
J. R. Soc. Interface (2011) 8, 856–867
*Author for c

doi:10.1098/rsif.2010.0515
Published online 19 January 2011

Received 21 S
Accepted 8 D
Modelling the initial phase of an
epidemic using incidence and infection
network data: 2009 H1N1 pandemic in

Israel as a case study
G. Katriel1, R. Yaari2, A. Huppert3, U. Roll1 and L. Stone1,*

1Biomathematics Unit, Department of Zoology, Faculty of Life Sciences, and
2The Porter School of Environmental Studies, Tel Aviv University, Tel Aviv 69978, Israel

3Center for Risk Analysis, the Gertner Institute, Chaim Sheba Medical Center,
Tel Hashomer, Israel

This paper presents new computational and modelling tools for studying the dynamics of an
epidemic in its initial stages that use both available incidence time series and data describing
the population’s infection network structure. The work is motivated by data collected at the
beginning of the H1N1 pandemic outbreak in Israel in the summer of 2009. We formulated
a new discrete-time stochastic epidemic SIR (susceptible-infected-recovered) model that
explicitly takes into account the disease’s specific generation-time distribution and the
intrinsic demographic stochasticity inherent to the infection process. Moreover, in contrast
with many other modelling approaches, the model allows direct analytical derivation of
estimates for the effective reproductive number (Re) and of their credible intervals, by
maximum likelihood and Bayesian methods. The basic model can be extended to include
age–class structure, and a maximum likelihood methodology allows us to estimate the
model’s next-generation matrix by combining two types of data: (i) the incidence series of
each age group, and (ii) infection network data that provide partial information of ‘who-
infected-who’. Unlike other approaches for estimating the next-generation matrix, the
method developed here does not require making a priori assumptions about the structure of
the next-generation matrix. We show, using a simulation study, that even a relatively small
amount of information about the infection network greatly improves the accuracy of estimation
of the next-generation matrix. The method is applied in practice to estimate the next-generation
matrix from the Israeli H1N1 pandemic data. The tools developed here should be of practical
importance for future investigations of epidemics during their initial stages. However, they
require the availability of data which represent a random sample of the real epidemic process.
We discuss the conditions under which reporting rates may or may not influence our estimated
quantities and the effects of bias.

Keywords: epidemic modelling; H1N1 influenza; maximum likelihood;
model fitting; next-generation matrix
1. INTRODUCTION

In the early stages of an epidemic, there is urgency in
assessing the potential magnitude, severity and rate of
spread over geographical regions and in different sub-
populations so that rapid and appropriate policy
schemes can be formulated [1–3]. Such complex assess-
ments have to be made under great uncertainty due to
the lack of data available and the fact that they are
often of poor quality [4]. Mathematical models are an
effective tool for investigating the dynamics of the
spread of epidemics, including possible control strat-
egies, but in order to apply a model to a particular
situation there is a need to be confident that the
values used for the various parameters in the model
orrespondence (lewi@post.tau.ac.il).
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correspond to reality. While some parameters can be
determined based on previous knowledge, other par-
ameters must be estimated by fitting the model to the
available data. Thus, fitting epidemiological models to
real data becomes a central problem for the field of
infectious disease epidemiology.

In this work, we describe new epidemic models and
methods for fitting these models to the different types
of data that can be collected at the initial stages of an
epidemic. These tools were developed for the purpose
of analysing data collected during the first weeks of
the spread of the 2009 A/H1N1 influenza pandemic in
Israel. The methods and their application to the Israeli
H1N1 data are the main focus of this paper. It is our
hope that these methods will be useful for analysing
future epidemics in their initial stages.
This journal is q 2011 The Royal Society
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During the first two months of the 2009 A/H1N1
influenza outbreak in Israel (from 26 April 2009 until
7 July 2009) the national health authorities in Israel
attempted to identify and test all cases of people sus-
pected with symptomatic influenza. Their efforts were
aided by the high media impact of the disease and the
attentiveness of the general public. There is reason to
believe that nearly all influenza-like illness cases in
Israel over this period were tested in the national sur-
veillance campaign (see [5] for further analysis of this
dataset). During the time span in which our data
were collected, the number of laboratory-confirmed
cases in Israel (713) was the third highest in Europe,
exceeded only by the UK and Spain, which have
much larger populations [6]. The national surveillance
also provided infection network data, i.e. partial infor-
mation regarding ‘who-infected-who’. Our work aimed
at extracting as much information as possible from
the available data.

The analyses are based on a new discrete-time sto-
chastic epidemic model. The equations used are
closely related to the well-known SIR epidemic model
[7–10]. However, our ‘age-of-infection’ model explicitly
takes into account the disease’s specific generation-time
distribution. This contrasts with the unrealistic default
(exponential) distribution of the standard SIR model.
The model we present also allows for intrinsic demo-
graphic stochasticity that is inherent in the infection
process, and in a simplified manner that makes it poss-
ible to rapidly generate large numbers of simulations.
However, the most important advantage of the model
is that it allows an analytical derivation of parameter
estimates by maximum likelihood and by Bayesian
methods. The model thus provides a powerful
framework for analysis of epidemics in general.

In §2, we describe the basic version of the discrete
age-of-infection model which posits a homogeneous
population. We formulate a maximum likelihood
approach for fitting the model to incidence data that
yields analytical estimates for the effective reproductive
number Re. The approach also permits estimation of
Bayesian credible intervals for Re, and bootstrap
confidence intervals (CIs) are also computed using
simulations. The modelling methods are then used to
fit the Israeli dataset to obtain estimates for Re

during the H1N1 pandemic in its initial stage.
In §3, we consider a more elaborate version of the

model in which the population is divided into different
age groups. Using a simulation study, we demonstrate
that in this case, fitting the model using incidence
data for each age group fails to provide accurate par-
ameter estimates for realistic sample sizes. In view of
this, a new maximum likelihood approach is developed
that estimates the parameters of the age group model
using a combination of two types of data: the incidence
data and infection network data. The power of combin-
ing the two datasets is demonstrated using a simulation
study, showing that the who-infected-who data signifi-
cantly increases the accuracy of estimates of the model
parameters. The method is then applied to the Israeli
dataset, yielding estimates of the ‘next-generation
matrix’ for the spread of the H1N1 pandemic among
three age groups.
J. R. Soc. Interface (2011)
1.1. Data

The data studied here consist of laboratory-confirmed
cases of individuals infected with 2009 H1N1 influenza.
The first person in Israel diagnosed as suffering from
novel H1N1 infection arrived in Israel from Mexico,
and was hospitalized in the Laniado hospital on 26
April 2009. A database of cases was assembled at
the Central Virology Laboratory, Tel-Hashomer,
Israel, for the period 26 April to 7 July 2009. In this
10 week period, altogether ca 2400 samples of patients
with symptoms of influenza-like illness (IL) were
tested, of which 713 (30%) were found positive for
the novel strain. The Israeli Ministry of Health and
Center for Disease Control has argued that this
number should closely match all Israelis with sympto-
matic novel H1N1 influenza in this time period. As a
result of the WHO guidelines, the systematic collection
of samples from all suspected patients ended after 2
July 2009. Therefore, when estimating model para-
meters we use 2 July as the end date, in order to
avoid biases due to differences in sampling effort.
While constructing the database various character-
istics for each patient were also recorded, including
sex, age, geographical locality, examination date and
whether the patient had arrived on a flight to Israel
during the week prior to the examination. In addition,
individuals tested were asked by their doctor whether
they could identify the person from whom they
believed they were infected.

