spatial synchronization
that emerge between northern and southern popu-
lations are a persistent feature of seasonally forced
disease dynamics.
4. DISCUSSION

Our results are the first to our knowledge to suggest a
predictable geographical gradient in the spatial syn-
chronization of epidemics. The latitudinal gradient in
seasonally variable host demography may result in a
gradient in epidemiological dynamics over which the
local epidemics become progressively more spatially
synchronized. A recent analysis of measles cases in
sub-Saharan Africa convincingly illustrates the poten-
tial for strong seasonal forcing, produced in this case
by the annual rainy season, to desynchronize measles
dynamics in different departments (subregions) of
Niger [43]. That analysis supports our theoretical
results suggesting that strong periodic forcing can pro-
duce spatial asynchrony in disease dynamics. Here, we
have shown that shifts in population dynamics associ-
ated with a gradient in host demography can result in
a continuous gradient in the spatial synchronization of
epidemics.

The effect of seasonality on the spatial synchroniza-
tion of metapopulation dynamics has been addressed
in a number of previous studies [10–17]. Lloyd & May
[16] reported results from a seasonally forced metapopu-
lation model in which local population dynamics switch
from synchronized to desynchronized as chaotic
dynamics emerge. Allen et al. [44] showed that chaotic
dynamics decrease synchronization between patches,
reducing the overall risk of global extension. Allen
et al. [44] characterized the contribution of local
dynamics to persistence measured at the level of the
entire metapopulation but do not quantify the degree
of spatial synchronization that emerges among
locations.

The differences in the spatial structure of epidemics
between northern and southern populations are the
result of an interaction between the wave-like spread
of infection and the length of the birth-pulse. The
birth-pulse produces annual cycles in the disease-free
dynamics at locations ahead of the epidemic. As a
result, the epidemic wavefront encounters different den-
sities of susceptible individuals as it sweeps through the
metapopulation. At the northern end of the latitudinal
gradient, the amplitude of the disease-free cycle is large
J. R. Soc. Interface (2011)
and the epidemic wavefront encounters substantial
differences in susceptible densities as it sweeps through
the metapopulation. Numerical results from a non-
spatial version of the model under the action of a
narrow birth-pulse show different dynamics emerge
when an epidemic is initialized at different phases of
the host’s reproductive cycle (electronic supplementary
material, figure S8). In our spatial model, the differ-
ences between locations persist because of the
relatively weak linkage associated with dispersal over
long distances. In southern populations, the nearly con-
stant birth-pulse results in relatively small oscillations
in population size. As a result, the local disease
dynamics are initiated under nearly identical conditions
and small differences are eventually eliminated by
dispersal.

The results of our study represent a new conclusion
into the pattern of spatial synchronization of metapo-
pulation dynamics. Here, we have shown that spatial
synchronization can vary continuously over a gradient
of seasonal forcing. Our results are qualitatively consist-
ent with earlier results in which dynamics shift between
synchronized and desynchronized populations under
different levels of seasonal forcing [16]. Our results
suggest that the effects of seasonal forcing are not lim-
ited to one of two outcomes, and may lead to a range
of different results that vary continuously with vari-
ations in the strength of seasonal forcing. This
conclusion can have important consequences and impli-
cations for the design of infectious disease control
strategies.

The surveillance of existing and emergent infectious
diseases in wildlife is an integral part of public health
planning [45]. Wildlife populations are reservoirs for
diseases that infect humans, and recent estimates
suggest that the majority of emergence events arise
from wildlife populations [46]. At the same time that
researchers have become more aware of the importance
of monitoring and controlling epidemics in wildlife,
public health funding is dwindling [45]. This necessi-
tates a targeted approach to monitoring populations
at risk to make the best use of limited resources.

Our results suggest that underlying demographic
variations in the host populations may influence the
design of optimal surveillance strategies. In areas
where host population demographic parameters are
characterized by little or no seasonal variation, the
samples taken at a few locations can reasonably be
used as a proxy for an entire region. Public health
resources can be saved by restricting monitoring and
control efforts in these areas. In areas where host demo-
graphics are strongly seasonal, a substantially larger
surveillance programme may be required to obtain a
reasonable estimate of outbreak intensity over the
entire region.

Our conclusions are based on our simulation of the
raccoon-rabies dynamics of the mid-Atlantic regions
of the USA. However, the modelling framework is
general and the results are robust to changes in the
model parameters and initial conditions. These factors
suggest our model results may be applicable to other
zoonotic diseases with important public health conse-
quences and as well as human infections. A number of
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wildlife species in North America have been struck by
rabies epidemics including skunk (Mephitis mephitis)
and fox (Vulpis vulpis) populations [26]. Both species
have a distinct reproductive season and an extensive
latitudinal range [47,48]. Rabies epidemics in skunks
also exhibit pronounced seasonal cycles in the
prevalence of rabies infection [49]. As an example of a
non-zoonotic human disease, recent analysis of measles
dynamics in Africa suggests that spatial asynchrony in
prevalence may arise from seasonal increase in contact
between people associated with an increase in indoor
activities during the rainy season [43].

The model produces hypotheses that are directly testa-
ble using time-series data that are spatial explicit and
recorded at high spatial resolution. These data are not
available. We are working closely with the US Centers for
Disease Control and Prevention (CDC), the US Depart-
ment of Agriculture and state public health offices to
collect data that are appropriate to test these hypotheses.
This new source of data is necessary for testing the results
of our model. The existing rabies database, coordinated
by the CDC, while extensive, does not provide the spatial
resolution required to test ourmodel. The spatial resolution
of the CDC database is not consistent across the eastern
USA, ranging from townships (mean¼ 93 km2) in some
northern states (e.g. Connecticut) to counties (mean¼
1600 km2) in other states (e.g. Georgia). Both of these geo-
graphical units are much larger than the scale at which
patterns emerge within our model (patch ¼ 1 � 1 km2).

Seasonality is becoming recognized as an increas-
ingly important component in understanding
infectious disease [1,50,51]. However, few studies recog-
nize the significance of geographical variation in the
structure of the seasonal signal on widely distributed
infectious diseases. Widely distributed pandemic dis-
eases pose a substantial public health threat and we
need accurate models to guide surveillance and control
policies. Results from our model indicate that geo-
graphical gradients in demographic structure may
produce associated gradients in the spatial synchroniza-
tion of epidemics. Including these forms of geographical
variation is critical for increasing the predictive power
and utility of infectious disease models used for public
health surveillance and control.
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