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We study the mechanics of pull-off of a barnacle adhering to a thin elastic layer which is
bonded to a rigid substrate. We address the case of barnacles having acorn shell geometry
and hard, calcarious base plates. Pull-off is initiated by the propagation of an interface
edge crack between the base plate and the layer. We compute the energy release rate of
this crack as it grows along the interface using a finite element method. We also develop
an approximate analytical model to interpret our numerical results and to give a closed-
form expression for the energy release rate. Our result shows that the resistance of barnacles
to interfacial failure arises from a crack-trapping mechanism.
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1. INTRODUCTION

Barnacles are small marine invertebrates (crustaceans).
Systematic study of barnacles started with Charles
Darwin, who spent 8 years collecting, classifying and
carrying out microscopic studies [1]. Figure 1 shows
one of the sketches from his monograph depicting the
acorn barnacle Balanus tintinnabulum in cross section.
Barnacles attach to submerged surfaces, including
rocks, lobsters and whales, and are persistent foulants
of man-made structures such as piers and ship hulls.
Fouling by barnacles and other marine plants and
animals can substantially increase propulsive fuel con-
sumption and maintenance costs [2,3]; therefore, there
is a great need to develop strategies to prevent the
settlement and growth of organisms like barnacles on
ship and other marine surfaces. There are essentially
three strategies. The first is to use toxic coatings such
as tributyltin (TBT)-based paints or organic booster
biocides [2,4]. However, TBT coatings can cause serious
environmental damage [5]. The adverse effects of
organic booster biocides on living organisms were sum-
marized by Evans et al. ([2], see table 3). The second
strategy is to use non-toxic anti-biofouling surfaces to
reduce intermolecular interaction. Two main classes of
such coatings are: (i) a low-surface energy release coat-
ing made of non-polar, low modulus, hydrophobic
elastomer such as poly(dimethylsiloxane) (PDMS) [6];
(ii) a surface resistant to protein adsorption and
cell adhesion, made of hydrophilic polymers with low
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polymer/water interfacial energy like polyethylene
glycol [7]. The third strategy is to use surface architecture
to reduce the settlement of marine foulants, and possibly
reduce adhesion between the biofoulant and the surface.
For example, Schumacher et al. [8] engineered hierarchi-
cal surface structures with microscale pillars and ridges,
inspired by shark skin. By tuning the aspect ratio of the
topographical features, they can reduce the settlement of
marine foulants such as algal zoospores and barnacles.
Efimenko et al. [9] recently developed surface topo-
graphies with hierarchical wrinkles of different length
scales, which were also shown to have better settlement
resistance than smooth coatings.

Barnacles bond to surfaces by secreting proteins which
cure into a thin layer of adhesive plaque or cement. The
biochemical properties of barnacle cement have been
investigated [10-12], and are described in a recent
review by Kamino [13]. How the adhesive cures is still
not fully understood. Recent work of Dickinson et al.
[14] suggested that cement polymerization may be a
specialized form of wound healing similar to blood clot-
ting. The structure of the thin (approx. 1 pm) adhesive
layer has been shown to be a fibrillar [14-17] protein
with secondary structure exhibiting characteristics of
amyloid-folded (antiparallel B-sheet) proteins in Balanus
amphitrite [17]. Above the proteinaceous cement layer in
many barnacles is a calcified base plate, imparting further
mechanical rigidity to the adhesive interface. The compli-
ance of base plates for the barnacle B. amphitrite was
recently measured by Ramsay et al. [18]. Finally, the
exterior shell structure of many species of barnacles has
been demonstrated to be mechanically robust owing to
a combination of shell mineralization and architectural
geometry of the interlocking plates [19,20].

This journal is © 2011 The Royal Society
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Figure 1. A drawing showing the anatomy of a barnacle in
cross section (Balanus tintinnabulum) in Darwin [1].

In this paper, we study the fracture mechanics of bar-
nacle adhesion on release coatings. Specifically, we treat
the geometric case of an acorn-shaped barnacle with a
hard calcarious base plate. A common method to test
the effectiveness of a fouling-release coating is to deter-
mine the force needed to pull a rigid cylindrical flat
punch bonded to a thin layer of elastomer [21-23].
The rigid flat punch or stud is often referred to as a
pseudo-barnacle and the thin elastic layer represents
the release coating. Pull-off occurs by the propagation
of an interface crack initiating from the edge of the
punch. Data from these tests are often interpreted
using Kendall’s expression [24] for the force F. required
to detach a rigid flat cylindrical punch from a thin
elastomer layer on a rigid substrate [21-23], i.e.

