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Abstract

Introduction: A central issue in the design of microarray-based analysis of global gene expression is that variability resulting
from experimental processes may obscure changes resulting from the effect being investigated. This study quantified the
variability in gene expression at each level of a typical in vitro stimulation experiment using human peripheral blood
mononuclear cells (PBMC). The primary objective was to determine the magnitude of biological and technical variability
relative to the effect being investigated, namely gene expression changes resulting from stimulation with
lipopolysaccharide (LPS).

Methods and Results: Human PBMC were stimulated in vitro with LPS, with replication at 5 levels: 5 subjects each on 2
separate days with technical replication of LPS stimulation, amplification and hybridisation. RNA from samples stimulated
with LPS and unstimulated samples were hybridised against common reference RNA on oligonucleotide microarrays. There
was a closer correlation in gene expression between replicate hybridisations (0.86–0.93) than between different subjects
(0.66–0.78). Deconstruction of the variability at each level of the experimental process showed that technical variability
(standard deviation (SD) 0.16) was greater than biological variability (SD 0.06), although both were low (SD,0.1 for all
individual components). There was variability in gene expression both at baseline and after stimulation with LPS and
proportion of cell subsets in PBMC was likely partly responsible for this. However, gene expression changes after stimulation
with LPS were much greater than the variability from any source, either individually or combined.

Conclusions: Variability in gene expression was very low and likely to improve further as technical advances are made. The
finding that stimulation with LPS has a markedly greater effect on gene expression than the degree of variability provides
confidence that microarray-based studies can be used to detect changes in gene expression of biological interest in
infectious diseases.
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Introduction

Microarrays provide a powerful tool to quantify global gene

expression. A potential limitation is that variability resulting from

experimental processes may obscure changes resulting from the

effect being investigated. If the variability is substantial or

systematic, it may be erroneously interpreted as a genuine

difference. To date, there have been few studies quantifying the

variability and reproducibility of microarray experiments in

humans.

Sources of variability include biological (between subjects) and

technical (everything downstream from obtaining an RNA sample)

[1]. One study in humans assessing biological variability found

gene expression was influenced by a variety of factors including

age, sex, time of day of sampling and constituent cell subsets [2].

Further, there have been found to be familial similarities in

variability in baseline gene expression [3,4]. Technical variability

could result from any of the multiple steps involved in the

detection of gene expression changes using microarrays including

amplification of RNA and hybridisation [5]. Previous in vitro

microarray studies in tissue and cell lines to investigate whether

technical or biological variability is greater have found inconsistent

results. For example, one study investigating variance in gene

expression in lymphoblastoid cells, found that for the majority of

genes variance between individuals (biological) was greater than

variance between replicates (technical) [3]. In another study there
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was a low degree of technical variability when comparing two

samples of identical RNA prepared from a cell culture, but the

results were not markedly different when different cell culture

preparations were used, suggesting that the majority of the

variability was technical [1]. A separate arm of the study showed

that in some cases different cell lines from the same individual had

higher variability than the same cell lines from different

individuals. Different subjects, cell lines and technical steps were

not all compared directly with each other and the component

sources of variability from each step of the process were not

deconstructed. The authors suggested that inter-individual differ-

ences might mask changes due to a stimulus.

The aim of this study was to investigate the variability in gene

expression in an in vitro stimulation experiment using human

peripheral blood mononuclear cells (PBMC). The primary

objective was to determine the magnitude of biological and

technical variability relative to the effect being investigated,

namely gene expression changes resulting from stimulation with

lipopolysaccharide (LPS). We aimed to identify the relative

contribution of different sources of variability at each stage of

the experiment culminating in hybridisation to a microarray slide.

The results were intended to determine to what extent detected

gene expression differences in an in vitro microarray experiment in

humans can be attributed to the stimulus investigated rather than

artefactual differences from technical and biological variation.

Results

An in vitro stimulation experiment was undertaken with

replication at 5 levels (subject, day, stimulation tube, amplification

and hybridisation) (figure 1). Five subjects each had blood taken on

2 days and their peripheral blood mononuclear cells (PBMC) were

separated and stimulated with LPS in 2 parallel tubes for 24 hours

or left unstimulated. All samples were amplified and RNA was

hybridised against common reference RNA from pooled unsti-

mulated samples from all subjects. Replication was also included at

the amplification and hybridisation steps. Differences in gene

expression with LPS stimulation were measured by comparing the

log2 ratio of the stimulated samples with the unstimulated samples.