In this paper we used the following data extracted
from the above database:
— Incidence data. The time series of all 2009 H1N1
influenza cases in Israel during the initial phase of
the outbreak is displayed in figure 1. Infected indi-
viduals, who had arrived from abroad during the
week prior to their examination, were classified as
imported cases and the remainder were classified
as local cases. As can be seen from figure 1, at the
beginning of the period, only sporadic imported
cases were recorded. Only from 20 May and
onwards, did the epidemic start to spread in the
Israeli population. In our analysis, we therefore
used the incidence data of the period from 20
May to 2 July 2009, with a total of 629 cases. For
the purpose of our age group model, we divided all
cases into three different age groups 0–18, 19–29
and 30 and above, describing children, young
adults and adults. Of the 629 cases between 20
May and 2 July 2009, there were 616 cases with
records available for the age group analysis.
Figure 2 shows the time series of all cases divided
into the three age groups. Given that the number
of cases for age 30þ is far fewer than cases between
the ages 19 and 29, it was decided to divide the
adults into two groups.

— Infection networks. The information provided by
some infected patients made it possible to construct
infection networks which map the connections
between an infected person (infector) and the indi-
viduals he or she infected (infectees). Links were
established either
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Figure 1. Confirmed 2009 H1N1 influenza cases in Israel
between 20 May 2009 and 2 July 2009, altogether 629 cases.
Bars represent the incidences per day (left y-scale), and con-
tain both imported (dark grey region) and local (light grey
region) cases. The solid line indicates the cumulative
number of cases (right y-scale).
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Figure 2. Confirmed 2009 H1N1 influenza cases in Israel
between 20 May 2009 and 2 July 2009 divided into three
age groups 0–18 (209 cases, dark grey region), 19–29 (280
cases, light grey region), 30þ (127 cases, white region).
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(i) when an infectee was able to identify a particular
patient in the database as the infector (65 links), or

(ii) based on circumstantial evidence (58 links) as to
when the patient reported that his/her infection
occurred in a school class, from a neighbour,
etc. This, in many cases, provided information
that identified another patient in the database
who was most probably the infector.

Out of a total of 123 infection links, there were 97 links
between 20 May and 2 July for which we had the age of
both the infector and the infectee.

— Generation-time distribution. Based on the infection
networks, it was possible to estimate the generation-
time interval distribution for the 2009 H1N1
influenza. This is the distribution of the durations
between the time an individual becomes infected
and the times of infection of the people he or she
infects. Since the infection time is not known, we
used the durations between reported disease
J. R. Soc. Interface (2011)
initiations as estimates for the generation-time
intervals. Out of the 123 connections in the infection
networks, 54 connections had specified disease
initiation dates at both ends of the link, with the
differences between the two dates ranging from 0
to 15 days. The mean generation time was found
to be m ¼ 2.92 and its standard deviation s ¼ 1.79
based on a generation-time distribution of up to 7
days. We limited our data to intervals of up to 7
days since longer intervals are considered controversial
[11]. For more details see [5].

2. DISCRETE TIME STOCHASTIC AGE-OF-
INFECTION MODEL AND ESTIMATION
OF RE

2.1. Discrete time stochastic age-of-infection
model

For a population of N individuals, we denote the
number of newly infected individuals on day t by i(t)
and let S(t) be the number of susceptibles at the end of
day t. i0(t) is the number of imported infectives on
day t. The model equations, which are derived below,
are a Poisson approximation of a generalization of
the classical chain binomial SIR model and may be
written as,

iðtÞ � Poisson
R0Sðt � 1Þ

N

Xd

t¼1

Pt½iðt � tÞ þ i0ðt � tÞ�
 !

ð2:1aÞ

and

SðtÞ ¼ Sðt � 1Þ � iðtÞ: ð2:1bÞ

Here Poisson(x) is a random variable having a
Poisson distribution of mean x, which accounts
for demographic stochasticity (see the derivation
below). The reproductive number R0 defines the
average number of people infected by a typical
individual over his/her infectivity period in a totally
susceptible population.

In this model formulation, infected individuals are
assumed to remain infected for a maximum of up to d
days, where, unless otherwise stated, d ¼ 7 [11]. It is
thus related to age-of-infection epidemic models [7,12],
but in a discrete rather than continuous form. The
numbers Pt (1 � t � d) represent the generation-time
distribution; in a totally susceptible population, Pt is
the fraction of infections generated by an infective
person which occur on day t of infection (thusPd

t¼1 Pt ¼ 1). It should be noted that since this
model allows a general generation-time distribution, in
particular admitting a latent period of l days described
by taking Pt ¼ 0 for 1 � t � l , d, it subsumes models
such as the SEIR model. Estimates of the generation-
time distribution Pt for the 2009 novel H1N1 epidemic
were derived from the infection networks data as
described in §1.1. As imported infectors arriving from
abroad formed a substantial proportion of the infected
subpopulation in the early phase of the epidemic, it
proved essential to incorporate them realistically into
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the model equations, and we noted (see §4) that our
main results were sensitive to their presence. The pro-
cedure we use for generating realizations of the
stochastic model is as follows. At each time step we
draw the number of new infectives i(t) according to
the Poisson distribution given in equation (2.1a). This
requires knowledge of the numbers of immigrant infec-
tives i0(t) which are available from our surveillance
data. Then the susceptible numbers S(t) are updated
according to equation (2.1b).

The model is derived as follows. Let m denote the
average number of contacts per individual per day
and let N denote the total population size. Define pt
(1 � t � d) as the infectivity profile for the d days of
infection, that is pt is the probability that a contact
between a susceptible and an infective, whose age of
infection is t days, results in infection of the susceptible.
Suppose we are now on day t, and consider an infective
person who was infected t days ago. This individual
meets each other individual with probability (m/N),
so that he/she infects each susceptible with probability
(m/N)pt. Therefore, the number of susceptibles
infected by this infective is binomially distributed
with parameters n ¼ S(t 2 1) and p ¼ (m/N)pt. Since
m� N, we have p� 1, np ¼ mptS(t 2 1)/N, so that
the Poisson approximation to the binomial distribution
is valid and we may assume that the number of people
infected by an infective on day t is Poisson distributed
with mean mptS(t 2 1)/N. Therefore, the number of
people infected on day t by all infectives with age-of-
infection t is Poisson distributed with mean
mpt(S(t 2 1)/N)[i(t 2 t) þ i0(t 2 t)], and summing
over 1 � t � d we obtain

iðtÞ � Poisson m
Sðt � 1Þ

N

Xd

t¼1

pt½iðt � tÞ þ i0ðt � tÞ�
 !

:

ð2:2Þ

Note that, since an infective placed in a totally suscep-
tible population would infect mpt people on the tth day
of infectivity, the total number of infections that an
infective would produce, that is the basic reproduction
number, is given by R0 ¼ m

Pd
t¼1 pt. Therefore, setting

Pt ¼ pt=
Pd

t0¼1 pt0 ;we can rewrite equation (2.2) as
equations (2.1a,b). The numbers Pt represent the gener-
ation-time distribution: Pt is the fraction of the
infections generated by a person which occur on the
tth day of infection.

Since we are dealing with the initial phase of the epi-
demic, the depletion of susceptibles is negligible (S0 is of
the order of millions and only a few hundred cases are
depleted) and the model may be simplified by setting
S(t) ¼ S0, obtaining

iðtÞ � Poisson Re

Xd

t¼1

Pt½iðt � tÞ þ i0ðt � tÞ�
 !

; ð2:3Þ

where Re is the effective reproductive number, given by
Re ¼ (S0/N)R0.

At the beginning of an epidemic, results from the
‘linearized’ model (2.3) are virtually identical with
those obtained from the ‘full’ model (2.1), and only at
J. R. Soc. Interface (2011)
much later stages of the epidemic, when a significant
fraction of the susceptibles becomes depleted, does it
become important to use the full model. Therefore,
our analysis in this paper employs equation (2.3).

2.2. Estimating the effective reproductive
number

It is clear from the form of the model (2.3) that R0 and
S0 are not separately identifiable. For a pandemic invol-
ving a new pathogen it is sometimes assumed that
S0 ¼ N (no immunity in the population), so that
R0 ¼ Re. However, in the case of the 2009 H1N1 influ-
enza, there was indication of partial immunity among
older people [13]. In this paper, we make no claim
about R0 and estimate only Re.