2Wa K
F, = md? VVhd ,

where a is the radius of the punch, K the bulk modulus
of the elastic layer, W,q the work of adhesion of the bar-
nacle—coating interface and h the layer thickness. One
of the difficulties with Kendall’'s model is that the
force is proportional to the square root of the bulk mod-
ulus, which is infinite for incompressible materials.'
This difficulty arises because the compliance of the
layer C'is estimated by the expression

(1.1a)

h
=% (1.1d)
which becomes increasingly inaccurate as the thickness
of the layer decreases. A much more accurate approxi-
mation for the compliance was used by Lakrout &
Singer [25] to study the pull release of a cylinder stud
epoxied to a silicone coating. Their energy release rate
is based on a formula developed by Shull & Crosby
(SC) [26]. In the limit of a very thin incompressible
layer, i.e. a/h>1, the SC formula predicts that the

'Elastomers such as PDMS are practically incompressible, with
Poisson’s ratio very close to 0.5.
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pull-off force is given by

F. =\ omEW,a? (%) 3/2’ (1.2)

where ®w=32/9 is a numerical constant. The SC
formula removes the singularity in Kendall’s theory
as the bulk modulus is replaced by FE, the Young mod-
ulus of the layer. However, because this formula is
obtained by curve fitting to the finite element results
of Ganghoffer & Gent [27], the pull-off force is off by
a numerical factor in the limit of very thin layers.
According to the exact analysis of Yang & Li (YL)
[28], for very thin layers that are perfectly bonded to
the punch, the numerical constant @ should be /2.

Despite the difficulty with Kendall’s model (e.g.
K=o for incompressible materials), pull-release
experiments using rigid studs showed that the pull-off
force scales reasonably well with 1/v/A [21,29]. This
paradoxical result can be explained by a recent work
of Chung & Chaudhury [29], who pointed out that
the incompressible constraint in the thin elastic layer
will lead to cavitation on the punch-layer interface,
which is also observed by Kohl & Singer in an earlier
work [22]. Based on this idea, they proposed that the
pull-off force is given by:

[3.3 W E
F, = ma® T(d,

which is identical to equation (1.1a) except that the
bulk modulus K in equation (1.1a) is replaced by
1.65F in equation (1.3), thus avoiding the mathematical
difficulty of an infinite pull-off force for incompressible
materials.

As shown in figure 1, acorn barnacles have a shell-like
structure whose interior is partially occupied by soft
tissues. In contrast, the form and structure of the
B. amphitrite shell is shown in figure 2. A volume-
rendered tomogram of the exterior showing the parietes
and radii is shown in figure 2a, while a cut-away of the
interior in figure 2b shows the sheath, inner lamina, the
thin calcarious base and radial channels in the base. An
X-ray radiograph (figure 2¢) of a live barnacle shows
that the barnacle shell is approximately axisymmetric.
Furthermore, overlaid lines in figure 2c¢ indicate the
approximate regions for the tomography slices (shown in
figure 2d,¢) of live barnacles adhering to a flat substrate.

B. amphitrite has a rather ingenious joint system
around the periphery, similar to dovetail joints, attach-
ing the parietes to the base. Description of these
buttressed, dovetail structures, their interlocking fea-
tures and the strength of various barnacle shells are
well described in the papers of Murdock & Currey [20]
and Barnes et al. [19]. While musculature is certainly
involved, the presence of this rigid buttressing system
can be easily demonstrated (figure 2d). The magnitude
of the mechanical contribution of the shell structure will
certainly far exceed that of the musculature, which is
neglected in this work.

The cross section in figure 2e shows the basic design
of the barnacle parietal and base plates and forms the
basis of the model to be presented. The operculum
has been removed for clarity. The parietes contain

(1.3)
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Figure 2. X-ray radiograph and tomograms of Balanus amphitrite showing the structure of the shell. (a) Volume-rendered tomo-
gram overview of a barnacle shell. (b) Volume renderings of a live barnacle’s shell showing a quarter section from the interior with
an elliptical cutout in the base to highlight the channels in the base. (¢) Radiograph of a live barnacle with lines indicating the
approximate regions shown in (d) and (e). (d) Tomogram two-dimensional secant slice reconstruction showing the outer lamina,
longitudinal canals, longitudinal septum and inner lamina above, and the interlocking parietes and base plate structures below in
a live barnacle. (€) Tomogram two-dimensional thick transverse section reconstruction, near the mid-section of a live barnacle,
showing the shell cross section (the operculum has been removed for clarity). Data are from two representative live individuals

and one shell. (Online version in colour.)

hollow longitudinal channels, and the interlocking but-
tresses are located at the base of the stiffening ribs
shown in figure 2b. The shell wall typically thickens in
the sheath around the top of the shell.

These figures suggest that certain details of the release
process may not be captured by modelling the barnacle as
a rigid cylindrical flat punch and that a more accurate
model is to treat the barnacle as a hollow shell capped
with a thin base plate (figure 3). While this simplified
geometry (hollow cylindrical punch) does not capture
all the architectural features of a real barnacle, such as
the longitudinal and radial channels in the parietal
plates and base plate, angled sides and interlocking
interior buttresses (figure 2b,d,e), it is a geometry that
captures the most relevant aspects of the shell structure
while allowing analytical evaluation of the release
fracture mechanics problem.

J. R. Soc. Interface (2011)

Some aspects of the analytical problem can be
informed from the existing experimental data. Recent
experiments by Ramsay et al. [18] reported on direct
measurements of base plate compliance of the barnacle
B. amphitrite. As the soft tissue has very low modulus
and does not fully occupy the shell’s interior, its effect
on the deformation of the shell and the base plate can
be neglected. Therefore, it is treated as a material
with zero elastic modulus. Our approach is similar to
Chung & Chaudhury [29], who modelled the barnacle
as a thin plate attached to a soft elastic punch, but
without an outer shell. Using this model, they obtained
a semi-empirical expression for the pull-off force which
provided a good fit for their experimental data. How-
ever, they did not provide details on how the energy
release rate varies with crack length. In this work,
we replace the soft elastic punch, in the study of
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Figure 3. Geometry of the barnacle model. The thickness of
the base plate is ¢ (not shown in figure).