Variability in gene expression was compared between all samples

at baseline and after LPS stimulation.

Cumulative effects of variability at different levels
The hierarchy of levels of variability which underlie the

experimental design are shown by comparing gene expression

for the 2 subjects (A and B) who had replication at every level of

the experiment (figure 2). Comparisons were made between gene

expression (against the common reference) from one hybridisation

and gene expression from hybridisations at each different level of

replication. For replication at the subject level, one of the other

subjects on the same day was randomly selected for comparison.

In general, for both subjects, hybridisations correlated more

closely the further down the experimental process the replication

occurred; for example, replication by hybridising the same RNA

(Hyb2) had a correlation coefficient of 0.86–0.93, while hybrid-

ising RNA from 2 different subjects (Subject2) had a correlation of

0.66–0.78. This is because the variance is additive; for example,

the variance (s2) at the level of amplification is a combination

(s2
Amp+s2

Hyb) of the variability due to amplification (s2
Amp) and

the variability due to hybridisation (s2
Hyb).

Multi-level random effects
To deconstruct this and to determine how much variability

there was at each level of the experiment including the LPS

interaction with subject and day (‘Subject:LPS’ and ‘Day:LPS’), a

multi-level mixed model analysis was undertaken, incorporating

both fixed and random effects (table 1) [6].

The variance at each level was in principle estimated by

subtracting the variance of the layers below it. Thus in the

example above, by subtracting the variance at the level of

hybridisation (s2
Hyb) from the combined variance at the level of

amplification (s2
Amp+s2

Hyb), the variability due to amplification

alone (s2
Amp) can be estimated.

The median standard deviation (SD, s) for all of the variance

components was very small, at less than 0.1 for all components,

and 0 for the majority (figure 3a). Note that ‘Residual’ refers to the

variance component attributable to hybridisation, but also

includes any other factors contributing to variability downstream

Figure 1. Experimental design showing samples used to compare variability. Samples: Subject A–E, Day 1 and 2, LPS-stimulated sample
(Stim) 1 and 2, amplification run (Amp) 1–3, and hybridisation (Hyb) 1–3. For each subject on each day there was also an unstimulated (Unstim)
sample at 0 hours.
doi:10.1371/journal.pone.0019556.g001
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of amplification. The greatest variability was at the levels of

amplification and hybridisation, but even these were small. The

proportion that each component contributed to the overall

variance indicated that the greatest proportion of variance was

contributed by Residual/Hybridisation, which was double that

contributed by Amplification, and nearly four times that

contributed by most of the remaining components (figure 3b).

Although the variance between different days was slightly smaller

than between different subjects, when the LPS interaction was

taken into account, the interaction between Day and LPS

contributed variability greater than the Subject or Subject:LPS

interaction.

A comparison was made between biological and technical

variability by summing the Subject and Day components for

biological variability, and the Stimulation, Amplification and

Residual components for technical variability (figure 4). Technical

variability (SD 0.16) was slightly greater than biological variability

(SD 0.06), although they were both low with the upper

interquartile range of the standard deviation for each being less

than 0.4.

Comparing combined biological and technical variance also

shows that the variance did not greatly increase when adding

different variance components together. Although the components

contributing to the variability are additive, the same genes were

not highly variable at each level, so the overall variability was not

markedly higher.

LPS response between individuals
The LPS effect is the difference between stimulated and

unstimulated samples. Overall the inter-subject variability in

response to LPS was very low with the median standard deviation

Figure 2. Matrix of scatterplots showing log2 ratios for replicate hybridisations at each level of the experiment. The fold changes for
each sample are plotted against those for each of the other samples for gene expression after stimulation with LPS for two subjects: subject A (top
right of diagonal) and subject B (bottom left). Comparisons are made at different levels of the experiment: hybridisation (Hyb2), amplification (Amp2),
stimulation (Stim2), day (Day2) and subject (Subject2). Correlation coefficients between each pair of samples are shown in the bottom right of each
box.
doi:10.1371/journal.pone.0019556.g002

Table 1. Different components contributing to variability in
the design of the study.

Component Variability Effect

Sex Biological Fixed

Subject Biological Random

Day Biological Random

LPS treatment Physiological Fixed

Stimulation tube Technical Random

Amplification Technical Random

Hybridisation Technical Random

doi:10.1371/journal.pone.0019556.t001

Variability in Microarrays
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at zero (figure 3a). Although the majority of genes showed

consistent expression, there were a few genes that varied between

subjects in response to LPS. Genes were ranked by their

Subject:LPS variance component, and the top 10 genes that were

most variable between subjects in terms of their response to LPS

are shown in table 2.