In the following, we derive a maximum likelihood
estimate for Re. The likelihood function, that is the
probability of obtaining the data i(t) (1 � t � T ),
where T is the number of days of data available from
model (2.3), is given by

LðReÞ ¼ PðiðtÞ; d þ 1 � t � T jiðt0Þ; 1 � t 0 � dÞ

¼
YT

t¼dþ1

PðiðtÞjiðt0Þ; 1 � t0 � t � 1Þ

¼
YT

t¼dþ1

1
iðtÞ! e

�Re

Pd
t¼1

Pt½iðt�tÞþi0ðt�tÞ�

� Re

Xd

t¼1

Pt½iðt � tÞ þ i0ðt � tÞ�
" #iðtÞ

:

Defining the log-likelihood LL(Re) ¼ log(L(Re)) and
differentiating with respect to Re we obtain

LL0ðReÞ ¼ �
XT

t¼dþ1

Xd

t¼1

Pt½iðt � tÞ þ i0ðt � tÞ�

þ 1
Re

XT
t¼dþ1

iðtÞ

so that the maximum likelihood estimator for Re is
given by

R̂e ¼
PT

t¼dþ1 iðtÞPT
t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�

: ð2:4Þ

We note that, except for the inclusion of the
imported infectives, this estimator is the same as the
one derived by White & Paganno [14]. We note however
that White & Pagano’s derivation of the maximum like-
lihood function was achieved using a quite different
approach based on branching process considerations
that describe an infection process. We believe that the
derivation of the estimator (2.4) from an explicit SIR
dynamical model simplifies the argument. In [15] a simi-
lar estimator was used to estimate the reproductive
number of 2009 H1N1 in the USA, and the imported
infectives were included in a way that is equivalent to
that in estimator (2.4) above. In view of the fact
that this estimator is a maximum likelihood estimator
for a model which incorporates the generation-time
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Figure 3. Confirmed 2009 H1N1 cases (solid line), with the
simulation curve obtained by averaging 1000 simulations of
the stochastic model (2.2) using the estimated Re (dashed
line), together with 95% bands (dotted lines).
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Figure 4. Changes in Re estimates as the epidemic progresses.
For each day, starting from 30 May, Re is estimated based on
the time series initiating on 20 May up to that day. The solid
line depicts the estimated Re values and the dashed lines the
95% Bayesian lower and upper credibility intervals.
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distribution and stochasticity, it offers a very attractive
and more direct alternative to the widely applied
approach for estimating Re based on estimating the
exponential growth rate r of the epidemic curve and
relating r to Re using the generation-interval distri-
bution [16].

We propose two methods to obtain an interval
estimate for Re, in addition to the point-estimate R̂e:

— Bootstrap CI. Generate 1000 simulated epidemics
using the model (2.3) with Re ¼ R̂e (as estimated
from the data using formula (2.4)) and the observed
imported infectors i0(t), obtaining 1000 incidence
series i(t). For each of these simulated epidemics
re-estimate Re using formula (2.4) and remove the
25 lowest and 25 highest estimates to obtain a
95% bootstrap CI for Re.

— Bayesian credible intervals. The likelihood approach
allows the derivation of Bayesian 95% CI (see
appendix for details) given by ½R�e ;Rþe �, where

R+
e ¼

1þ
PT

t¼dþ1 iðtÞ+ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

PT
t¼dþ1 iðtÞ

q
PT

t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�

:

2.3. Application to Israeli H1N1 2009 pandemic
data: estimation of Re

For the Israeli 2009 H1N1 influenza time series, our
modelling approach (formula (2.4)) produced estimates
of Re�1.06 with a 95% bootstrap CI [0.97,1.16].
The Bayesian 95% CI is nearly identical. Figure 3 dis-
plays the observed H1N1 incidence series, the
incidence series obtained by averaging 1000 simulations
of the stochastic model (2.3) with our estimate of Re,
and bands containing 95 per cent of the values of
these simulations. The observed curve deviates only
slightly outside the 95 per cent bands of the fitted
model, which might suggest that there is some process
that the model does not fully capture. This issue
will be further discussed in the §3, in relation to the
age group model.

We tested how the prediction of Re and its Bayesian
95% CI change with respect to changing the time span
used in the calculation. This allows us to examine the
question: how far into the epidemic do we have to be
before a reasonably accurate estimate of Re can be
obtained? Figure 4 displays how Re and its Bayesian 95
per cent credible intervals change with respect to chan-
ging the time span used in the calculation. The graph
shows estimations for Re based on the observation periods
initiating on 20 May and ending on each day between 30
May and 2 July. The credible intervals narrow signifi-
cantly as the observation period increases. After about a
month of data, the estimate of Re is sufficiently accurate
so that the uncertainty as measured by the 95% CI is
reduced to +10 per cent of the estimated value.

Various estimates of the reproductive number have
been made for the initial phase of the epidemic in
different regions of the world [15,17–26]. These esti-
mates range from 0.5 to 3.4 [17,27]. However, most lie
in the 1.2–1.6 range, and very few are lower than this
range. Thus our estimate of Re ¼ 1.06 for Israel is
J. R. Soc. Interface (2011)
indeed relatively low. The estimates we obtained are
also lower than estimates based on data from previous
pandemics [28].

There are several factors that can explain differences in
Re¼ R0S0/N estimated at different locations worldwide.
Local variation in either the basic reproductive number
R0 or the percentage of the susceptible population S0

can lead to differences in Re values. Since climactic con-
ditions are believed to play a role in the low
transmissibility of flu during the summer, variations in cli-
mate in different locations may lead to different R0. An
alternative explanation is that the Israeli population has
more immunity (i.e. lower S0) to the pandemic virus, poss-
ibly due to greater cross immunity to seasonal H1N1,
compared with Mexico for instance. Many studies
assume that all, or most, of the population are susceptible
to pandemic influenza. Today there is accumulating evi-
dence that the population immunity for pandemic
strains cannot be neglected and can vary considerably
between different locations [13,29]. Another possible
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explanation is that the Israeli authorities’ containment
measures were more efficient than in other regions and
hampered faster epidemic spread, resulting in a low Re.
Finally, we have noted that, when estimating Re in the
initial phase of an epidemic, taking the imported infec-
tives into account in an appropriate way (as in formula
(2.4)) is important, and that not doing so will lead to
an upwardly biased estimate of Re (see §4). It is possible
that some of the estimates in the literature that were
obtained at the beginning of the epidemic are too high
because imported infectives were not taken into account
separately.

It should be stressed that the low estimated value
of Re relates to the specific period of time in which
the data were collected during the summer season.
Since it is generally believed that the transmission
rate of influenza varies with the season of the year
[30], it was expected that the reproductive number
would increase during the autumn and winter.
3. DISCRETE TIME STOCHASTIC AGE-OF-
INFECTION MODEL WITH AGE GROUPS
AND ESTIMATION OF THE NEXT-
GENERATION MATRIX

3.1. The stochastic age-of-infection model
with age groups

The model described in the previous section neglects the
effects of heterogeneity in the population. Here we
expand this model by dividing the population into n
age groups which can have different characteristics. In
an age group model, the ‘next-generation matrix’ b

encodes the contact structure among different age
groups, as well their differential susceptibility and infec-
tivity. The matrix element bjk represents the expected
number of secondary infections in age group j due to a
single primary infection in age group k [7,29]. If the
matrix b is estimated at the beginning of the epidemic,
it may be used to predict the further unfolding of the epi-
demic as well as to help plan an optimal vaccination and
mitigation strategy [31]. Using the matrix b, we general-
ize the model (2.3) to n age groups. We denote the
number of locally infected new infectives in the jth age
group on day t by ij(t), and the number of imported
infectives in age group j arriving on day t by i0j ðtÞ. We
also denote the number of locally infected new infectives
in the jth age group who were infected by individuals
from age group k on day t by ijk(t), so that

ijðtÞ ¼
Xn

k¼1

i jkðtÞ: ð3:1Þ

The model is thus

i jkðtÞ � Poisson b jk

Xd

t¼1

Pt½ikðt � tÞ þ i0kðt � tÞ�
 !