Chung & Chaudhury [29], with a stiff elastic shell and
perform a detailed analysis on the release mechanics.

The plan of this paper is as follows: we present a
model of pull-release in §2. Analytical and numerical
results for the energy release rate are also given in this
section. In §3, we discuss and compare the prediction
of different barnacle pull-release models. Section 4
summarizes the results of this work.

2. MODELLING BARNACLE ADHESION
2.1. Adhesion model

For the purpose of this paper, we will consider the side
plates and base plate as a homogeneous solid. The bar-
nacle can be viewed as an axis-symmetric circular
conical shell with height b and a base of radius a. The
conical shell has a uniform thickness d. The bottom of
the conical shell is covered with a base plate of uniform
thickness ¢t. The Young modulus and Poisson’s ratio of
the barnacle and the base plate are denoted by FEj,
and vy, respectively. The base plate is assumed to
adhere perfectly to the top surface of a flat layer of
incompressible elastic material with Young’s modulus
E and thickness h. The bottom surface of this elastic
layer is bonded to a rigid substrate.

We consider the problem of pull-release where a ver-
tical displacement A is applied to the conical shell.
Owing to axisymmetry, the force F resulting from this
applied displacement is also vertical. To simplify the
analysis further, we replace the conical shell by a cylind-
rical shell or tube of thickness d with inner radius a. The
bottom of this tube is covered with a circular plate of
radius R= a + d and thickness t. A vertical displace-
ment A is applied to the top of the tube to pull the
barnacle off. With respect to a cylindrical coordinate
system (r, 6, z; figure 3), the base plate occupies the
region 0 <r<a, 0<2z<t while the elastic layer
occupies the region 0 < r<<oo, —h < z2<<0.

As the modulus of the barnacle is much larger
than the elastic layer, the elastic tube (a + d < r < a,
2>0) can be considered to be approximately rigid.
Therefore, the outside edge of the tube at r=a+ d

J. R. Soc. Interface (2011)
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Figure 4. The base plate between a + d and c is pull-off from
the interface owing to the applied displacement A. The inter-
face crack occupies the region where ¢ < r< a+ d. (Online
version in colour.)

can be considered as the front of an exterior circular
interface crack, which occupies the region 7> a+ d,
z=0. At sufficiently large applied displacement or
load, this external crack will grow along the interface
and eventually reach the thin base plate. As the plate
is very thin, it carries very little strain energy, so the
maximum energy release rate is anticipated to occur
near the edge r= a+ d. The energy release rate will
decrease dramatically as the interface crack moves
into the region occupied by the base plate. As a
result, the crack will be trapped until it reaches the
location where the energy release rate is a minimum.
As a result, larger displacement must be applied to
further propagate the crack.

Our primary goal is to compute the energy release
rate of a crack which has initiated from the edge with
its front located at r= ¢, where 0 < c<a+ d. The
crack is loaded by a vertical displacement A as shown
in figure 4.

Crack growth takes place in two regions. In region 1,
the crack starts at the edge r=a+ d, and grows
inwards until it reaches the thin base plate. In this
region the crack front lies in a<r<a+d In
region 2, the crack grows on the interface between the
base plate and the release layer. In this region, we can
define an effective crack length a — ¢. This assumption,
together with dimensional analysis, allows us to write
the energy release rate in the form:

DA? h
G—4g(s,,c), a—c>t, (2.1a)
a a’' a
where
64 Dh B3
= D=——" 2.1b
*TEa 12(1 — ) (2.19)

In equation (2.1b), D is the bending rigidity of the
plate. The dimensionless parameter & is a ratio of
the stiffness of the elastic layer to the stiffness of the
plate.” The energy release rate in both regions will be

% is obtained by noting that the maximum displacement of a clamped
circular plate of radius a subjected to a uniform pressure p is pa’ /64D.
The same pressure acting on a thin unconstrained layer of thickness h
will cause a displacement of ph/FE.
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determined using a finite element method (FEM).
Note that the special case of € — oo corresponds to
the rigid punch solution of Lakrout & Singer [25].
Typically, the release coating is made of elastomers
with modulus of about E=3 MPa and thickness h
from 0.2 to 4 mm. The size of the barnacle, a, may
range from 1.5 to 5 mm. Base plate stiffness D has
been measured for laboratory-grown B. amphitrite bar-
nacles [18] and was found to range between 0.0002 and
0.008 Nm, with most measurements having D <
0.003 Nm (37 of 43 measurements). An estimate of
the effective modulus of the base plate was made
from these values and the measured thickness of
each base plate; the estimate was 3—-6 GPa without
considering the hollow structure and assuming v, =
0.3. The ratio of base plate thickness, t, to shell
radius, a, ranged between 2.5 and 5 per cent. Using
equation (2.1b), the range of the dimensionless par-
ameter ¢ is from 10~2 to 100.