The majority of these genes are recognisable as being involved

in the immune response, with a variety of cytokines and receptors

represented. This is consistent with previous findings of differences

in in vitro cytokine responses to stimulation with LPS between

individuals [7,8]. Potential causes of this subset of genes showing

variable response to LPS between subjects were further investi-

gated. Baseline gene expression in peripheral blood from human

subjects has previously been found to be affected by age, sex, time

of day of sampling and constituent cell subsets [2]. In animals the

response to LPS is also affected by age and sex [9]. In this study

the subjects had a narrow age range and blood was taken at the

same time each day so these variables were excluded, and the

effect of sex and constituent cell subsets was further analysed.

Effect of sex on LPS response
There is almost no overlap between genes that respond to LPS

and genes that are expressed differently between the sexes

(figure 5). The genes most differentially expressed between the

sexes were XIST (represented by 2 spots on the microarray) and

DOM3Z (figure 5). XIST is a gene expressed only on the

inactivated X chromosome, therefore only in females [10].

DOM3Z is a gene found in the MHC III region paired with

RP1, a protein thought to be involved in androgen-responsiveness

in male mice [11] which could explain its sex effect. However, the

effect of LPS on their expression was minimal. Although not

designed to investigate the effects of sex on LPS response, further

analysis showed that this effect was not strong in this study.

Effect of different days and cell subset proportions
Although the median standard deviation for both was zero, the

variability in response to LPS between days was unexpectedly

greater than between subjects (figure 3b). All hybridisations were

with the common reference RNA: from unstimulated PBMC from

subjects A–D on Day 2. There was therefore less differential

expression between the Day 2 samples and the common reference

than between the Day 1 samples and the common reference. This

suggests the finding is at least in part due to artefact.

The prime effector cells following LPS stimulation are

monocytes (CD14+), and there were differences in the proportion

of monocytes in PBMC samples from each subject on each day

(table 3). The greatest difference in proportion of monocytes

between the two days was 4.8% at 0 hours (subject B) and 7.5% at

24 hours (subject D). This difference in cell subset proportions

may partly explain the difference between Day 1 and Day 2.

However, the day-to-day variability in monocyte percentages is

less than that between subjects, so monocyte percentage alone

Figure 3. Variability of gene expression for each component level of the experiment. a) Standard deviation of all genes for each variance
component, showing median standard deviation, interquartile ranges and outliers; b) Proportion of variance contributed by each component to the
overall variance. Amp - amplification run.
doi:10.1371/journal.pone.0019556.g003

Figure 4. Standard deviation of all genes for biological and
technical variance, showing median standard deviation, inter-
quartile ranges and outliers.
doi:10.1371/journal.pone.0019556.g004

Variability in Microarrays
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does not to explain the relatively high Day:LPS variance

component.

There was a wide range of monocyte proportions in PBMC

between subjects at 0 and 24 hours and some of the most variable

genes are known to be strongly expressed in monocytes, for

example, MMP1, CD163, MARCO and IL-24 [12,13,14]. There

were also genes amongst the most variable known to be expressed

in other leukocytes, for example IFNG (T cells) [15] and GZMB

(cytotoxic T cells) [16]. Although they were not measured, these

cell subset proportions also likely differed between subjects.

Variability compared to biological effect
When comparing LPS-stimulated to unstimulated samples,

4552 genes were significantly differentially expressed. A compar-

ison of the fold changes after LPS stimulation with the variability

expressed as a standard deviation on the same scale shows gene

expression in response to LPS dwarfs biological or technical

variability (figure 6).

Discussion

Technical variability is inherent in all microarray experiments

as a result of the number of elements being measured and the

number of steps in the process that culminates in hybridisation of

RNA to a microarray slide. Different methods have been used to

attempt to control the variability in microarray experiments,

including the use of control housekeeping genes on the array [17],

pre-processing and normalisation of data [18,19,20] and replica-

tion [21] which allows an estimation of error. In recent studies,

variability has even been exploited to enhance microarray data

analysis [22] and calculate sample size [23]. For these experimen-

tal and bioinformatic methods to be relevant to biology, an

understanding of the sources and magnitude of variability in gene

expression is crucial.