;

1 � j; k � n:

ð3:2Þ
J. R. Soc. Interface (2011)
Hence by equation (3.1)

ijðtÞ � Poisson
Xn

k¼1

b jk

Xd

t¼1

Pt½ikðt � tÞ þ i0kðt � tÞ�
 !

;

1 � j � n;

ð3:3Þ

where, as before, pt (1 � t � d) is the generation-time
distribution.

Note that in the case n ¼ 1 equation (3.3) reduces to
(2.3), with b11 ¼ Re, so that the multi-group model gen-
eralizes the homogeneous-population model considered
in §2.

Our aim is to use the available data in order to esti-
mate the next-generation matrix b. In general,
estimating the matrix b based on incidence time series
for each of the groups is difficult, due to the large
number of parameters (n2). Efforts in the literature to
address this problem attempt to reduce the number of
parameters that need to be estimated. One such
method restricts the structure of the matrix b in certain
ways, for example by assuming proportionate mixing, or
assuming that certain groups of matrix elements are
equal [32–34]. Another approach is to use independent
data drawn from surveys on social contacts between
people in various age groups [35].

Here, we develop a new approach that exploits the
fact that we have, in addition to the incidence data, a
dataset consisting of infected individuals for whom we
know the identity of the individual who infected
them, and in particular the age groups to which the
infector and the infectee belong are known. These
data contain information on the next-generation
matrix b. To extract this information, a likelihood func-
tion is formulated, which expresses the probability of
obtaining the two types of data (incidence data and
infection network data) as a function of the matrix b.
The likelihood function is then maximized with respect
to the matrix parameter b, resulting in the maximum
likelihood estimate for b. We now describe the
construction of the likelihood function.
3.2. Derivation of the likelihood function

Our two types of data available are thus:

(DI) Incidence data. The numbers ij(t), i0j ðtÞ of
new local and imported cases in group j for 1 � j � n,
1 � t � T.
(DII) Infection network data. A set of L triples (tl, jl, kl)
(1 � l � L), where (tl, jl, kl) indicates that on day tl
a member of group jl was infected by member of group kl.

Assuming now that the infection process is described
by the model (3.3), we compute the probability
L(b) ¼ P(DI, DIIjb), which can be decomposed as

PðDI;DIIjbÞ ¼ PðDIjbÞ � PðDIIjDI;bÞ: ð3:4Þ

Each of the terms in the decomposition (3.4) may be
computed separately. The quantity P(DI j b), that is
the probability of obtaining the incidence data ij(t)
from model (3.3) given knowledge of b, is a direct
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generalization of the computation made above for the
one-group model, giving

PðDIjbÞ¼
Yn
j¼1

YT
t¼dþ1

PðijðtÞjikðt0Þ;1� t0 � t�1;1� k�nÞ

¼
Yn
j¼1

YT
t¼dþ1

1
ijðtÞ!

e�
Pn

k¼1
bjk

Pd

t¼1
Pt½ikðt�tÞþi0k ðt�tÞ�

�
Xn

k¼1
bjk

Xd

t¼1
Pt½ikðt�tÞþ i0kðt�tÞ�

h iijðtÞ
:

ð3:5Þ

Next we compute P(DIIjb, DI), which is the prob-
ability of obtaining the data (tl, jl, kl) (1 � l � L)
given the knowledge of b and of the incidence data
ij(t). Assume that we randomly sample a member of
group j who was locally infected on day t. We will com-
pute the probability P((t,j,k)jb, DI) that the infector of
the sampled individual is in group k. The likelihood of
obtaining the dataset (tl, jl, kl) (1 � l � L) is then
given by

PðDIIjDI;bÞ ¼
YL
l¼1

Pððtl ; jl ; klÞjDI;bÞ: ð3:6Þ

It should be noted that the above makes no
assumption about the manner in which the infected
cases whose infector is known are drawn from the
population. In particular, the probability of an
infected person being asked about or being aware of
the identity of their infector is not assumed to be
independent of the age of the infected person. The
probability computed is that of an individual’s infec-
tor being in a certain age group k conditional on the
assumption that the infected individual is in a certain
age group j.

Given knowledge of ijk(t) (the number of people
from group j who were infected by a member of
group k), the probability that the infector of a
random member of group j is a member of group k
is simply P((t,j,k)jDI, ijk(t)) ¼ ijk(t)/ij(t). However,
we do not know the value of ijk(t) (in other words,
it is a latent variable), but we can compute the prob-
ability distribution of ijk(t) given b and DI, as done
below. Thus, given the values of b and of the inci-
dence data DI, the probability P((t,j,k)jDI, b) will
be computed as

Pððt; j; kÞjDI;bÞ ¼
Xn

r¼1

Pððt; j; kÞjDI; i jkðtÞ ¼ rÞ

� Pði jkðtÞ ¼ rjDI;bÞ

¼ 1
ijðtÞ

Xn

r¼1

Pði jkðtÞ ¼ rjDI;bÞ � r:

ð3:7Þ

We need, then, to compute P(ijk (t) ¼ rjDI, b). To do
so, it is convenient to set X ¼ ijk(t), Y ¼

P
k0=k i jk 0 ðtÞ;

and note that, by equation (3.1), the value

X þ Y ¼ ijðtÞ ð3:8Þ
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is known, given DI. Also, by equation (3.2), we have
that

X �Poisson b jk

Xd

t¼1

Pt½ikðt�tÞþ i0kðt�tÞ�
 !

;

and Y �Poisson
X
k0=k

b jk 0
Xd

t¼1

Pt½ik0 ðt�tÞþ i0k0 ðt�tÞ�
 !

:

ð3:9Þ

We now note the following general fact: if X and Y
are independent random variables with X � Poisson(a)
and Y � Poisson(b), then the distribution of X
given that it is known that X þ Y ¼ m, is binomial,
given by

PðX¼xjXþY ¼mÞ¼PðX¼x;Y ¼m�xÞ
PðXþY ¼mÞ

¼e�að1=x!Þax �e�bð1=ðm�xÞ!Þbm�x

e�ðaþbÞð1=m!ÞðaþbÞm

¼
m

x

� �
a

aþb

� �x b
aþb

� �m�x

:

Applying this to our X and Y, using equations (3.8)
and (3.9) we obtain

Pði jkðtÞ ¼ rjDI;bÞ ¼ PðX ¼ rjX þ Y ¼ ijðtÞÞ

¼ ijðtÞ
r

� �
Crð1� CÞij ðtÞ�r ;

where

C ¼
b jk
Pd

t¼1 Pt½ikðt � tÞ þ i0kðt � tÞ�Pn
k0¼1 b jk0

Pd
t¼1 Pt½ik0 ðt � tÞ þ i0k0 ðt � tÞ�

:

Therefore, from equation (3.7)

Pððt;j;kÞjDI;bÞ¼
1

ijðtÞ
Xn

r¼1

ijðtÞ
r

� �
Crð1�CÞij ðtÞ�r �r¼C

¼
bjk
Pd

t¼1Pt½ikðt�tÞþ i0kðt�tÞ�Pn
k0¼1bjk 0

Pd
t¼1Pt½ik0 ðt�tÞþ i0k0 ðt�tÞ�

and together with equation (3.6) we obtain

PðDIIjDI;bÞ

¼
YL
l¼1

b jl kl

Pd
t¼1 Pt½ikl ðtl � tÞ þ i0kl

ðtl � tÞ�Pn
k0¼1 b jl k0

Pd
t¼1 Pt½ik0 ðtl � tÞ þ i0k0 ðtl � tÞ�

:

ð3:10Þ
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Figure 5. Simulation study of estimation of the next-generation
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Combining equations (3.4), (3.5) and (3.10) we
finally have our likelihood function.