In the following, we derive an analytical expression
for the energy release rate in region 2. We achieve
this by treating the elastic layer as an elastic foun-
dation of stiffness k. The stiffness of the foundation
is an unknown parameter which is used to fit finite
element results. The solution of our analytical
model will be given below. This solution will be com-
pared with the finite element result given in a later
section.

2.2. Analytical model for energy release rate
in region 2

The governing equations for the deflection of the plate,
w(r), are:
LPw=0,
DL*w = —kw,

a>r>c,
c>r>0,

(2.2a)
(2.20)

where L is the linear differential operator defined by

r~td(rdw/dr)
L = 2.2
(w) =42 (2.20)
Equation (2.2a) states the detached plate surfaces
are traction-free. Equations (2.2a) and (2.2b) are
solved with the boundary conditions:

w(a) = —A,%(a) =0, (A>0), (2.2d)
dw

Equation (2.2d) states that a vertical displacement A
is applied to the edge of the plate at 7= a. Also, the
slope of the deflection at r=a is 0 as it is attached

to the shell there. Equation (2.2e) is due to
symmetry.
The general solution of equation (2.2a) is

w=dn’In n+ don’ + d3 In p+ dy, (2.3a)

where 7 is the normalized distance defined by
1\ V4
= == . 2.3b
n=ar, «a < D) (2.3b)
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The general solution of equation (2.2b) is given in
Timoshenko & Woinowsky-Krieger [30],

w= by bern+ bybein+ bskern+ bykein, (2.4

where ‘ber’, ‘bei’, ‘ker’ and ‘kei’ are Kelvin functions of
order zero. The functions ker and kei are singular at n =
0 leading to unbounded displacement and shear force at
the origin. As these quantities are bounded, b3 = b, = 0.
Also, the boundary condition (2.2¢) is automatically
satisfied as

dbern  dbein

- ar 0at r=0.

(2.5)

In summary, there are six unknowns dy, ds, ds, dy, b1,
by and two equations resulting from the boundary con-
dition (2.2d). Four additional equations are needed to
solve for these unknowns. These equations are obtained
by imposing the continuity of w, dw/dr, d*w/dr?, d*w/
dr® at r= ¢. After some tedious calculations, we found

—A=da’Ina+ da’+ ds Ina+ dy, (2.60)
d-
0=2dalna+ dla+2d2a+§, (2.60)
i Inc+ b +dy Inc+ dy — by — bahy
=0, (2.6¢)

d-
2d1c In @+ dic + 2dhc + — — by — bopy = 0, (2.64)
C

d

2d, In @+ 3dy + 2dy — a% — b —bady =0 (2.6¢)
2d, 24

and TP = b — by =0, (2.6/)

where ¢ = ac, a = aa, ¢; (1) = ber(n), ¢ (1) = bei(n)
and a prime denotes differentiation with respect to 7.
To simplify notations, we use ¢ to denote ¢(n =<c)
in equation (2.6d). The same notation is used for ¢;
and higher derivatives in equations (2.6¢—f).

Equations (2.6a—f) can be solved exactly to give the
deflection. To derive the energy release rate G, we used
the fact that the total strain energy of the system
(plate + elastic layer) I'is FA/2, where F is the total
shear force applied at the plate edge, r= a(n = a).
For a circular plate, F'= 2mwa(@, where @ is the shear
force per unit length, and is found to be,

d[1d/ dw 40 Ddy
= D— _— _— = .
© dr [rdr <T dr)} ]

(2.7)

The total shear force F'at r= a is found by letting
7 = a in equation (2.7),

F = 87a’ Dd,. (2.8)
The energy release rate is
1 0 /1
=——(=FA 2.
¢ 2mrcdc (2 ) A (29)

Substituting equation (2.8) into (2.9), we found

ol

¢ ¢ oc

(2.10)

)
A
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where d; = dy/A. The solution for d; is (using the
symbolic tool in Matlab)

- AA
dy = Ady = —,

= (2.11)

where A and B are given by
A =42 ()" + (¢5)°) + 2¢(a” — &) (b by — o b)),

(2.124)
B =4¢ {a2 — & +2a2ln @) <1n (%) - 1>]

x ((60)+(¢0)") +8(a2 = &) (¢4 + 68)

2]

1 8¢ <02 —a’+2a’ln (—)) (1) + o)

ol

— 2
+¢ (e - a%) 416 — 4a%c (111 (g)) ]
X (pi1py — b)), (2.12b)
where
¢ = ber(c), ¢, = bei(c);
¢ = \/L_Q. (ber; (€) + bei; (¢)), (2.13)

&, — \%(—berl(é) + beis ().

