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The last decade has seen much work on quantitative
understanding of human behaviour, with online
social interaction offering the possibility of more
precise measurement of behavioural phenomena than
was previously possible. A parsimonious model is pro-
posed that incorporates several observed features
of behavioural contagion not seen in existing epide-
mic model schemes, leading to metastable behavioural
dynamics.
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1. INTRODUCTION

There has been much recent interest in modelling the
spread of behaviours in society, particularly health
behaviours with respect to infectious disease [1]. At
the same time, recent empirical work highlights
that the complex nature of social contagion makes
it very different from ‘simple’ microparasite conta-
gion [2]. Modelling techniques have so far typically
involved either explicit stochastic simulation [3–6],
or else application of mathematical models originally
developed for other applications, such as the Sus-
ceptible-Infectious-Susceptible (SIS) epidemic model
considered by Kiss et al. [7] and Funk et al. [8]. An
alternative is to use a discrete-time formalism
[9,10], next-generation arguments [5] or methods
from statistical physics [11,12] to obtain results
about asymptotic behaviour of socially motivated
models, although typically calculating transient fea-
tures of system dynamics requires Monte Carlo
simulation.

While the existing dynamical models have clearly
significantly clarified thinking about behavioural
spread, and have also motivated important empirical
work, they often suffer from lack of mathematical
transparency, or are not specifically customized to
social contagion. In this paper, a mathematical
model that has a small number of easily interpretable
parameters is proposed, which reproduces several key
features of empirical work and empirically motivated
simulation.
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2. METHODS

2.1. General model

The general model framework is described as follows.
Consider a large, closed population, with a proportion
B(t) of that population engaging in a behaviour at a
given time t. At a given time, each individual is canvas-
sing the opinions of n other individuals in the
population in such a way that the proportion of individ-
uals in the population canvassing m individuals
engaging in the behaviour in question is Dm (which
depends on B(t) in addition to other static parameters).
We assume that individuals with m canvassed neigh-
bours who are engaging in the behaviour commence at
a rate tm or cease at a rate gm as appropriate for their
current behaviour state. The dynamical system for be-
haviour prevalence in the population at time t is then

_BðtÞ ¼
Xn

m¼0

DmðtÞðð1� BðtÞÞtm � BðtÞgmÞ: ð2:1Þ

To specify an integrable system, it is then necessary
to define a form for the dynamical parameters tm, gm

and a process for the generation of the proportion Dm.

2.2. Dynamical parameters

We now choose a form for the vectors (tm), (gm). It is
worth noting that the general form above can be
specialized to incorporate several other dynamical
forms. For example, if gm ¼ g and tm ¼ mt, we recover
the SIS dynamics of Funk et al. [1] and Kiss et al. [7]. As
another example, the approach of Salathé & Bonhoeffer
[6] takes tm ¼ m/n, gm ¼ (n 2 m)/n. Importantly, both
of these schemes depend only on the mean of Dm and so
are unaffected by the different distributions proposed
later. Dodds & Watts [9,10] consider generalized
‘dose–response’ behaviour, which in the simplest case
is a discrete time version of the simplest continuous
time model considered here. The more sophisticated
models analysed by Dodds & Watts make use of the dis-
crete time framework to consider agents with memory
while preserving independent sampling of the popu-
lation, whereas here dynamics remain Markovian but
the population samples are potentially dependent.

For opinion dynamics, motivated by a comprehen-
sive review of the literature and compelling empirical
evidence [2,4], we expect an S-shaped curve for the
response of behavioural transmission probability to
the number of encounters with a behaviour. For simpli-
city, the limiting case of such a curve is taken so that

tm ¼
t if m � a;
0 otherwise:

�
ð2:2Þ

This complex form for transmission has not yet been
included in other dynamical systems models of behav-
iour spread, and is the main benefit of the modelling
approach considered here. We assume for simplicity
that cessation of behaviour happens over time at a
rate independent of m, and for convenience work in
units of time, where gm ¼ 1. Where a is close to n/2,
then there will be similarities between these trans-
mission dynamics and majority vote models (e.g. [11,
12]) although behaviour cessation will be qualitatively
different.
This journal is q 2011 The Royal Society
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2.3. Canvassing method

To complete our model description, we need a form for
the proportion Dm. The simplest assumption is that
there are n independent trials with each trial having
probability B(t), meaning that

Dm ¼ Binðmjn;BðtÞÞ; ð2:3Þ

where Bin() is a binomial probability mass function as
defined in appendix A. This is interpreted as each indi-
vidual canvassing the opinion of n individuals, chosen
at random from the whole population. We now consider
two different generalizations of the binomial distri-
bution through different models of canvassing.