LðbÞ ¼
Yn
j¼1

YT
t¼dþ1

1
ijðtÞ!

e�
Pn

k¼1
b jk

Pd

t¼1
Pt½ikðt�tÞþi0k ðt�tÞ�

�
Xn

k¼1
b jk

Xd

t¼1
Pt½ikðt� tÞ þ i0kðt� tÞ�

h iij ðtÞ

�
YL
l¼1

b jl kl

Pd
t¼1 Pt½ikl ðtl � tÞ þ i0kl

ðtl � tÞ�Pn
k0¼1 b jl k0

Pd
t¼1 Pt½ik0 ðtl � tÞ þ i0k0 ðtl � tÞ�

:

ð3:11Þ

We used the numerical routine fminunc in Matlab
(Mathworks) to maximize this function with respect
to the parameters bjk.
matrix b using our maximum likelihood method. Generating

simulated data using the matrix b ¼
1:2 0:2 0:4
0:05 0:8 0:2
0:3 0:1 0:5

0
@

1
A;

(with dominant eigenvalue R0 � 1.4), our method was used
to estimate b from the simulated data. The relative error,
given by equation (3.12), for the next-generation matrix esti-
mation for various values of L (number of who-infected-who
samples) and T (number of days of incidence data), is shown
(filled black circle, T ¼ 30; filled inverted triangle, T ¼ 45;
filled grey squares, T ¼ 60).
3.3. Testing performance on simulated data

A simulation study was conducted to test the perform-
ance of this maximum likelihood procedure for
estimating b, and in particular to examine whether
the information contained in a dataset of the size that
we have is sufficient for obtaining accurate estimates
of the parameters. Simulated data DI and DII were
generated using a matrix b that we chose in advance.
These data were used to estimate the matrix by maxi-
mizing the likelihood (3.11), obtaining an estimated
matrix b̂ , which was then compared with the true b

generating the data.
The simulated data DI and DII are generated as

follows:

— Starting with some initial values ij(t) for days
1 � t � d, we simulate, for each day d þ 1 � t � T,
the number ijk(t) of people in age group j who
were infected on that day by people in age group
k, and the total number of infected individuals in
age group j. This requires randomly drawing ijk(t)
according to

i jkðtÞ � Poisson b jk

Xd

t¼1

Pt½ikðt � tÞ þ i0kðt � tÞ�
 !

;

ijðtÞ ¼
Xn

k¼1
i jkðtÞ

(we took i0j ðtÞ, the number of imported cases, to be
zero in our simulations).

— For each 1 � l � L, we randomly uniformly choose
a day d þ 1 � tl � T and a group 1 � jl � n, and
then choose 1 � kl � n (the age group of the
infector of an individual in group jl who was
infected on day tl) at random with the probabilities
Pðkl ¼ kÞ ¼ i jl kðtÞ=i jl ðtÞ:

In the simulation tests, we took n ¼ 3 age groups, and
arbitrary matrices b were chosen. The quality of esti-
mation was determined for different amounts of
simulated data, by varying the number of days T used
(and hence the number of cases in the incidence
series) and the size L of the available infection network.
For each value of L and T, 100 sets of simulated data DI

and DII were generated. For each of these the estimated
matrix b̂ was computed using the maximum likelihood
J. R. Soc. Interface (2011)
method described above, and the relative error

RE ¼ kb̂ � bk
kbk ; ð3:12Þ

where the norm of a matrix M is given by

kMk ¼
P

jk M 2
jk

� �1
2

was computed. The average rela-

tive error over the 100 simulated datasets is reported.
Figure 5 shows the results from one typical example.

As expected, the quality of the estimate increases both
with the number of days of incidence data and with the
size of the infection network available. Especially sig-
nificant is the comparison of the quality of the
estimate for L ¼ 0 (i.e. no infection network data and
b is estimated based only on the time series of infec-
tives), to the case where a small amount (L ¼ 50) of
infection network data are available. We see a dramatic
improvement in the accuracy of the estimation, even
with a small amount of infection network data. For
example, 30 days into the epidemic, estimating b on
the basis of incidence data alone would given an average
relative error of RE ¼ 0.8, which means that the esti-
mate is worthless, but with only L ¼ 50 cases in the
infection network data a relative error of RE ¼ 0.29 is
obtained, indicating a dramatic improvement.
3.4. Bootstrap CIs for the next-generation
matrix

To quantify the precision of our estimate b̂ of the next-
generation matrix, bootstrap CIs were constructed
using a procedure similar to the one used in the simu-
lation tests discussed in §3.3. After obtaining the
estimate b̂ , 1000 realizations of the data DI and DII
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were simulated, using b̂ as the next-generation matrix,
with T ¼ 44, L ¼ 97 matching the observed data, and
with numbers of imported cased i0j ðtÞ taken from the
observed data. For each of these 1000 datasets, the
next-generation matrix was re-estimated, yielding

1000 matrices ^̂
b . For each component of this matrix,

the highest and the lowest 25 values were removed.
The interval containing the remaining values gives,
for each component, the 95% bootstrap CI.
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Figure 6. (a) Representation of the estimated next-generation
matrix b: each bar represents the average number of infections
caused by a single infected individual of the corresponding age
group in each of the age groups. (b) Representation of the
next-generation matrix based only on social contacts as
derived from the POLYMOD study [37]. The ages are grouped
slightly differently than in (a) since the social contact matrices
in this study were given in 5-year age bands (filled
dark grey region, 0–18; filled grey region, 19–29; white
region, 30þ).
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Figure 7. Confirmed 2009 H1N1 cases in each age group (solid
line) and the simulation curve obtained by averaging 1000
simulations of the stochastic age group model (3.3) using
the estimated matrix b (dashed line), together with 95%
bands (dotted lines). (a) 0–18 age group, (b) 19–29 age
group and (c) 30þ age group.
3.5. Estimation of the next-generation matrix for
the Israeli H1N1 pandemic data

For our data on confirmed cases from the initial period of
the H1N1 pandemic in Israel in the summer of 2009,
we used incidence data from three age groups (0–18,
19–29, 30þ), with T ¼ 44 days (20 May–2 July), and
infection network data with L ¼ 97 infectees. We also
made use of i0j ðtÞ, the number of imported cases in each
age group, from our data. The resulting maximum-
likelihood estimate b̂ , together with the 95%
bootstrap CIs calculated as described in §3.4, were
found to be

b̂¼
0:99 ½0:77;1:16� 0:07 ½0:00;0:17� 0:23 ½0:06;0:44�
0:16 ½0:00;0:31� 0:73 ½0:56;0:88� 0:30 ½0:08;0:55�
0:25 ½0:13;0:37� 0:10 ½0:04;0:17� 0:37 ½0:17;0:55�

0
@

1
A:

This means, for example, that a child (0–18) infects,
on average, 0.99 children, 0.16 young adults (19–29)
and 0.25 adults (30þ). The information contained in
this matrix is displayed in figure 6a. The height of
each column in the figure represents the average
number of individuals that one person in the corre-
sponding age group infects, and each column is
divided into three parts representing the number of
infections in each age group. The spectral radius of b̂
is R̂e � 1:14, slightly higher than what was found
using the homogeneous model.

To test goodness of fit, figure 7 displays the inci-
dence time series in each of the three age groups,
together with 95 per cent bands for the incidences,
generated by 1000 simulations according to model
(3.3), using the estimated matrix b̂ . While the inci-
dences for the children and adult groups always lie
within the 95 per cent band obtained from simulation,
for the young adult group we find some deviations
from this band on certain days. In other words, the
fitted three age group model does not completely cap-
ture the epidemic dynamics. This can be due to some
heterogeneity which is not taken into account by the
model. More particularly, we hypothesize that infec-
tions among army soldiers, who are part of the
young adult group, may play a role here, as the con-
tact patterns of soldiers are likely to differ from
those of other young adults.