Substituting equation (2.11) into (2.10) and using

equations (2.12a) and (2.12b), the energy release rate
is found to be

A'B— AB

G =2kA" ———— 2.14

- (2.14)

where

A =43 (¢ ¢ — bodh) + 26(87 — ) (] + ¢3)

(2.150)
B =4 [52 ~&@+23’In (%) <ln (%) - 1)]
X (o1, — doby)
| (@ —a%) —4a%e <ln (i))Q (62 + ¢2)
(2.15b)

We end this section by pointing out the following
interesting  result, the energy release rate
equation (2.14) becomes much simpler for a very stiff
foundation, i.e.

a= <£> 1/4>> Z(ors < 1). (2.16)

D
For this case, we use the asymptotic behaviour of the
Kelvin functions [31] to obtain the leading behaviours
of A, B, A/ and B’ and substitute these results into
equation (2.14) to compute the energy release rate. In

J. R. Soc. Interface (2011)

this limit, the energy release rate is found to be

_8DA* (1- ¥ +21In x)?
ot (¢ —1)" —axt(n p*)*’

Equation (2.17) can also be obtained by solving the pro-
blem of a circular plate in contact with a rigid substrate.
It should be noted that Wan [32] has studied the adhesive
contact between a flat rigid punch and a circular thin
film. Both bending and stretching deformations were
included in his work. In the limit of an unstretchable
elastic plate, Wan’s solution and ours agree.

Although it is possible to carry out a similar analysis
for € — oo, which corresponds to the limit of an infi-
nitely stiff plate (i.e. rigid punch or stud), the
foundation model in this limit is not a good approxi-
mation; the energy release rate for this case should be
given by the SC or YL model.

C
=% (21
X=- (2.17)

2.3. Numerical determination of the energy
release rate

To study the accuracy of our analytical model and to
determine the energy release rate in region 1, we deter-
mine the energy release rate using FEM. Our FEM
model is based on the full geometry which is shown in
figure 3. Specifically, the base plate is modelled as an
isotropic linear elastic continuum with Young’s mod-
ulus E,, and Poisson’s ratio vy, =0.3. The barnacle
shell is modelled as an elastic continuum and the base
plate is assumed to be perfectly bonded to the elastic
tube. The elastic layer is incompressible and its lower
surface is perfectly bonded to a rigid half space. Details
of the FEM are given in the electronic supplementary
material. The energy release rate is determined using
two methods, which gives consistent results. The first
method computes G by evaluating the path indepen-
dent J integral [33]. The second, less accurate method,
computes G using changes in global strain energy
owing to crack extension.

2.4. Results

To test our analytical solution, we consider two limiting
cases: the first corresponds to a thin layer and the
second a thick layer. In the first case, h/a=0.1. The
normalized energy release rate G = a*G/DA? for this
case is plotted against the normalized contact radius
¢/a in figure 5. When ¢ = a + d, the crack front is at
the outer edge of the shell. Complete detachment
occurs when ¢ = 0. The dashed line in figure 5 is the
finite element result. The analytical result (equation
(2.14)) is given by the solid line. The agreement
between the two results is extremely good in the
region ¢/a < 0.9. The analytical result underestimates
the energy release rate for shorter cracks, which is
expected since plate theory breaks down in this
regime for stiff foundations, i.e. thin layers. It should
be noted that the analytical result is obtained by treat-
ing kor B = kh/F as a fitting parameter. Recall that k is
the foundation stiffness which we assumed to be inde-
pendent of contact radius. This assumption is
consistent with our numerical result where 8= 2.955.
Figure 5 shows that the energy release rate is very
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Figure 5. Normalized energy release rate G versus normalized
contact radius ¢/a for h/a=0.1. The dashed line is obtained
using the FEM and the solid line is given by the analytical sol-
ution (2.14) with B = kh/E = 2.955. A zoom-in of the same
curve for small contact is given in the insert. (Online version
in colour.)
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Figure 6. Normalized energy release rate G versus normalized
contact radius ¢/b for h/a = 2.0. The dashed line is obtained
using the FEM and the solid line is given by the analytical
solution with B=kh/E="7.351 (see equation (2.14)). A
closer view of the curve for small contact radius is given in
the insert. (Online version in colour.)

high for short cracks (i.e. in region 1) then decreases
rapidly as the crack extends into the region covered
by the base plate.

The energy release rate for a very thick release layer
(unlikely in practice) is shown in figure 6. The finite
element solution is shown by the dashed line; the solid
line represents the analytical result (equation (2.14)).
Even in this limit where the foundation model is not
expected to be accurate, the agreement between equation
(2.14) and the numerical results are quite good. For
example, the relative error is less than 35 per cent for
0.1 < ¢/a<0.9. Note that the energy release rate still
drops quickly as the crack moves into regime 2.

J. R. Soc. Interface (2011)
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Figure 7. Normalized energy release rate G versus normalized
contact radius ¢/a for h/a=0.1, 0.25, 0.5 and 2. The case
where the substrate is rigid (k — o) is also plotted for com-
parison using equation (2.17). (Online version in colour.)
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Figure 8. The parameter 8 = kh/E versus the layer thickness
h/a. Data are obtained for ea/h=64D/Ea’= 0.0229.
(Online version in colour.)

Figure 7 plots the FEM energy release rate versus
crack length for different thickness ratios h/a. The
case where the substrate is rigid, equation (2.17), is
shown in the figure as a solid black line. Note that
equation (2.17) provides an upper bound for the
energy release rate. Figure 7 shows that the energy
release rate for short cracks is very sensitive to the
thickness ratio h/a. As the crack extends, this sensi-
tivity to the thickness ratio decreases substantially. In
the long crack regime, equation (2.17) can be used as
a crude estimate for the energy release rate.