This is the first study to deconstruct the variability in a

microarray experiment into each level of the experimental process.

All sources of variability in this study were low. Even the largest

source of variability, the residual component measured by

replicate hybridisations, had a standard deviation of about 0.1

on the log2 scale, corresponding to 7% of gene expression level.

The low variability was partly a result of using high quality

normalization and pre-processing. Less attention to issues such as

background correction would have resulted in higher variability

[18]. However, large scale filtering of spots on quality grounds was

not undertaken, and filtering was used only to remove transcripts

not expressed in peripheral blood.

Table 2. The top 10 most variable genes between subjects by stimulation with LPS and the standard deviation (SD) of each.

Accession no. Gene name Gene symbol SD

NM_002421 Matrix metalloproteinase 1 MMP1 1.16

NM_006770 Macrophage receptor with collagenous structure MARCO 0.85

NM_001925 Defensin, alpha 4, corticostatin DEFA4 0.80

NM_004131 Granzyme B GZMB 0.68

X62468 Interferon gamma IFNG 0.67

NM_000963 Prostaglandin-endoperoxide synthase 2 PTGS2 0.67

NM_002964 S100 calcium-binding protein A8 S100A8 0.65

NM_004244 CD163 antigen CD163 0.64

NM_006850 Interleukin 24 IL24 0.62

NM_007115 Tumor necrosis factor, alpha-induced protein 6 TNFAIP6 0.59

doi:10.1371/journal.pone.0019556.t002

Figure 5. Effect of LPS and sex on gene expression with log2
ratios contributed by each component along the x and y axes
respectively.
doi:10.1371/journal.pone.0019556.g005

Table 3. Proportion of monocytes (CD14+) in different
samples.

CD14+ cells (%)

Subject 0 h 24 h

Day 1 Day 2 Day 1 Day 2

A 7.7 7.1 6.4 6.2

B 2.3 7.1 3.5 3.2

C 5.9 8.4 8.2 11.0

D 11.9 14.6 7.0 14.5

E 1.8 2.8 1.1 1.6

doi:10.1371/journal.pone.0019556.t003

Variability in Microarrays
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The minimal variability found between subjects in gene

expression in peripheral blood is consistent with other human

gene expression studies. Whitney et al showed low variability in

baseline gene expression [2]. Our study confirmed this and

additionally is the first to show that there is low variability in

response to LPS stimulation. The response to LPS is known to be

highly conserved, even between species [24], and it is possible that

there would be more variability in gene expression in response to a

different stimulant where the response was less stereotypical.

Differences between subjects in response to LPS related largely to

genes involved in the immune response, which may explain why

individuals have different clinical responses to the same organism

and why some individuals have poor outcomes with sepsis. In

animals, sex, pregnancy, age and stress have all been shown to

affect the response to LPS [9,25,26]. A key finding was that the

differential expression induced by LPS was markedly greater than

any differences resulting from technical or biological variability.

This was true of each of the deconstructed components

contributing to variability, and when individual sources were

combined.

The largest sources of variability in this experiment were the

technical steps of amplification and hybridisation. These steps can

potentially be improved by technological developments as been

showed by comparisons between different platforms [27].

Day to day variability was comparable to or greater than

variation between subjects. The most likely explanation was that

the finding was an artefact due to the composition of the RNA

contributing to the common reference. As long as it is common to

all hybridisations, the composition of the reference RNA has

previously been thought not to matter. However, because the

differential expression was not identically distributed between

Days 1 and 2 compared to the common reference, Day 2 had a

much smaller variance. Comparison of Day 1 and Day 2 was

therefore not random, and this likely created the artefact of there

appearing to be a larger difference between days than subjects.

However, while this finding may be partly artefactual, it is also

consistent with the findings that samples from subjects who

contributed blood on multiple days do not necessarily cluster

together [2]. Factors such as how much sleep each subject got the

night before, what they had for breakfast and whether they cycled

or drove to work could all potentially affect gene expression

responses [28,29,30]. This highlights the similarity between

subjects in gene expression, both at baseline, and in response to

LPS. This suggests that blood samples collected over multiple days

may be preferable when investigating individual responses.