It is of interest to compare the estimated next-gener-
ation matrix b̂ with the matrix that would be obtained
based on data about contacts among individuals of
different age groups. According to the ‘social contact
hypothesis’ [35,36], variations in epidemic dynamics in
different age groups can be explained by the different
contact rates among different groups. Since data on
J. R. Soc. Interface (2011)
social contacts in Israel are not available, we employ
data from the European POLYMOD study [37]. The
matrices corresponding to eight European countries
were averaged, and age groups were aggregated to
obtain a 3 � 3 matrix corresponding as closely as poss-
ible to the age groups considered here. The resulting
matrix was multiplied by a constant so as to obtain a
matrix with a dominant eigenvalue of 1.14, identical
to that of the estimated matrix b̂ . The result is
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presented in figure 6b. We observe considerable differ-
ences between the matrix b̂ estimated from our data
and the European contact matrix. The most significant
difference is that according to our estimated matrix b̂ ,
the number of members of the 30þ age group that are
infected by members of each of the age groups is
much lower than would be expected from the European
contact matrix. In other words, the relatively low inci-
dence rate in the adult age group cannot be
accounted for solely in terms of social contacts, at
least under the assumption that the European contact
matrix reflects social contacts in Israel. This supports
the hypothesis of reduced susceptibility of people in
the 30þ age groups, compared with younger age
groups as was suggested by other studies [38,39].
4. DISCUSSION

Themodelling tools and analyses that have beendescribed
here could be valuable in real time to help obtain a picture
of the unfolding of an epidemic during its onset phase.
They rely on: (i) credible daily incidence data, including
classification of cases into ‘imported’ versus ‘local’ infec-
tions, (ii) representative sampling of infection networks.
We now discuss several general points, which we found
to be of importance and could be significant for future
work in analysing epidemics.

In the case study reported here we were fortunate to
possess an excellent database, due to the fact that at the
beginning of novel H1N1 epidemic strong efforts were
taken by the Israeli health authorities to test every sus-
pected case of influenza. It should be noted, however,
that the application of the methods presented here
does not require that the available incidence data be
complete, so that they can be employed in contexts
where detection is far from complete. For example,
since the estimator (2.4) for the effective reproductive
number is invariant to multiplication of all the values
i(t) and i0(t) by a fixed number, it can be employed
under the assumption that i(t) and i0(t) represent an
unknown (but fixed) fraction of the real cases. Changes
in the detection efforts during the period in question,
resulting in a change in the fraction of cases detected,
will lead to biases in the estimates. Similarly, estimates
of the next-generation matrix b for the age group
model, as performed here, will still be valid assuming
that the available incidence data are only a representa-
tive sample of the real cases, on the assumption that the
detection rate is identical among the different age
groups. Differences in the detection rate among differ-
ent age groups (for example, if members of some age
groups are less likely to seek medical care) will lead to
biases in the estimated next-generation matrix.

Our results highlight the importance of taking into
account infected persons arriving into a region or
country, only as infectors, rather than being included
as part of the local infected population. Failure to do
so will result in an overestimate of Re. For example,
had all infections been regarded as local, the estimate
for Re via equation (2.4) (taking i0(t) ¼ 0), would
have resulted in Re ¼ 1.27 (95% bootstrap CI
[1.17,1.37]). Alternatively, if the imported infectives
J. R. Soc. Interface (2011)
had been removed from the data, this would have
resulted in Re ¼1.26 (95% bootstrap CI [1.16,1.37]).
These values should be compared with the value Re ¼

1.06 that we obtained by taking imported infectives
into account in the correct way. Of course as the epi-
demic spreads the number of immigrant cases becomes
negligible in comparison to the locally infected cases,
so that the correction becomes insignificant. But as
the example here shows, at the initiation of the epi-
demic, the imported infectives have a significant effect
on the estimate of Re.

We developed a new method for combining both the
age-specific incidence data and infection networks data
in order to estimate the next-generation matrix. Apply-
ing this method to our data, a next-generation matrix
was estimated, and using simulations, bootstrap CIs
for the elements of this matrix were obtained. Our simu-
lation study made evident that as the size of the
sampled infections network increases, the estimated
matrix b converges to the true one used for generating
the simulations (i.e. the estimator is consistent). Thus
the method proposed here for estimating the next-
generation matrix, without making any ad hoc assump-
tions about its structure, could be of value in modelling
future epidemics. Since obtaining an accurate estimate
using this method depends on having infection network
data, this provides a strong motivation for collecting
data on who was infected by whom at the beginning
of an epidemic. It should be noted, however, that the
method presented here for employing the infection net-
work in estimating the next-generation matrix, as well
as the bootstrap CIs computed by simulations, depend
on the assumption that the sampling of the real infec-
tion network is random. To the extent that this is not
the case, for example if disproportionate fractions of
infections among particular pairs of age groups are
made in contexts in which they are more likely to be
identified than others (for example infection in a
school class as opposed to infection on a public bus),
the available infection network, and hence the esti-
mated next-generation matrix, will be biased. Our
bootstrap CIs account for uncertainty stemming from
random sampling, but not for uncertainty stemming
from systematic biases in sampling.

In comparing the observed incidence curves in three
age groups with simulations of the three age group
model, certain deviations of the data from the model
were noted in the young adult age group, which were
hypothesized to be related to outbreaks among soldiers.
This demonstrates an important role of modelling in the
study of an epidemic: deviations between a fitted model
and the observed data can alert us to significant factors
which were neglected by the model, and which may need
to be taken into consideration in mitigation efforts.

An inherent limitation of the data at the beginning
of an epidemic is the fact that although it is possible
to estimate Re ¼ R0S0/N, these data are insufficient
to estimate R0 and S0 separately. In other words it is
impossible to know what the real reproduction
number R0 is and what the fraction of susceptible S0

in the population is. Without knowledge of these quan-
tities one cannot predict the unfolding of the epidemic
at later stages and in particular its final size [40]. In
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order to make such predictions it is necessary to find an
independent method to estimate either R0 or S0. For
example, serological tests of random sample of the
population could potentially be used to estimate S0.
This suggests the need for increasing standard surveil-
lance efforts by ensuring inclusion of basic serological
testing of the population, performed at the beginning
of the epidemic. Using estimates of S0 (which could
vary in different age groups), together with the model-
ling approach presented here, one could project forward
in time to estimate the course of the epidemic and study
possible interventions through simulation.
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APPENDIX A. PARAMETER
ESTIMATION—BAYESIAN APPROACH

Assuming a prior distribution r(Re) for Re, the
posterior distribution of Re given the data is given by

PostðReÞ

¼ rðReÞPðiðtÞ;1� t �T jReÞÐ1

0 rðR0eÞPðiðtÞ;1� t �TÞdR0e

¼

rðReÞ
QT

t¼dþ1ð1=iðtÞ!Þe
�Re

Pd

t¼1
Pt½iðt�tÞþi0ðt�tÞ�

Re
Pd

t¼1 Pt½iðt� tÞþ i0ðt� tÞ�
h iiðtÞ

Ð1

0 rðR0eÞ
QT

t¼dþ1ð1=iðtÞ!Þe
�R0e
Pd

t¼1
Pt½iðt�tÞþi0ðt�tÞ�

R0e
Pd

t¼1 Pt½iðt� tÞþ i0ðt� tÞ�
h iiðtÞ

dR0e

¼ rðReÞRn
e e�CReÐ1

0 rðR0eÞR0ne e�CR0e dR0e

;

where we have set n ¼
PT

t¼dþ1 iðtÞ,
C ¼

PT
t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�.

A standard Bayesian estimate for Re is the mean of
the posterior distribution, that is

R	e ¼
ð1

0
Re PostðReÞdRe ¼

Ð1

0 rðReÞRnþ1
e e�CRe dReÐ1

0 rðReÞRn
e e�CRe dRe

:

Let us take the uniform (improper) prior r(Re) ; 1, and
evaluate R	e .