Finally, the normalized foundation stiffnesses
B = kh/F for different h/a are plotted in figure 8. For
the parameters used in our calculations, the analytical
results using these normalized foundation stiffnesses
provide very good approximations to our numerical
results. Note that we have assumed that the fitting
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parameter 8 = kh/E depends only on h/a, that is, it is a
property of the elastic layer, although theoretically it
can also be dependent on 64D/ Ea®, which we assume
to be a small number.

3. FORCE- VERSUS DISPLACEMENT-
CONTROLLED TEST: PULL-OFF FORCE

In this section we discuss the prediction of the different
barnacle pull-release models in the literature. We first
compare the Kendall model with the SC or YL model,
since they are the same models for the same test.
These models will be compared with a cavitation
model proposed by Chung & Chaudhury [29] (see §1).
Comparison is also made between our model and
these previous models. However, it must be noted
that our model is based on different geometry, so it is
not surprising that our results are different from
these models.

In the literature on barnacle release little is said about
the differences between force- versus displacement-
controlled testing. In a force-controlled test, pull-off is
typically associated with the unstable propagation of
the interface crack, whereas in a displacement-controlled
test, crack growth can be stable after the peak force (e.g.
the pull-off force in a load-controlled test). Here we con-
sider two extreme cases: loading machines that are either
perfectly compliant (force-controlled) or infinitely stiff
(displacement-controlled).

As an example, consider Kendall’s model. Imagine
the scenario where an interface crack has propagated
and the punch is in partial contact with the elastic
layer. Let ¢ be the contact radius (0 < ¢ < a), where a
is the punch radius. This case is equivalent to a rigid
punch of radius ¢ in contact with the same elastic
layer. As the energy release rate G is independent of
the compliance of the loading device, it is

F’h NK
2m Kt 2h
where we have used equation (1.2) to relate the punch
displacement A to the applied force F. Assuming that
the interface has a constant work of adhesion W4,
the condition of crack growth is G = W_4. According
to equation (3.1), in a force-controlled test, the crack
initiates at ¢ = a when

F=F, = a2 0
c h )

which is equation (1.1a). Equation (3.1) states that, for
a fixed force, the energy release rate increases with
decreasing ¢ (crack grows inwards as ¢ decreases); there-
fore, pull-off occurs at crack initiation. In a
displacement-controlled test, the condition G= Wy,

implies that
[2Waah
A=A =2
K

Note that the energy release rate is independent of the
punch radius in a displacement-controlled test. However,
once the critical displacement (or the critical force) is

(3.1)

(3.2)

(3.3)
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reached, any further increase in displacement will cause
unstable crack growth; therefore, pull-off occurs once
the crack initiates for both displacement- and force-
controlled tests.

The predictions are quite different if the expression
of SC is used to compute the energy release rate. For
very thin layers (a/h>>1), the energy release rate is

h3 F2 B wEA® 2

T wEwd  ahd (34a)
where we have used
A h3

Recall w =32/9 is a numerical constant. Enforcing
the fracture criterion G = W,q4, the pull-off force is

found to be
JwETWag 3
F(: = Ta .

Note that in a force-controlled test, the energy
release rate increases rapidly with decreasing c; there-
fore, crack growth in a force-controlled test is unstable
and pull-off occurs when c¢= a. In a displacement-
controlled test, the displacement needed to satisfy the
condition G= W,q is

A, :ﬁ /WhWad.
c ol

Crack growth is stable in this case since the energy
release rate reduces as ¢ decreases. To quantify this, let
Aa = a — ¢ denote the amount of crack growth, using
equations (3.4a), (3.6) and the condition G= Wy,
we found

(3.5)

(3.6)

Ay a

A.  (a—Aa)’ (8.7)
where A, is the displacement needed to initiate the crack
growth. Equation (3.7) shows that it is necessary to
increase the applied displacement to grow the crack.
The dependence of the force F, on the crack increment
can be obtained using equations (3.7) and (3.4b),

3
P {a Aa] E.

a

(3.8)

Thus, the peak force in a displacement-controlled
test occurs at crack initiation, then decreases rapidly
with increasing crack increment.

In summary, Kendall’s model predicts that crack
growth is unstable for both load- and displacement-
controlled tests, whereas the SC model predicts that
crack growth is unstable in a load-controlled test but
stable in a displacement-controlled test. The pull-off
load (e.g. the peak load in a displacement-controlled
test) for these models scales with material and
geometrical parameters in very different ways. Specifi-
cally, Kendall’s model predicts that F, o< a?/v/h,
which implies that the pull-off stress is independent of
the punch radius and is inversely proportional to the
square root of the layer thickness. The SC or YL
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model, however, predicts that F,oc a®/ h*?, which
means that the pull-off stress is proportional to
a/h*/*. The additional factor of a/h in the SC or YL
models suggest that the pull-off stress in these models
is much more sensitive to variations in geometry than
Kendall’s model.

As mentioned in §1, the pull-off force obtained by
Chung & Chaudhury [29] is similar to Kendall’s but
with K replaced by 1.65F. It is interesting to point
out that, Yang & Li [28] considered the special case
where both the punch—layer and the layer—substrate
interfaces are frictionless. For this case, they show
that the pull-off force is given by

Fo— g [8Waa E
c 3h

which is the same as Kendall’s model except that the
bulk modulus K is replaced by the 8 /3. These results
show that pull-off force in the punch problem is, not
surprisingly, very sensitive to lateral constraints. Lat-
eral constraint is not nearly as severe in our model
owing to the thin plate geometry.

