
Automated Analysis of Craniofacial Morphology Using
Magnetic Resonance Images
M. Mallar Chakravarty1,2*, Rosanne Aleong1, Gabriel Leonard3, Michel Perron4,5, G. Bruce Pike3, Louis

Richer6, Suzanne Veillette4,5, Zdenka Pausova7,8,9, Tomáš Paus1,3,7
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Abstract

Quantitative analysis of craniofacial morphology is of interest to scholars working in a wide variety of disciplines, such as
anthropology, developmental biology, and medicine. T1-weighted (anatomical) magnetic resonance images (MRI) provide
excellent contrast between soft tissues. Given its three-dimensional nature, MRI represents an ideal imaging modality for the
analysis of craniofacial structure in living individuals. Here we describe how T1-weighted MR images, acquired to examine
brain anatomy, can also be used to analyze facial features. Using a sample of typically developing adolescents from the
Saguenay Youth Study (N = 597; 292 male, 305 female, ages: 12 to 18 years), we quantified inter-individual variations in
craniofacial structure in two ways. First, we adapted existing nonlinear registration-based morphological techniques to
generate iteratively a group-wise population average of craniofacial features. The nonlinear transformations were used to
map the craniofacial structure of each individual to the population average. Using voxel-wise measures of expansion and
contraction, we then examined the effects of sex and age on inter-individual variations in facial features. Second, we
employed a landmark-based approach to quantify variations in face surfaces. This approach involves: (a) placing 56
landmarks (forehead, nose, lips, jaw-line, cheekbones, and eyes) on a surface representation of the MRI-based group
average; (b) warping the landmarks to the individual faces using the inverse nonlinear transformation estimated for each
person; and (3) using a principal components analysis (PCA) of the warped landmarks to identify facial features (i.e. clusters
of landmarks) that vary in our sample in a correlated fashion. As with the voxel-wise analysis of the deformation fields, we
examined the effects of sex and age on the PCA-derived spatial relationships between facial features. Both methods
demonstrated significant sexual dimorphism in craniofacial structure in areas such as the chin, mandible, lips, and nose.
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Introduction

Anthropologists have long analyzed craniofacial features on

skull remains obtained from hominids, Neanderthals, apes and

modern humans to study differences between species, early migra-

tion patterns, and phenotypic differences within Neanderthals. For

example, analyses of mandibular [1] and cranial [2] structure have

helped scholars understand the morphometric signatures specific

to different Neanderthals, in comparison with modern humans

and different subspecies of chimpanzees. Further, by quantifying

differences and similarities in craniofacial structure, these studies

have helped refine theories regarding the evolutionary lineages of

specific classes of Neanderthals [2,3] and hominids [1], and set-

tlement patterns of modern humans [4,5].

Biomedical research has recently started using craniofacial

structure to examine specific phenotypes in the context of brain

dysfunction, hormonal environments, and sexual dimorphism. For

example, Cohen et al. [6] demonstrated a divergence in

craniofacial structure early in fetal life when comparing fetuses

with Down’s syndrome with healthy ones. Several groups have

shown that patients suffering from schizophrenia have character-

istic craniofacial phenotypes that include elongation of the

craniofacial structure [7,8] and sexually dimorphic asymmetries

[9]. Hennessey et al. [10] demonstrated frontonasal dysmorphol-

ogies, such as increased width of the nose, narrowing of the

mouth, and upward displacement of the chin, as being specific

to patients suffering from bipolar disorder. Sexually dimorphic

characteristics in the mouth and chin structure have been de-

monstrated in normal young adults [11]. There is also evidence of

a relationship between the ratio of the lengths of the second

and fourth digits (2D:4D ratio; a surrogate marker of prenatal

testosterone exposure) and craniofacial structure, such as a

broadening of the mandible and zygomatic arch with a decreased

digit ratio [12,13].
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Morphometry-based classification of skull remains is generally

performed using the variability in the position of landmarks and

semi-landmarks, the latter being landmarks defined in relation to

precise craniofacial features [2,4]. In human biomedical research,

similar point-based methodologies have been used. These studies

use landmarks defined on photographs [12,13], surfaces created

through advanced laser-scanning techniques [9,10,11,14], or

whole-head magnetic resonance images (MRI) [8,15]. In general,

most research groups use a similar computational methodology to

determine variations in craniofacial morphometry, namely point-

distribution models (PDM) [16]. The variability in the size and

shape of a face is accounted for by transforming each individual to

the average dimensions of the entire population under study, i.e.

the Procrustes superposition of all landmarks, such that all landmark

positions are transformed to a common coordinate space and ref-

lect the remaining nonlinear differences in the population [17,18].