This study is the first to correlate variability with cell subset

proportions before and after stimulation with LPS. Monocytes

account for the largest proportion of cells in PBMC that respond

to LPS. Genes not expressed in non-monocyte cells in response to

LPS are likely to show a lower fold change overall in PBMC

samples with smaller proportions of monocytes [31]. Hence

monocyte proportion is likely to be a factor in variation, and

measuring expression in purified cell populations may reduce

variability further. However, the inter-subject variability was very

low in this study so differences in cell subset proportions did not

have a strong effect.

The microarray quality control (MAQC) project [32] was

designed to investigate variability in microarray experiments, but

differs from this study in that its aim was to assess the quality of

microarray technologies and therefore only investigated technical

replication by hybridizing identical RNA samples. It did not aim

to investigate biological replication and did not attempt to

deconstruct the components of technical variation. Therefore,

the results of this study are complementary to the MAQC project

rather than being directly comparable to it.

In summary, we found that the variability attributable to

technical and biological variation in a typical in vitro microarray

experiment in humans is low, and markedly less than the effect on

gene expression of stimulation. This provides confidence that

microarray-based studies can be used to detect changes in gene

expression of biological interest in infectious diseases.

Methods

Ethics statement
This study received approval from the Human Research Ethics

Committee (23096A) at the Royal Children’s Hospital, and

informed consent was obtained verbally from the adult volunteers.

PBMC separation and stimulation
Five adult volunteers (two female and three male, age range 21–

34 years) had blood sampled on the same two days, one week

apart, between 9 and 10 am (figure 3). Blood was collected into

tubes containing endotoxin-free lithium heparin (Becton Dick-

inson, Franklin Lakes, NJ, USA). PBMC were separated by Ficoll-

Hypaque gradient (Amersham Biosciences, Uppsala, Sweden).

Aliquots of 26106 PBMC were simultaneously stimulated with

1 mg/ml LPS (Sigma Aldrich, Sydney, NSW, Australia) and

incubated at 37uC with 5% CO2 for 0 and 24 hours. Each

stimulation condition was undertaken in duplicate to enable

comparison between two parallel stimulations of PBMC. At each

time point, after centrifugation, TRIzolH (Invitrogen Life Tech-

nologies, Invitrogen Corporation, Carlsbad, CA, USA) was added

to the sample before storing at 280uC. In addition, four samples

Figure 6. Standard deviations of the different variability
components and gene expression values after LPS stimulation
on the same log2 scale, showing median standard deviation,
interquartile ranges and outliers.
doi:10.1371/journal.pone.0019556.g006
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were divided in half and each half was amplified on a different

day.

RNA preparation
RNA from all samples was extracted using the chloroform:phe-

nol method within one month after stimulation before further

storage at 280uC. Samples were then purified using the

RNeasyTM kit (Qiagen Pty Ltd, Clifton Hill, VIC, Australia) and

amplified using the MessageAmpTM II aRNA Kit (Ambion Inc,

Austin, TX, USA) following the manufacturers’ protocols. All

samples were analysed post-amplification using an Agilent 2100

Bioanalyser (Agilent Technologies, Forest Hill, VIC, Australia). All

RNA samples were of satisfactory quality.

Cell population analysis by flow cytometry
For each subject on each day at each time point, 56105 PBMC

were stained with PE-conjugated CD14 (IOTestH, Immunotech,

Marseille, France) and 56105 cells were stained with PE-

conjugated mouse IgG1 as a negative isotype control Cells were

incubated in phosphate buffered saline (PBS), 0.1% sodium azide

and 20 ml of the conjugated antibody at room temperature for

15 min, washed and resuspended in 300 ml PBS with 2% formalin.

Analysis was undertaken using a LSR II flow cytometer and BD

FACSDivaH software (Becton Dickinson).

Microarray hybridisation
The study used 36 spotted microarrays printed with the

Compugen human 19,000 oligonucleotide library (http://www.

cgen.com) and a selection of control probes at the Adelaide

Microarray Facility (Adelaide, Australia). To minimize variability,

all microarrays were from the same printing batch, except 2 slides

(Hyb3 from subjects A and B). There were negligible differences

between slides from the different batches. Amplified RNA (aRNA)

was labelled by a direct platinum-based labelling technique using a

kit (ULSTM aRNA labelling, Kreatech Biotechnology, Amster-

dam, The Netherlands) following the manufacturer’s protocol.

Each sample of experimental RNA (unstimulated and from each

stimulation) was competitively hybridised with a common

reference sample, obtained from pooling unstimulated RNA from

subjects A–D from Day 2. For each pair of RNA samples to be

hybridised to a slide, 2 mg of the pooled reference RNA was

labelled with ULSTM-Cy3 and 2 mg of the individual sample RNA

with ULSTM-Cy5. The samples amplified on a different day were

also hybridised against the pooled RNA.