In our model, interface crack growth under displace-
ment control is very stable owing to the rapid decrease
in energy release rate as the crack advances. This fea-
ture is quite different from predictions of the rigid
punch model. For example, in Kendall’s model (see
equation (3.1)), the energy release rate is independent
of crack length, whereas our model shows that it
decreases rapidly with crack length. The SC model
predicts that the energy release rate decreases as the
crack grows, which qualitatively agrees with our
model (but is actually significantly different as shown
in figure 9). Direct comparison of our model with the
rigid punch model is difficult because the geometries
are different, which leads to different parameters con-
trolling the energy release rate. This is further
complicated by the fact that K — oo in the Kendall
model for incompressible coatings. A simple way to
avoid some of these difficulties is to plot the normalized
energy release rate, G/ G versus the normalized contact
radius, where Gy is the energy release rate needed to
initiate crack growth in each model. Note that Gy can
be very different for different models, but such a plot
will allow us to gain insight on how the energy release
rate varies with crack length in a displacement-con-
trolled test. These normalized energy release rates are
plotted in figure 9. Figure 9 shows that the energy
release rate of our model decreases much faster than
that predicted by the SC model.

In force control, our numerical result showed that
crack growth is unstable, that is, pull-off occurs once
the crack initiates from the edge. The force and displa-
cement in a displacement-controlled test for different
models in shown in figure 10. As in figure 9, we normal-
ize both Ay and Fy by their crack-initiation values, i.e.
A, and F.. We emphasize that there are significant
differences in A, and F, for different models. For
example, assuming Wya~1Jm % D=2 x 10" Nm,
E=3MPa, h=0.3mm and a= 3 mm, the pull-off
force F, predicted by our model is about 2.9 N, while
F. is 20 N for the SC model (equation (1.2)) and 5N

(3.9)
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Kendall

Shull-Crosby

plate (FEM)

0 0.2 0.4 0.6 0.8 1.0
normalized contact radius

Figure 9. Variation of energy release rate as crack advances using
Kendall’s, SC model and our FEM result when h/a=0.1.
Energy release rate is normalized by the value when crack front
is at the contact edge. The normalized contact radius for rigid
punch model (Kendall, SC) is ¢/a, where a is the punch radius.
For our model, it is ¢/(a+ d) (figure 3). (Online version in
colour.)

using the modified Kendall model derived by Chung
& Chaudhury (equation (1.3)). For simplicity, our
result in figure 10 is obtained by assuming that the
crack initiates at ¢= a, which allow us to use the
analytical solution of regime 2 to compute the force
and displacement. The pull-off force using this approxi-
mation is:

F, =4ma(kD)"*\/ Wyq

y (bery(a))* + (beiy (a))*
[ber(a)[—ber; (a) + bei;(a)] — bei(a) ’
x [ber;(a) + bei; (a)]|

(3.10)

where a is the normalized radius of the base plate,
a= ak1/4/D1/4, D the bending rigidity of the base
plate and k the stiffness of the elastic foundation. In
the example mentioned above, we estimate k
(=30 MPamm ') according to the results in figure 8.

4. SUMMARY AND DISCUSSION

Instead of modelling the barnacle as a rigid flat punch
or stud, we model it as a thin shell capped by a thin
plate. We carried out a detailed finite element analysis
to determine the energy release rate of an interface
crack as it grows from the edge of the barnacle shell
towards its centre. Under displacement control, the
energy release rate of a crack growing from the edge
decreases rapidly and reaches a minimum near the
centre of the plate. Also, in a displacement-controlled
test, the energy release rate decreases as the thickness
of the elastic layer increases. A closed-form solution
for the energy release rate based on a plate resting on
an elastic foundation is derived and is found to be a
good approximation to our finite element calculations
for most situations of practical interest. Our model
and our results differ from previous treatments, which
model the barnacle as a rigid cylindrical flat punch.
Comparison of different models is given in §3. We
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Figure 10. (a) Displacement needed to drive crack propagation A, as a function of contact radius ¢, when h/a = 0.1. Data are
normalized by A, i.e. the displacement needed to initiate crack propagation. (b) Force needed to drive crack propagation,
F; as a function of normalized contact radius ¢/a when h/a = 0.1. The force is normalized by its value when c¢= a, i.e. F.
The decrease in Fj as crack advances indicates that crack growth is unstable under force control. (Online version in colour.)

believe that Kendall’s model is not intended for incom-
pressible elastomers and that the SC or YL models
provide a much more accurate description for pull-
release if the interfaces were perfectly bonded and the
barnacle can be modelled as a rigid punch. However,
as pointed out by Chung & Chaudhury [29], interfacial
cavitation usually occurs in pull-release experiments
using rigid studs (see [23]); as a result, the SC or YL
models are not a good approximation because they are
derived based on a perfectly bonded interface.