The actual coordinate locations for each of the landmarks in this

space are analyzed to determine the variability of craniofacial

features.

The current work is motivated by the availability of MR images

collected in a number of large neuroimaging initiatives [19,20,21],

the abundance of state-of-the-art techniques for image processing

of brain MR images [22,23], readily available statistical techniques

for voxel-wise analyses [24], and the research interest in cranio-

facial morphology reviewed above. Here, we use T1-weighted data

from the Saguenay Youth Study [25] to analyze the sexual

dimorphism and age-related changes in the morphometry of the

adolescent face. Our main goal is to demonstrate how T1-

weighted MR images can be used in both the voxel-wise analysis

of facial features and the decomposition of facial features using

principal components analysis (PCA). The voxel-wise analysis

borrows from a group-wise deformation-based analysis of brain

MRI data [26,27,28] and requires the creation of an average

model of the face in the population; the deformations that map

each individual to the average model are then used to quantify

group-wise differences in facial features. The second analysis is an

extension of anthropometric studies conducted both in two and

three dimensions [11,12,13] and relies on the decomposition of

variances in landmark-based data.

First, we demonstrate the methods for the development of a

population-based model using nonlinear registration and the voxel-

by-voxel analyses of the deformation data. In a second analysis, we

use the model and nonlinear transformations to analyze facial shape

using landmark-based data.

Methods

Participants
All participants are white Caucasians recruited from a popu-

lation with a known genetic founder effect living in the Saguenay

Lac Saint-Jean (SLSJ) region of Quebec, Canada. The MR images

have been acquired in the context of the Saguenay Youth Study

(SYS), which is described in detail in Pausova et al. [25]. Briefly,

participants were recruited in secondary schools in the SLSJ

region. A research nurse conducted a telephone interview with

interested families (usually with the child’s mother) to verify their

eligibility. Additional information was acquired using a medical

questionnaire completed by the child’s biological parent. The

main exclusion criteria were as follows: (1) positive history of

alcohol abuse during pregnancy; (2) positive medical history for

meningitis, malignancy, and heart disease requiring heart surgery;

(3) severe mental illness (e.g., autism, schizophrenia) or mental

retardation (IQ,70); and (4) MR contraindications. At the time of

the analysis, data from 621 participants (12 to 18 years of age)

were available. All participants filled out the Puberty Development

Scale (PDS), which is an eight-item self-report measure of physical

development based on the Tanner stages with separate forms for

males and females [29]. There are five categories for this scale

of pubertal status: (1) prepubertal, (2) beginning pubertal, (3)

midpubertal, (4) advanced pubertal, and (5) postpubertal (see also

[25,30,31]). Twenty-four adolescents were excluded from the

study as they had orthodontic work that resulted in large-scale

image artefacts in the imaging data. This left a cohort of 597

adolescents (292 male, 305 female; see Figure S1 for graphical

distribution by age). A demographic summary of the study par-

ticipants, including sex, age, full-scale intelligence quotient, and

pubertal stage is given in Table 1.

Ethics approval for data collection from the adolescents who

participated in this study was provided by the research ethics

committee from the Centre de santé et de services sociaux de

Chicoutimi. All participants in the study provided informed written

assent for this study and their parents provided informed written

consent for the inclusion of their child in this study.

T1-weighted MRI
For each participant, T1-weighted MR images of the brain were

acquired on a Philips 1.0-T superconducting magnet using the

following parameters: three-dimensional (3D) radio frequency

(RF)- spoiled gradient-echo scan with 140 –160 slices, an isotropic

resolution of 1 mm, a repetition time (TR) of 25 ms, an echo time

(TE) of 5 ms, and flip angle of 30u.

Creation of a minimally biased model and voxel-wise
analyses

Data analysis/Image processing. In order to estimate

differences in shape between faces within the population, a group-

wise nonlinear average of the craniofacial features was estimated

using methods similar to those used in the deformation-based

analysis of brain anatomy in humans [32] and animals [33,34,

35,36]. All scans were first corrected for intensity inhomogeneity

using the N3 algorithm [37]. To initialize the model building

process, a single T1-weighted MRI was randomly chosen from the

sample to be the target for all other image volumes. All other MRI

volumes were then rigidly rotated and translated (3 rotations and 3

translations) to match this initial target. The brain was then

extracted using the ‘‘Brain Extraction Tool’’ [38], leaving only

craniofacial information in each of the images. The remaining

data includes skull (including teeth) and soft tissue (skin, muscle,

and subcutaneous fat), thereby allowing for the analysis of

craniofacial features with respect to the composite of tissue types

from which the features are created. We estimate nonlinear

transformations based on local intensity information. This method

should mitigate the inclusion of such information as the teeth. As a

result of the brain extraction, the following linear and nonlinear

Table 1. Demographic summary of the adolescent
participants.