Since
Ð1

0 xme�cxdx ¼ ðm!=cmþ1Þ, we obtain

R	e ¼
n þ 1

C
¼

1þ
PT

t¼dþ1 iðtÞPT
t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�

:

Note that except for the insignificant difference of 1
in the numerator, R	e is the same as the maximum like-
lihood estimate obtained before.

A useful measure of how precise the estimate R	e is
(that is how informative are the data), is to compute
the variance s2 of the posterior distribution
s2 ¼ EðR2

eÞ � ðEðReÞÞ2 ¼ EðR2
eÞ � ðR	eÞ

2:
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Since

EðR2
eÞ ¼

ð1

0
R2

e PostðReÞ dRe ¼
Ð1

0 Rnþ2
e e�CRe dReÐ1

0 Rn
e e�CRe dRe

;

¼ ðn þ 1Þðn þ 2Þ
C2 ;

we obtain

s2 ¼ ðn þ 1Þðn þ 2Þ
C2 � ðn þ 1Þ2

C2 ¼ n þ 1
C2

¼
1þ

PT
t¼dþ1 iðtÞPT

t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�

� �2 :

Moreover, in the Bayesian approach, it is easy to find
the 95% CI, that is an interval of Re’s on which
95 per cent of the probability is concentrated. Choosing
this interval to be [R	e � d;R	e þ d� we just need to

choose d so that
ÐR	eþd
R	e�d

PostðReÞdRe ¼ 0:95, that isÐR	eþd
R	e�d

rðReÞRn
e e�CRe dRe ¼ 0:95, which is easy to do

numerically.
We can also use the evaluation of s2 (in the case

r (Re) ; 1) given above to obtain an approximate
95% CI under the assumption that the posterior distri-
bution is approximately normal. This is given by
½R	e � 1:96s;R	e þ 1:96s�, so that an approximate
credible interval for Re is given by ½R�e ;Rþe �, where

R+
e ¼

1þ
PT

t¼dþ1 iðtÞ+ 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

PT
t¼dþ1 iðtÞ

q
PT

t¼dþ1

Pd
t¼1 Pt½iðt � tÞ þ i0ðt � tÞ�

:

REFERENCES

1 Cohen, J. & Enserink, M. 2009 Infectious diseases as swine
flu circles globe, scientists grapple with basic questions.
Science 324, 572–573. (doi:10.1126/science.324_572)

2 Miller, M. A., Viboud, C., Balinska, M. & Simonsen, L.
2009 The signature features of influenza pandemics—
implications for policy. New Engl. J. Med. 360,
2595–2598. (doi:10.1056/NEJMp0903906)

3 Peiris, J. S. M., Poon, L. L. M. & Guan, Y. 2009 Emer-
gence of a novel swine-origin influenza A virus (S-OIV)
H1N1 virus in humans. J. Clin. Virol. 45, 169–173.
(doi:10.1016/j.jcv.2009.06.006)

4 Lipsitch, M., Riley, S., Cauchemez, S., Ghani, A. C. &
Ferguson, N. M. 2009 Managing and reducing uncertainty
in an emerging influenza pandemic. New Engl. J. Med.
361, 112–115. (doi:10.1056/NEJMp0904380)

5 Roll, U., Katriel, G., Yaari, R., Stone, L., Barnea, O.,
Mendelson, E., Mendelboim, M. & Huppert, A. Sub-
mitted. Onset of a pandemic: characterizing the initial
spread of swine flu (H1N1) epidemic in Israel.

6 WHO. 2009 Changes in reporting requirements for
pandemic (H1N1) 2009 virus infection. See http://www.
who.int/csr/disease/swineflu/notes/h1n1_surveillance_
20090710/en/.

7 Diekmann, O. & Heesterbeek, J. A. P. 2000 Mathematical
epidemiology of infectious diseases: model building,
analysis and interpretation. Chichester, UK: Wiley.

8 Keeling, M. J. & Rohani, P. 2008 Modeling infectious dis-
eases in humans and animals. Princeton, NJ: Princeton
University Press.

http://dx.doi.org/10.1126/science.324_572
http://dx.doi.org/10.1056/NEJMp0903906
http://dx.doi.org/10.1016/j.jcv.2009.06.006
http://dx.doi.org/10.1056/NEJMp0904380
http://www.who.int/csr/disease/swineflu/notes/h1n1_surveillance_20090710/en/
http://www.who.int/csr/disease/swineflu/notes/h1n1_surveillance_20090710/en/
http://www.who.int/csr/disease/swineflu/notes/h1n1_surveillance_20090710/en/


Modelling the initial phase of epidemics G. Katriel et al. 867
9 Kermack, W. O. & Mckendrick, A. G. 1927 A
Contribution to the mathematical theory of epidemics.
Proc. R. Soc. Lond. A 115, 700–721. (doi:10.1098/rspa.
1927.0118)

10 Murray, J. D. 1989 Mathematical biology. Berlin,
Germany: Springer.

11 Carrat, F., Vergu, E., Ferguson, N. M., Lemaitre, M.,
Cauchemez, S., Leach, S. & Valleron, A. J. 2008 Time
lines of infection and disease in human influenza: a
review of volunteer challenge studies. Am. J. Epidemiol.
167, 775–785. (doi:10.1093/aje/kwm375)

12 Brauer, F. 2008 Age-of-infection and the final size relation.
Math. Biosci. Eng. 5, 681–690. (doi:10.3934/mbe.
2008.5.681)

13 Mccaw, J. M., Mcvernon, J., Mcbryde, E. S. & Mathews,
J. D. 2009 Influenza: accounting for prior immunity.
Science 325, 1071–1071. (doi:10.1126/science.325_1071a)

14 White, L. F. & Pagano, M. 2008 A likelihood-based
method for real-time estimation of the serial interval and
reproductive number of an epidemic. Statist. Med. 27,
2999–3016. (doi:10.1002/sim.3136)

15 White, L. F., Wallinga, J., Finelli, L., Reed, C., Riley, S.,
Lipsitch, M. & Pagano, M. 2009 Estimation of the repro-
ductive number and the serial interval in early phase of
the 2009 influenza A/H1N1 pandemic in the USA. Influ-
enza Resp. Vir. 3, 267–276. (doi:10.1111/j.1750-2659.
2009.00106.x)

16 Chowell, G. & Nishiura, H. 2008 Quantifying the trans-
mission potential of pandemic influenza. Phys. Life Rev.
5, 50–77. (doi:10.1016/j.plrev.2007.12.001)

17 Chang, C. et al. 2010 The novel H1N1 Influenza A global
airline transmission and early warning without travel con-
tainments. Chinese Sci. Bull. 55, 3030–3036. (doi:10.
1007/s11434-010-3180-x)

18 Charland, K. M. L., Buckeridge, D. L., Sturtevant, J. L.,
Melton, F., Reis, B. Y., Mandl, K. D. & Brownstein, J. S.
2009 Effect of environmental factors on the spatio-temporal
patterns of influenza spread. Epidemiol. Infect. 137, 1377–
1387. (doi:10.1017/S0950268809002283)

19 Cruz-Pacheco, G., Duran, L., Esteva, L., Minzoni, A. A.,
Lopez-Cervantes, M., Panayotaros, P., Ahued Ortega, A. &
Villaseñor Ruiz, I. 2009 Modeling of the influenza
A(H1N1)v outbreak in Mexico city, April–May 2009, with
control sanitary measures. Eurosurveillance, 14, pii¼19254.
See http://www.eurosurveillance.org/ViewArticle.aspx?
ArticleId¼19254.

20 Fraser, C. et al. 2009 Pandemic potential of a strain
of influenza A (H1N1): early findings. Science 324,
1557–1561. (doi:10.1126/science.1176062)

21 Hsieh, H. 2010 Pandemic influenza A (H1N1) during
winter influenza season in the southern hemisphere. Influ-
enza and Other Respiratory Viruses 4, 187–197. (doi:10.
1111/j.1750-2659.2010.00147.x)

22 Kelly, H. A., Grant, K. A., Williams, S., Fielding, J. &
Smith, D. 2009 Epidemiological characteristics of pan-
demic influenza H1N1 2009 and seasonal influenza
infection. Med. J. Austral. 191, 146–149.