Our model suggested that barnacles with calcarious
base plates use a crack-trapping mechanism to enhance
their adhesion. The thin plate geometry makes it diffi-
cult to dislodge even on a low-energy surface. Because
the energy release rate drops rapidly once the interface
crack moves under the base plate, the interface crack
will be trapped near the edge of the plate. Once
trapped, the large displacement required to drive the
crack (or bending the base plate) will cause severe bend-
ing of the base plate; this may cause the crack to deflect
into the base plate and break the plate instead of propa-
gating along the interface. This mode of failure is often
observed in experiments, and in fact has made it diffi-
cult to obtain fracture energy or critical removal
stresses from barnacle release experiments [23,34].
Singer et al. [23] studied the removal process of wild-
type barnacles, B. improvisus, from silicone foul-release
coatings using a force-controlled stud pull tester.
Release experiments were performed while observations
of the interfacial fracture process were made through
transparent substrates using video microscopy. They
found that pull-off typically resulted in the fracture of
the barnacle base plate, after initiation of a peeling pro-
cess from the periphery of the barnacle. They attributed
this fracture behaviour to stronger adhesion in the
centre of the barnacle base plate. Our study indepen-
dently suggests that underlying mechanism for this
behaviour lies in the crack-trapping process described
by the analytical model developed and presented above.

An example of a fractured (yet intact) barnacle inter-
face obtained by X-ray tomography of a live barnacle
specimen is shown in figure 11. It is interesting to
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Figure 11. X-ray tomogram showing a perspective view from
the bottom of a barnacle base plate showing a crack-arresting
fracture pattern. In this case, the fracture occurred through
the adhesive and into the mineralized base plate structure.
The fracture pattern follows stiffening structures found
within the barnacle shell (as shown in the upper left portion
of figure 2). (Online version in colour.)

note that this type of damage is repairable by the
animal. Further, we note that attempts to remove bar-
nacles from surfaces (in the laboratory or from a ship or
boat surface, for example) often results in the base plate
remaining behind. The barnacles shown in the figures in
our paper, B. amphitrite, exhibit shell structures includ-
ing rib-stiffened interior architecture where the base
plate joins the side plates (figure 2b,d). We note that
the fracture of the shell in this region is not probably
simply owing to tearing of the soft connective tissues
connecting the plates in the interior of the shell (as
shown in the elegant drawing in figure 1), but instead
results from the fracture mechanics conditions inherent
to the barnacle geometry and described by our model.
However, the mechanics of failure at this junction is
beyond the scope of this paper and we hope to address
it in a future work.

In our analysis, we have assumed that the work of
adhesion is a material constant. This assumption is jus-
tified only if the adhesive is spatially homogeneous. If
this is not the case, then the fracture condition G=
W,aq will still be correct, except that W,q will depend
on the crack position (i.e. the crack length).

Fouling-release coatings are designed with the aim of
allowing detachment of hard foulants like barnacles
from hydrodynamic stresses acting under normal oper-
ating conditions. External loadings on barnacles are
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dependent on the vessel velocity [35]. As it is unlikely
that the barnacle shell or the base plate creeps, the
effect of pull rate on release mechanics is controlled pri-
marily by the viscoelastic properties of the substrate
and interfacial rate processes. Maugis & Barquins [36]
have shown that interfacial rate processes can be
accounted for by a work of adhesion W,4 that depends
on the crack growth rate, which in our case is v = —dc¢/
d7, where 7 denotes time. Using our notation, the result
of Maugis & Barquins [36] can be expressed as:
v n
Waa(o) = W1+ ()], (4.1)
vk

where WY, is the thermodynamic work of adhesion or
the critical energy release rate at very slow crack
growth rates, v* is a characteristic speed where
Waa = QVI/'Sd and n is a fitting parameter. Lakrout &
Singer [25] have carried out pull tests on rigid cylindri-
cal flat punches bonded to a thin layer of elastomer
using different loading rates and showed good corre-
lations of their data to equation (4.1). There is no
difficulty in extending the present theory to include
interfacial rate effects, which may indeed affect release
mechanics [37]. Specifically, the loading rate effect can
be incorporated in the applied energy release rate G
by treating the displacement A in equation (2.14) as a
function of time, e.g. A= A(7). The pull-off force can
be computed using the equation G = W,4(v), where
W,a(v) is given by equation (4.1) and v= —de¢/dr
The problem becomes much more complicated if bulk
viscoelasticity of the substrate is involved and is
beyond the scope of this paper.

Figure 2 shows that the base plate is perforated
with channels. For mathematical simplicity, we did not
include these channels in our model. However, our
analysis suggested that barnacles may employ a second
crack-trapping mechanism to resist detachment. At the
periphery, the thickness of the base plate underneath
these channels can be reduced by as much as 80 per
cent at the growing edge of the barnacle (figure 2).
Since the bending stiffness of a plate is proportional to
the third power of its thickness, an 80 per cent reduction
in plate thickness can cause a substantial reduction in the
local energy release rate. Thus, an interface crack will be
trapped at the outer edge of these channels. We speculate
that barnacle’s structure contributes to the mechanical
function of resisting crack growth and hence impeding
their removal from surfaces.

Finally, we note that these results apply to barnacles
with a base plate. Many species of barnacles (e.g.
Balanus eburneus, see table 1 of [19]) do not have
base plate and hence our result cannot be applied to
these species.
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