Males Females

Total participants 292 305

Age (in months) 180.5 (22.2) 181.8 (23.0)

Full-scale IQ 104.3 (14.6) 104.2 (13.2)

Puberty Stage 3.4 (0.9) 4.1 (0.7)

Values are given as the mean (standard deviation) where applicable.
doi:10.1371/journal.pone.0020241.t001
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registration steps are driven only by intensity information in

craniofacial structures. All possible pair-wise 9-parameter trans-

formations (3 rotations, 3 translations, and 3 scales; 596 trans-

formations for each of the 597 participants) were estimated and an

average linear transformation was calculated for each image, thus

effectively scaling each individual scan to the average head and

face size of the population. After applying the average transfor-

mation, scans were averaged and the original scans were registered

to this model using a 12-parameter transformation (3 rotations,

3 translations, 3 scales, and 3 shears); a new population-based

average was estimated at this point. This model represents the

population model accounting for all linear differences in head size.

A multi-generation, multi-resolution fitting strategy was then

initialized where each head was nonlinearly registered to the 12-

parameter population atlas and another population-based average

was estimated at this point. The group-wise atlas is generated in

this iterative fashion, where all heads are nonlinearly registered to

the atlas of the previous nonlinear registration using nonlinear

transformations of increasing resolution at each iteration. The

resulting transformations map the craniofacial structure of each

individual to the nonlinear average of the entire group and can be

analyzed explicitly to determine local variations in shape. Linear

[39] and nonlinear [40] transformations were estimated using the

mni_autoreg package available as part of the MINC toolbox

(http://packages.bic.mni.mcgill.ca/). Nonlinear transformations

were estimated using the previously optimized version of the

ANIMAL algorithm [41]. Table 2 contains the parameters used at

each stage of the nonlinear model-building process. Figure 1

demonstrates the results of the population averaging at each

iteration in the model-building process.

Voxel-wise analysis of deformation fields. Shape differences

were analyzed over the entire extent of the craniofacial region but

excluding the parts of the head posterior to the top of the forehead,

thus limiting the analysis to variations in facial morphometry. The

Jacobian determinants [23], providing an index of local volume

expansion or contraction, were computed at every voxel. Each

Jacobian-determinant map was blurred using a Gaussian kernel

with an 8-mm full-width at half-maximum. The statistical analysis

was carried out with the fmristat (http://www.math.mcgill.ca/keith/

fmristat/) software packages and multiple comparisons were cor-

rected using Gaussian Random Field Theory (p,0.05, corrected).

The voxel-wise analyses were carried out to examine the effect

of sex while covarying for age and overall head size (derived from

the multiplication of the three scaling factors estimated for each

subject; a standard procedure employed in many morphological

neuroimaging studies). To analyze the effect of age, we carried out

separate analyses in male and female adolescents while covarying

for overall headsize.

Landmark-based facial feature analysis
While the above deformation-based analysis gives a measure of

local expansions and contractions, it does not provide an intuitive

representation of the actual facial features and their shape. To

analyze these relationships, we draw from previous work in our

group on morphing body-images [42] for examining differences in

visual body perception [43] and on the work of Fink et al. [12] who

have used 2D photographs of faces of young adults to analyze the

shape of the face. In what follows, we describe the development

and analysis of a point distribution analyzed using Principal

Component Analysis (PCA).

Identification of facial features using landmarks. In

order to create a point distribution, we use methods employed

previously in model-based segmentation techniques in neuroi-

maging studies. In these types of methodologies [40,44], anato-

mical landmarks are defined on an individual model and then

warped back to individual subjects using a nonlinear transfor-

mation. In this case, two of the authors familiar with craniofacial

anatomy (MMC and RA) placed landmarks on a surface- and -

voxel-representation of the nonlinear model defined in the pre-

vious section (see Figure 2). Our methods improve on this technique

as landmarks need to be defined only on the model and are auto-

matically customized to each individual face using the inverse of each

individual’s nonlinear transformation estimated previously (See

Figure 1. Population averages at each iteration in the hierarchical model building process. For each step in the model-building process,
axial (top row) and sagittal (bottom row) views are shown. From left to right: The 9-parameter linear, 12-parameter linear, and each of the 6 nonlinear
models (from each step outlined in Table 1). Note the improved contrast and structural resolution at each step in the model building process.
doi:10.1371/journal.pone.0020241.g001

Table 2. Listing of the registration parameters used in the
nonlinear model-building process.