In addition, three hybridisations were undertaken using the

same sample of RNA. This was done with two samples of RNA to

provide replication. The two dye-coupled samples for each array

were combined and fragmented using 4 ml Fragmentation

Reagents (Ambion). The labelled sample was mixed with 10 ml

1 mg/ml human Cot-1 DNA (Invitrogen), 15 ml 206SSC, 20 ml

deionised formamide (Sigma Aldrich), 20 ml Kreatech solution

(Kreatech Biotechnology) and 5 ml 10% SDS, heated at 95uC for

5 min and cooled to room temperature. Each sample was applied

to a slide which was incubated in a water bath in the dark at 42uC
for 18 hours, washed and scanned using a GenepixH 4000B

scanner (Molecular Devices, Sunnyvale, CA, USA).

Microarray data normalisation and analysis
Each scanned TIF image was quantified using Genepix Pro 6.0

software (Molecular Devices) to obtain foreground and back-

ground intensity values for each spot. Genepix was configured to

generate the custom morphological close-open background

estimator, which is less variable than the more usual local

background estimators [33]. Pre-processing and quality assessment

was done using the limma software package [34] for the R/

Bioconductor programming environment (http://www.biocon

ductor.org). A small offset of 50 was added to the intensities after

background correction to ensure that there were no negative

background-corrected intensities or missing log-ratios, and to

ensure that low-intensity log-ratios remained of low variability.

Microarray data quality was checked using diagnostic image plots,

MA-plots and control probes and was found to be satisfactory.

Low-intensity probes were filtered on the basis of mean A-values,

which give the average log2 intensity for each probe across all

arrays. Log-ratios were print-tip loess normalised with span = 0.4,

giving zero weight to probes with mean A-value,6.5 [19]. After

normalization, control probes were removed from the data leaving

only the Compugen library probes. To remove probes corre-

sponding to transcripts not expressed in PBMCs, 33% of library

probes with lowest mean A-values were filtered before subsequent

analysis.

A linear model approach was used to analyse all the microarrays

for the five individuals together. A multi-level mixed linear model

was fitted to the normalized log-ratio expression data for each

probe using the lmer() function in lme4 package for R [6]. The

multi-level variance components were estimated by restricted

maximum likelihood (REML) and the fixed effects were estimated

by generalised least squares. The principle underlying the

estimation of variance at each level of the experiment (by

maximizing the REML likelihood) was the subtraction of the

variance at each level below it. For example, the variability (s2)

between technical replication at the level of amplification is the

sum of the variability at the level of amplification and the

variability at the level of hybridisation (s2
Amp+s2

Hyb). Therefore

by determining the variability introduced at the lowest level,

hybridisation (s2
Hyb), the variability introduced at the level of

amplification can be calculated ((s2
Amp+s2

Hyb)2(s2
Hyb) =s2

Amp).

Similar calculations provide the variability at each level higher.

The mixed linear model included fixed effects for sex and LPS

treatment, and random effects for each level of variability in the

experimental design (figure 1, table 1). The model can be

represented by the formula:

M~Sex z LPS treatment z Subject z Subject:

LPS z Day z Day:LPS z Stimulation tube z

Amplification z Residual

where M is the log2 expression value of a gene from an

individual microarray slide. The mixed model analysis decon-

structed the overall variability into the variability attributable to

each of the different components. ‘Subject:LPS’ and ‘Day:LPS’

refer to the interaction between the fixed effect of stimulation

with LPS and the variables of subject and day respectively (see

section on LPS effect). ‘Residual’ is the variance component

attributable to hybridisation, but also includes any other factors

contributing to variability downstream of amplification.

To determine the variability with LPS stimulation, the

interaction between LPS and different subjects and different days

(designated Subject:LPS and Day:LPS respectively) was included

in the model. The variance of MLPS was determined by adding the

measurement error or variance (s2) for each of the variance

components including the Residual component:

J v̂ar (MLPS)~s2
Subject:LPSzs2

Day:LPSzs2
Stimzs2

Ampzs2
Residual

Variability in Microarrays
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The Compugen-supplied GenBank accession numbers were

mapped to gene symbols using SOURCE [35] and the UniGene

build of 2nd September 2006. The study is MIAME compliant.
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