23 Mcbryde, E. S., Bergeri, I., van Gemert, C., Rotty, J.,
Headley, E. J., Simpson, K., Lester, R. A., Hellard, M. &
Fielding, J. E. 2009 Early transmission characteristics of
influenza A(H1N1)v in Australia: Victorian state
16 May–3 June 2009. Eurosurveillance 14, pii¼19363.
See http://www.eurosurveillance.org/ViewArticle.aspx?
ArticleId¼19363.
J. R. Soc. Interface (2011)
24 Nishiura, H., Castillo-Chavez, C., Safan, M. & Chowell, G.
2009 Transmission potential of the new influenza
A(H1N1) virus and its age-specificity in Japan.
Eurosurveillance 14, pii¼19227. See http://www.eurosur
veillance.org/ViewArticle.aspx?ArticleId¼19227.

25 Nishiura, H., Wilson, N. & Baker, M. G. 2009b Estimating
the reproduction number of the novel influenza A virus
(H1N1) in a Southern Hemisphere setting: preliminary
estimate in New Zealand. NZ Med. J. 122, 73–77.

26 Tuite, A. R. et al. 2009 Estimated epidemiologic par-
ameters and morbidity associated with pandemic H1N1
influenza. Can. Med. Assoc. J. 182, 131–136. (doi:10.
1503/cmaj.091807)

27 Hahne, S. et al. 2009 Epidemiology and control of influ-
enza A(H1N1)v in the Netherlands: the first 115 cases.
Eurosurveillance 14, 2–5.

28 Balcan, D. et al. 2009 Seasonal transmission potential and
activity peaks of the new influenza A(H1N1): a Monte
Carlo likelihood analysis based on human mobility. BMC
Med. 7. (doi:10.1186/1741-7015-7-115)

29 ICDC 2010 Influenza activity weekly reports 2009–2010.
See http://www.health.gov.il/english/pages_E/default.
asp?maincat=15.

30 Greenbaum, J. et al. 2009 Pre-existing immunity against
swine-origin H1N1 influenza viruses in the general
human population. Proc. Natl Acad. Sci. USA 106,
20 365–20 370. (doi:10.1073/pnas.0911580106)

31 Medlock, J. & Galvani, A. P. 2009 Optimizing influenza
vaccine distribution. Science 325, 1705–1708. (doi:10.
1126/science.1175570)

32 Anderson, R. M. & May, R. M. 1991 Infectious diseases of
humans. New York, NY: Oxford university Press.

33 Kanaan, M. N. & Farrington, C. P. A. 2005 Matrix models
for childhood infections: a Bayesian approach with appli-
cations to rubella and mumps. Epidemiol. Infect. 133,
1009–1021. (doi:10.1017/S0950268805004528)

34 van Effelterre, T., Shkedy, Z., Aerts, M., Molenberghs, G.,
van Damme, P. & Beutels, P. 2009 Contact patterns and
their implied basic reproductive numbers: an illustration
for varicella-zoster virus. Epidemiol. Infect. 137, 48–57.
(doi:10.1017/S0950268808000563)

35 Wallinga, J., Teunis, P. & Kretzschmar, M. 2006 Using
data on social contacts to estimate age-specific trans-
mission parameters for respiratory-spread infectious
agents. Am. J. Epidemiol. 164, 936–944. (doi:10.1093/
aje/kwj317)

36 Wallinga, J., Edmunds, W. J. & Kretzschmar, M. 1999
Perspective: human contact patterns and the spread of air-
borne infectious diseases. Trends Microbiol. 7, 372–377.
(doi:10.1016/S0966-842X(99)01546-2)

37 Mossong, J. et al. 2008 Social contacts and mixing pat-
terns relevant to the spread of infectious diseases. PLoS
Med. 5, 381–391. (doi:10.1371/journal.pmed.0050074)

38 Fisman, D. N., Savage, R., Gubbay, J., Achonu, C.,
Akwar, H., Farrell, D. J., Crowcroft, N. S. & Jackson, P.
2009 Older age and a reduced likelihood of 2009 H1N1
virus infection. New Engl. J. Med. 361, 2000–2001.
(doi:10.1056/NEJMc0907256)

39 Hancock, K. et al. 2009 Cross-reactive antibody responses to
the 2009 pandemic H1N1 influenza virus. New Engl. J. Med.
361, 1945–1952. (doi:10.1056/NEJMoa0906453)

40 Katriel, G. & Stone, L. 2010 Pandemic dynamics and the
breakdown of herd immunity. PLoS ONE 5, e9565.
(doi:10.1371/journal.pone.0009565)

http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1098/rspa.1927.0118
http://dx.doi.org/10.1093/aje/kwm375
http://dx.doi.org/10.3934/mbe.2008.5.681
http://dx.doi.org/10.3934/mbe.2008.5.681
http://dx.doi.org/10.1126/science.325_1071a
http://dx.doi.org/10.1002/sim.3136
http://dx.doi.org/10.1111/j.1750-2659.2009.00106.x
http://dx.doi.org/10.1111/j.1750-2659.2009.00106.x
http://dx.doi.org/10.1016/j.plrev.2007.12.001
http://dx.doi.org/10.1007/s11434-010-3180-x
http://dx.doi.org/10.1007/s11434-010-3180-x
http://dx.doi.org/10.1017/S0950268809002283
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19254
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19254
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19254
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19254
http://dx.doi.org/10.1126/science.1176062
http://dx.doi.org/10.1111/j.1750-2659.2010.00147.x
http://dx.doi.org/10.1111/j.1750-2659.2010.00147.x
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19363
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19363
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19363
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19363
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19227
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19227
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19227
http://www.eurosurveillance.org/ViewArticle.aspx?ArticleId=19227
http://dx.doi.org/10.1503/cmaj.091807
http://dx.doi.org/10.1503/cmaj.091807
http://dx.doi.org/10.1186/1741-7015-7-115
http://www.health.gov.il/english/pages_E/default.asp?maincat=15
http://www.health.gov.il/english/pages_E/default.asp?maincat=15
http://dx.doi.org/10.1073/pnas.0911580106
http://dx.doi.org/10.1126/science.1175570
http://dx.doi.org/10.1126/science.1175570
http://dx.doi.org/10.1017/S0950268805004528
http://dx.doi.org/10.1017/S0950268808000563
http://dx.doi.org/10.1093/aje/kwj317
http://dx.doi.org/10.1093/aje/kwj317
http://dx.doi.org/10.1016/S0966-842X(99)01546-2
http://dx.doi.org/10.1371/journal.pmed.0050074
http://dx.doi.org/10.1056/NEJMc0907256
http://dx.doi.org/10.1056/NEJMoa0906453
http://dx.doi.org/10.1371/journal.pone.0009565

	Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study
	Introduction
	Data

	Discrete time stochastic age-of-infection model and estimation of re
	Discrete time stochastic age-of-infection model
	Estimating the effective reproductive number
	Application to Israeli H1N1 2009 pandemic data: estimation of Re

	Discrete time stochastic age-of-infection model with age groups and estimation of the next-generation matrix
	The stochastic age-of-infection model with age groups
	Derivation of the likelihood function
	Testing performance on simulated data
	Bootstrap CIs for the next-generation matrix
	Estimation of the next-generation matrix for the Israeli H1N1 pandemic data

	Discussion
	We are grateful for support from the European FP7 grant Epiwork, the Israel Science Foundation and the Israel Ministry of Health. RY is supported by the Israel National Institute for Health Policy and Health Services Research. UR is supported by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities.
	Appendix A. Parameter estimation—bayesian approach
	REFERENCES