2.3.1. Clustering. To introduce clustering to the trials,
we consider the method of Klotz [13] (and the parame-
trization of Lindqvist [14]) for generation of Dm. In this
construction, the n individuals canvassed have states
fXigi¼1, . . . , n, which are stochastic variables taking the
value 1 for individuals engaging in the behaviour and
0 otherwise. These are chosen sequentially with

PrðX1 ¼ 1Þ ¼ BðtÞ;
PrðXi ¼ 1jXi�1 ¼ 1Þ ¼ BðtÞ þ cð1� BðtÞÞ

and PrðXi ¼ 0jXi�1 ¼ 0Þ ¼ ð1� BðtÞÞ þ cBðtÞ:

9=
;
ð2:4Þ

This introduces one static parameter, the clustering
c [ [0,1]. The full distribution Dm for each possible
value m of

P
i Xi that follows from this construction

is not reproduced here because of its complexity, but
can be found in equation (3.1) of Klotz [13].

2.3.2. Homophily. Homophily is the social process of
‘associating with like people’, and could be modelled in
the framework presented here by stratifying the popu-
lation as standard epidemic models represent risk groups
[15]. This would increase the dimensionality of the dyna-
mical system, and remove much of its attractive
simplicity. An alternative is to model homophily as a
partition of the population into self-loving groups. This
means that each individual canvasses without replace-
ment from a finite group of size N. A homophily
parameter h can then be defined through

h :¼ n
N

[ ½0; 1�; ð2:5Þ

so that as N!1, individuals canvass the whole popu-
lation, leading to the minimum homophily value of 0,
and where N ¼ n individuals canvas all of their homo-
phily group leading to the maximum h ¼ 1. Where M is
the largest integer less than N B(t), a well-behaved
distribution is then

Dm ¼ ð1þM � NBðtÞÞHypðmjN ;M ; nÞ
þ ðNBðtÞ �MÞHypðmjN ;M þ 1; nÞ;

ð2:6Þ

where Hyp(mjN, M, n) is the hypergeometric distribution,
representing the probability of m successful trials out of n,
drawing without replacement from a population of size N
with M individuals in the positive state. Equation (2.6)
assumes that homophily groups are as representative as
possible of the prevalence of belief in the population.
This assumption therefore represents a limiting case of
J. R. Soc. Interface (2011)
the process that generates finite groups. While in practice,
these groups are likely also to be heterogeneous with
respect to behaviour prevalence, such heterogeneity is
similar to the clustering introduced above, and so once
we have determined the impact of clustering, it makes
sense to consider homophily at minimal values of cluster-
ing to deliver an unambiguous dynamical signature.
3. RESULTS AND DISCUSSION

Having defined an Ansatz for a model of behavioural
contagion, equation (2.1) becomes a closed system
with one dynamical variable B(t), a real transmission
parameter t and an integer threshold for adoption of be-
haviour, a. We also defined two methods for canvassing
of opinion that introduce a neighbourhood size n, and
either clustering c or homophily h. Having an ODE-
based dynamical system as a model means that critical
behaviour, in particular, the ability of a behaviour to
become established in a sizeable proportion of the popu-
lation, can be evaluated exactly (meaning at machine
precision) and numerical integration is not computa-
tionally intensive. At the same time, this model
includes the feature of complex contagion as defined
by equation (2.2), meaning that it can capture behav-
iour not present in, for example, the SIS model.