Step size (mm) Iterations Gaussian Blur (mm)

8 30 16

8 30 8

4 30 8

4 30 4

2 10 4

2 10 2

At each stage, the intensity-blurred images were matched to one another. A 3D
simplex optimization was used with stiffness, weight, similarity parameters set
to 1, 1, and 0.3 respectively (as optimized in [41]). In each case the spherical
search area around each node was set to 3 x step size.
doi:10.1371/journal.pone.0020241.t002
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2.3.1). Note that this transformation brings the landmarks to the

space corresponding to the linear (12-parameter) registration; as

such, global differences in head size have been removed. This is

analogous to the Procrustes method of superposition used in previous

studies [12,13].

Here we placed, on the average non-linear model, 56 landmarks

similar to those employed by Fink et al. [12]. Most landmarks were

defined using explicit anatomical definitions. A subset of these (as

in [12,42]) can be considered semi-landmarks defined by their

relative position between landmarks. For example, a semi-landmark

around the jaw was defined as the point located half the distance

between the inferior tip of the chin and the maxillary process along

the convexity of the jaw line. See Table S1 for a full listing of all

landmarks used.

Accuracy of group-wise nonlinear registration. To evaluate the

accuracy of the group-wise nonlinear registration strategy, we warped

the landmarks defined using the inverse of the transformation that

maps their craniofacial features to the model. A co-author on this

paper (RA) manually identified 17 of the craniofacial landmarks on

10 randomly-selected subjects (see Table 3). All landmarks were

identified using only information available in a tri-planar view

using the Display software package (http://www.bic.mni.mcgill.

ca/ServicesSoftwareVisualization/HomePage). Only full land-

marks were chosen for this purpose. Accuracy and precision of

the nonlinear transformations were evaluated by calculating the

Euclidean distance between the homologous automatically and

manually derived landmarks.

Anthropmetric analysis. As is often done in classical an-

thropometric studies, we also analyzed distances between land-

marks. Here we chose a number of absolute distances, including

the width and height of the left and right eyes, mouth width, the

distance between the ears and the zygomatic arches, nose width,

filtrum length (bottom of the nose to top of the lip), nose-to-chin

length, and lip-to-chin length. See Table 4 for a full description of

Figure 2 Facial landmarks placed manually on a surface-based representation of the population-based atlas. Landmarks are defined in red.
doi:10.1371/journal.pone.0020241.g002

Table 3. Results from the comparison of warped landmarks to manually derived landmarks on ten subjects.

Landmark Label Distance (mm) Standard Deviation (mm)

10 Lateral right eye 10.43 1.37

11 Medial right eye 10.13 1.18

15 Medial left eye 10.80 2.34

16 Lateral left eye 10.10 2.35

20 Middle of the base of nose 1.76 0.79

21 Tip of the nose 4.20 2.55

22 Bridge of the nose 2.47 0.71

25 Mid right nostril 2.56 1.24

26 Mid left nostril 2.97 1.29

32 Inferior Peak of the Midpoint of the Upper Lip 5.23 0.70

37 Inferior Peak of the Lower Lip 2.78 1.21

38 Left Mid-Lower Lip 10.33 0.89

39 Right Mid-Mouth Seam 2.58 1.00

40 Mid-Mouth Seam 1.88 1.02

42 Right ear 2.20 0.81

43 Left ear 1.58 0.62

44 Bottom of Chin 4.94 2.61

doi:10.1371/journal.pone.0020241.t003
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the distances analyzed. The absolute lengths were used to evaluate

the effect of sex, age, and interactions of age and sex (4 degrees of

freedom). All statistical analyses were performed in JMP8 (SAS;

Cary, North Carolina, USA).

Point-distribution model. To characterize the shape of the

face, and to reduce the dimensionality of our landmark-based

data, we developed a point-distribution model (PDM) [16]. PDMs

have been used extensively in medical imaging; they rely on the

assumption that variations in the shape of an object can be

estimated reliably by modeling the spatial distribution of a series of

appropriately placed homologous landmarks. Our PDM was

computed using a PCA of the warped landmarks. The PDM was

created using all three dimensions (x, y and z) from all 56

landmarks in 597 subjects. PCA was conducted using the R soft-

ware package (http://www.r-project.org/). To quantify variabi-

lity with respect to the original landmark locations, original x, y and

z positions from the landmarked model were first subtracted from

each coordinate point and the PCA was performed on the nor-

malized coordinates.

Analysis of the principal components. Principal com-

ponent (PC) scores were estimated for each individual and used to

evaluate the effect of sex, age, and interactions of age and sex (4

degrees of freedom) for each of the first five PCs. All statistical

analyses were performed in JMP8.

For visualization of the relationship between facial features

captured in a single PC, we performed simulations for the first 5

PCs. Original landmarks (see Figure 2; Table S1) were displaced

by adding a proportion of each component score (0.2, 0.4, 0.6, 0.8,

and 1). A smooth three-dimensional warp matching the original

landmarks to the displaced landmarks was defined using a thin-

plate spline [45,46].

Results

Voxel-by-voxel analysis of deformation fields
The results of the population-based model-building process

demonstrate excellent alignment of the craniofacial structures.

Figure 1 demonstrates axial and sagittal views from the model-

building process. Each step in the process demonstrates increased

structural contrast and anatomical resolution in comparison with

the previous step. The initial population averages, generated by

the 9-parameter and 12-parameter linear registrations, demon-

strate large variability in the areas of the nose, chin, and lips. As

expected, this variability is reduced considerably through each

of the subsequent nonlinear steps. After visual inspection we

determined that there were 28 overall registration failures during

the image processing stages of the analyses. These subjects have

been removed from the analysis. All further results are reported

with these subjects removed. A surface-based representation (using

a modified marching cubes-based extraction [47] of a segmenta-

tion of the final nonlinear model) is shown in the first row of

Figure 3.

A voxel-wise analysis of sex differences (age removed) in the

deformation fields demonstrates ‘‘expansion’’ of the mandible,

chin, forehead, and zygomatic area in males in comparison with

females. As seen in the middle row of Figure 3, this finding is

represented as one continuous cluster within the search area

(DF = 593, p = 4.061027, cluster volume [v] = 6.806105 mm3,

peak t-value = 16.2). Females, as compared with males, show a far

more localized expansion in the region of the lips, in the region

between the lips and the nose, around the bridge of the nose, and

near the left temple. These sex differences (females.males) are

demonstrated in two different clusters; the first is a continuous

cluster showing expansion of the lips, upper lip, and the bridge of

the nose area (DF = 565, p = 4.061027, v = 5.686105 mm3, peak t-

value = 9.2) and the second is a smaller region in the left temple

(DF = 565, p = 4.061027, v = 8.76104 mm3, peak t-value = 8.9).

Voxel-wise analysis of age-related changes in the deformation

fields, carried out separately for male and female adolescents,

yielded the following observations. In male adolescents (see

Figure 4), there is an age-related broadening of the zygomatic

arch, mandible, and bridge of the nose represented in one

continuous cluster (DF = 287, p = 3.561027, v = 1.956107 mm3,

peak t-value = 13.0). Age-related decreases in the local volume are

localized (in a single cluster) around the nose, lips, forehead, region

of the eyebrow, bottom of the chin and in the temples, lateral to

the forehead (DF = 287, p = 5.561027, v = 1.36107 mm3, peak

t-value = 221.9).

In female adolescents, there is very focal evidence of age-related

changes in the facial structure (see Figure 5). Large age-related

changes in the structure of the nose, the filtrum and the lips can be

observed (DF = 286, p = 5.861027, v = 1.76106 mm3, peak t-value

= 7.0). Similarly, local expansions in the mandible and temple are

also observed (DF = 286,p = 5.861027, v = 3.86105, t-val-

ue = 213.2). Age-related decreases in local volumes were found

in the region of the scalp directly above the forehead (DF = 286,

p = 5.861027, v = 4.46105 mm3, peak t-value = 213.2). Other

age-related decreases are also observed above the eyebrow ridge

(DF = 286, p = 4.261026, v = 3.56105, peak t-value = 27.4), left

zygomatic arch (DF = 286, p = 0.00012, v = 3.36104, peak t-value

= 26.1), right zygomatic arch (DF = 286, p = 0.00015,

v = 3.36104, peak t-value = 26.4), and mandible (DF = 286,

p = 0.0007, v = 3.86104, peak t-value = 25.8).

Accuracy and precision of nonlinear transformations
The evaluation of the warped landmarks against the landmarks

that were manually placed on 10 individual faces demonstrates

great precision in the anatomical localization of specific cranio-

facial features (see Table 3). For all 17 landmarks the standard

deviations of the Euclidean distance were extremely low

(maximum standard deviation = 2.61 mm). Only the standard

Table 4. Analysis of anthropometrics.