While general analytical results for this model are
not obvious, if we consider the case where n ¼ 2, a ¼
2, then there are three fixed points of the system with
complex contagion:

B�0 ¼ 0; B�1 ¼
1
2
ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4g=tÞ

p
Þ

and B�2 ¼
1
2
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð4g=tÞ

p
Þ:

ð3:1Þ

When t , 4g, only the behaviour-free steady state
exists, and is stable. When t . 4g, B0

* and B2
* are

stable steady states, with B1
* being an unstable fixed

point above which the system evolves towards B2
* and

below which the system evolves towards B0
*. This is in

contrast to SIS dynamics where there are only two
fixed points: ~B0 ¼ 0, which is stable when 2t , g, and
~B1 ¼ 1� ðg=ð2tÞÞ, which is stable when 2t . g.

Figure 1 shows some results from numerical inte-
gration of the model. Figure 1a shows three of the
distributions considered: binomial, clustered and homo-
philous. In figure 1b, we see one of the main features of
this model that is qualitatively different from SIS
dynamics: complex contagions are metastable, with
both the ‘behaviour-free’ and ‘established behaviour’
steady states being absorbing. As Centola & Macy [3]
argued, this is a necessary feature for explaining how
initially unpopular norms can become established and
maintained through social pressure.

Also in figure 1, the impact of clustering (figure 1c) and
homophily (figure 1d) on behavioural dynamics is shown.
This provides a mathematical explanation for the results
seen in empirical work and simulation [2,4], namely that
clustering enhances behavioural transmission, while
homophily (as defined here, subject to caveats about
interpretation) reduces behavioural transmission. The
non-monotonicity seen in figure 1d is just an artefact of
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Figure 1. Numerical results for the behavioural model. Parameters n ¼ 6, a ¼ 3 are common to all figures. (a) Proportion Dm for
the baseline, binomial model (circles), in addition to the clustered distribution with c ¼ 1/3 (diamonds) and the homophily model
with h ¼ 2/3 (crosses). (b) Temporal dynamics of a complex contagion with t ¼ 1.8, c ¼ h ¼ 0. Depending on the initial preva-
lence of behaviour, both the ‘behaviour-free’ (dashed lines) and ‘established behaviour’ (solid line) steady states can be reached,
and are stable. The phase space of complex contagion is also shown for (c) clustering (solid line, t ¼ 1.5; dashed line, t ¼ 2; dotted
line, t ¼ 3; dashed-dotted line, t ¼ 5) and (d) homophily (diamonds, t ¼ 1.5; squares, t ¼ 2; circles, t ¼ 3; crosses, t ¼ 5). For
given values of t, c and h, different curves show the minimum values of behaviour prevalence that are needed for the system
to evolve towards the ‘established behaviour’ steady state.
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the discretization equation (2.6).These effects are not seen
for simple transmission, which only depends on the mean
of the distribution Dm and so is unaffected by changes in
clustering c or homophily h.

In summary, the mathematical model introduced here
complements and develops the existing work in three
mainways. Firstly, it incorporates manyof the advantages
of simple transmission models like the SIS model, in that
the threshold behaviour, fixed points, transient behaviour
andparameter sensitivity can be calculated numerically at
machine precision. Secondly, the rates and processes
defined implicitly in equation (2.1) can be used to define
a natural stochastic model using the methods of
Dangerfield et al. [16]. As there are relatively few par-
ameters, this opens up the possibility of rigorous
statistical fitting of model parameters, although finding
a robust method for inference and sufficiently high-quality
data is likely to pose a significant challenge. Finally, the
mathematical transparency of the model acts as a guide
J. R. Soc. Interface (2011)
to intuition, meaning that the exact causes of effects
seen in more sophisticated simulations and empirical
work can be better interpreted.

Work supported by the UK Engineering and Physical
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Keeling for helpful comments relating to this work.

APPENDIX A: STATISTICAL NOTATION

The binomial coefficients are given by

n
m

� �
¼ n!

m!ðn �mÞ! : ðA 1Þ

The binomial probability mass function is, for
integer m [ f0, . . . , ng,

Binðmjn; pÞ ¼ n
m

� �
pmð1� pÞn�m: ðA 2Þ
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The hypergeometric probability mass function is, for
integer m[ f0, . . . , ng,

HypðmjN ;M ; nÞ ¼

M
m

� �
N �M
n �m

� �

N
n

� � : ðA 3Þ
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