Craniofacial structure Landmarks Sex Age Age*Sex

Left eye length 15,16 7.12 *** 21.37 1.33

Right eye length 10,11 3.76 ** 1.53 0.43

Left eye height 17,19 4.57 *** 21.72 2.00 *

Right eye height 12,14 5.67 *** 21.13 2.52 *

Mouth width 29,38 29.77 *** 8.49 *** 5.63 ***

Craniofacial width
(ear to ear)

41,43 210.09 *** 0.90 23.74 **

Craniofacial width
(zygomatic arch)

53,55 4.83 *** 0.56 20.99

Nose width 23,24 210.88 *** 3.39 ** 25.22 ***

Filtrum (nose to
upper lip)

20,32 27.74 *** 1.70 22.50 *

Nose to tip of chin 20,44 27.52 *** 5.33 *** 23.01 *

Bottom lip to tip
of chin

37,44 22.75 ** 5.59 *** 22.28 *

*p,0.05, **p,0.001, ***p,0.0001
For a full description of the landmark numbers, see Table S1. In each case,
results are summarized as the linear model coefficients (values greater than 0
for sex indicate greater values in females).
doi:10.1371/journal.pone.0020241.t004
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deviations for the landmarks representing the lateral and medial

canthus of the left eye and the bottom the chin exceeded 2 mm.

For all other landmarks, the standard deviations of the Euclidean

distance were ,1.37 mm. The largest differences in Euclidean

distance were observed in all four of the landmarks in the eye and

the left mouth seam (10.10 to 10.83 mm). Amongst the remaining

landmarks, the mean difference in Euclidean distance did not

exceed 5.23 mm. For 9/17 landmarks, the mean difference in the

distance between landmarks was ,3 mm.

Anthropometric results
The anthropometric indices (see Table 4) estimated for eye

length are significantly larger in females, compared with males, for

both left (F = 7.12, p,0.0001) and right eyes (F = 3.76, p =

0.0002). There are marginally significant interactions between sex

and age for left (F = 2.00, p = 0.046) and right (F = 2.52, p = 0.012)

eye height. In both cases, these differences are due to the age-

related increase in eye height in the males (F = 22.56, p = 0.011

and F = 22.57, p = 0.011 for left and right sides, respectively).

Mouth width also shows significant interactions between age and

sex (F = 5.63, p,0.0001) that reflect age-related increases in

mouth width in males (F = 8.80, p,0.0001) and females (F = 2.48,

p = 0.0135). The distance from ear-to-ear shows a significant

interaction between age and sex (F = 23.74, p = 0.002); this is

due to age-related increases in males (F = 3.24, p = 0.0013) and

decreases in females (F = 22.01, p = 0.0458). The distance be-

tween the zygomatic arches is significantly larger in females,

compared with males (F = 4.83, p,0.0001). There are significant

interactions between age and sex for nose width (F = 25.22,

p,0.0001), the filtrum (F = 22.50, p,0.013), the distance

between nose and chin (F = 23.01, p = 0.0028), and the bottom

of the lip to the chin (F = 22.28, p = 0.0233). The nose width

(F = 5.32, p,0.0001), the filtrum length (F = 2.73, p,0.0068),

nose and chin length (F = 5.19, p,0.0001), and bottom lip to chin

length (F = 5.19, p,0.0001) all show age-related increases in

males. Only the nose to chin (F = 1.98, p,0.0487) and bottom lip

to chin lengths (F = 2.51, p,0.0125) show significant age-related

increases in females.

Figure 3. Results from the voxel-by-voxel analysis of deformation fields. Top Row: A surface rendered version of the population-based
atlas. Middle Row: Parametric map projected onto the surface showing regions yielding statistically larger expansions in males in comparison to
females. Bottom Row: Parametric map projected onto the surface showing regions yielding statistically larger expansions in females in comparison to
males.
doi:10.1371/journal.pone.0020241.g003
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Figure 4. Facial morphometry changes related to age in males. Top row: Facial expansions related to age. Bottom row: Facial contractions
related to age.
doi:10.1371/journal.pone.0020241.g004

Figure 5. Facial morphometry changes related to age in females. Top row: Facial expansions related to age. Bottom row: Facial contractions
related to age.
doi:10.1371/journal.pone.0020241.g005
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Principal components analysis of the PDM
The first 10 PCs in this analysis account for 75.3% of the

variability in the distribution of landmark position (see Table 5).

PC1 and PC2 account for 46% of the variability in the landmark

positions (36.0% and 10.0% respectively). Results from the

analysis of PC scores are shown in Table 6. The scores of PC1

show significant interactions between age and sex (F = 24.10,

p = 0.0001), mainly due to age-related increases in the PC1 scores

of males (F = 5.57, p = 0.0005) but not females (F = 0.04, p = 0.97).

The scores for PC2 show no significance with respect to sex but a

slight significance with respect to age (F = 22.64, p,0.046).

Scores for PC3 and PC4 show significant interactions of age and

sex (PC3: p = 0.0005; PC4: p = 0.0006); this is due to significant

age-related decreases in the PC3 and PC4 scores of males (PC3:

F = 26.02, p,0.0001; PC4: F = 23.4, p = 0.0008) but not females

(PC3: F = 21.34, p = 0.18; PC4: F = 21.50, p = 0.13). Scores for

PC5 show significant main effects of sex and age (P,0.0001 for

both effects).

Results of the simulation are shown in Figure 6 (the entire face)

and Figure 7 (profile view). Each simulation demonstrates how

each PC encodes a different relationship between facial features.

Overall, PC1 demonstrates broadening of the forehead, chin, jaw,

and nose; for PC2 the distance between all facial structures de-

creases and shows an increasing prominence of the forehead; PC3

is characterized by an enlarging brow line, broadening of the

zygomatic arch and a less prominent jaw/chin; PC4 is cha-

racterized by a broadening of the chin, narrowing of the jaw and

mouth, elongation of the nose, and a retreating jawline; and PC5

shows narrower cheekbones, fuller but narrower lips and a less

prominent jawline. Note the exaggeration of facial features when

the eigenvalue is fully sampled (last column in Figs 6 and 7),

thereby providing a simulation of the relationship between dif-

ferent features within the population being studied.

Discussion

In this paper we have presented a novel methodology for the

analysis of craniofacial structure using structural MR images. We

demonstrate how techniques originally developed for the image

processing and statistical analysis of structural and functional

neuroimaging data can be adapted for this purpose. A population-

based average of craniofacial structure was estimated using a

hierarchical and iterative anatomical matching technique using

the head MRI (after removing the brain). The resulting nonlinear

transformation matches the craniofacial structure of each subject

to the average of the population. Fifty-six landmarks were placed

on the average model and warped back to fit each subject using

this nonlinear transformation. Voxel-wise analysis shows sexual

dimorphism and age-related changes in craniofacial structure. The

PDM derived from the landmark-based analysis demonstrates

several modes of variation that describe the difference between

males and females, and age-related changes during male adoles-

cence. To the best of our knowledge, this is the first demonstration

of a fully automated three-dimensional analysis of craniofacial

structure using MRI data.

Significance of the findings
Our voxel-wise deformation analysis shows clear differences

between male and female adolescents (Fig. 2). The broadening of

the chin, zygomatic arch, and forehead are consistent with work

demonstrating changes in the facial features of young men in

relationship with salivary testosterone [13]. Compression of the nose

relative to the face is also consistent with previous reports of sexual

dimorphism in nose structure [48]. Age-related changes in male

adolescents demonstrate that some of these findings may be related

to changes in facial features during maturation. Compression of the

temple may be indicative of a broadening of the brow line that

occurs during male maturation caused by a surge in testosterone

levels [13]. Female adolescents demonstrate few changes in the way

of facial features as a function of age. Since growth spurts occur

earlier in girls than boys [49], much of the age-related changes in

facial features could have occurred (in girls) at an earlier age (i.e.

outside the 12-to-18 age range of this cohort). There may be a

similar reason for the lack of local age-related compressions in

craniofacial features observed in the voxel-wise analysis.

The anthropometric results demonstrate similar changes in the

size and shape of the eyes, size of the chin, and mouth. These

results do not, however, capture the relationship between any

different facial features. On the other hand, the results from the

PCA analysis from PDM allow us to understand better such spa-

tial relationships. Our results from PC1 and PC3 demonstrate

broadening of similar areas of the jaw, zygomatic arch, and

browline. Age-related changes in subject-wise loadings on PC1

and PC3 in male adolescents are going in the opposite directions:

negative for PC1 and positive for PC3. Clearly, two different

biological processes are at play here; future studies may help us

understand whether, for example, ‘‘masculinization’’ (PC1) and

‘‘demasculinization’’ (PC3) of the facial features could be related to

the balance of male and female sex hormones. PC5 clearly

demonstrates higher values in females. This PC mimics the results

in shape regression against the 2D:4D ratio [12,13] in young men.

Table 5. Results from the principal component analysis of
landmarks representing facial features.

Principal Component Cumulative Weight (%) Individual Weight (%)

1 36.0 36.0

2 46.0 10.0

3 53.6 7.7

4 59.3 5.7

5 63.3 4.0

6 66.5 3.2

7 69.0 2.5

8 71.3 2.2

9 73.4 2.1

10 75.3 1.9

doi:10.1371/journal.pone.0020241.t005

Table 6. Analysis of subject-wise loading from PCA from the
PDM.

Principal Component Sex Age Age*Sex

1 21.76 4.23*** 24.10***

2 20.06 22.64* 1.93

3 8.40*** 25.04*** 3.46**

4 9.26*** 25.21*** 3.59**

5 5.01*** 24.70*** 0.69

*p,0.05, **p,0.001, ***p,0.0001
In each case, results are summarized as the linear model coefficients (values
greater than 0 for sex indicate greater values in females).
doi:10.1371/journal.pone.0020241.t006
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Increased 2D:4D ratio, possibly indicating lower exposure to fetal

testosterone, was associated with a narrower mouth width, larger

distance between the nose and mouth, and fuller lips. Lower

prenatal and salivary testosterone also showed significant associ-

ation with nose structure [12,13]. We see that female traits are

strongly associated with elongation and narrowing of the nose

Figure 6. Facial feature simulation created by warping the average face using defined landmarks (see Fig. 5). PCs 1–5 are warped
using 0.2, 0.4, 0.6, 0.8, and 1 of each PC score.
doi:10.1371/journal.pone.0020241.g006
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(similar findings have been reported elsewhere [48]) and changes

in the position of the chin (see Figs 6 and 7). Although Fink and

colleagues [12,13] showed a narrowing and broadening of the chin

with respect to high and low 2D:4D ratios, respectively, it is

possible that these changes demonstrate differences in anterior-

posterior chin position, which our analyses show explicitly.

Choice of image modality
Most biomedical research of craniofacial morphology has used

photographs and advanced laser-scanning techniques to image the

exterior of the face. Since we have used MR images here, we are

able to take into account three-dimensional representations of the

face. Like previous studies, however, the analysis presented does

not dissociate soft tissues (fat and skin) from the skull. Thus, all

measures provided are a composite of measures of the skull and

soft tissues and the actual source of craniofacial features detected

here cannot be identified. This could be addressed in analyses

where the skull is segmented from the MRI data [38] or by using

computer-assisted tomography for skull imaging, as has been done

in transgenic mice [50]. To analyze local percentages of body fat,

novel techniques would have to be derived for the segmentation of

fat in the human face.

Figure 7. Facial feature simulation (profile view) created by warping the average face using defined landmarks (see Fig. 5). PCs 1–5
are warped using 0.2, 0.4, 0.6, 0.8, and 1 of each PC score.
doi:10.1371/journal.pone.0020241.g007
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In light of these limitations and to test the robustness of our

findings, we performed a second analysis where percent body-fat

was accounted for using the residual error after regression of each

PC score against total body-fat assessed with bioimpedance, a

standard measurement in the SYS data acquisition protocol [25]).

Results of these analyses are shown in Table S2 and are similar for

PCs 3, 4 and 5 as presented in Table 6. Removing the effect of

total fat increased the significance of the sex by age interaction and

the effect of sex observed for PC1. Residuals of PC2 now show

significant, albeit subtle, differences with respect to sex (p = 0.048)

and interactions of age and sex (p,0.0004). These supplementary

findings suggest that a measure of fat (and potentially other mea-

sures of body composition) may be useful when analyzing the

variability of face morphology with surface-based techniques, such

as photographs, laser scanning or MRI.

Choice of image analysis technique
Anthropological work on the evolutionary changes of the cra-

nium has used three-dimensional PDMs [2]. In our work, we

matched craniofacial structure using image-intensity features; the

creation of a PDM is, thus, simplified as the initial landmarks need

only be defined once on the population average. Similarly, the work

of Hennessy et al. [9,14] used three dimensional laser scanning

technology for the analysis of the facial exterior in the context of

sexual dimorphisms [14]. In their work, gross geometric changes were

analyzed using PDMs derived from the identification of manually

placed landmarks. A similar approach was used in the analysis of

facial features in patients suffering from schizophrenia using T1-

weighted MRI data [8,15]. Our methodology could be used in MR

cohorts with larger numbers of participants where the information

on craniofacial structure is available. Similarly, there are possible ap-

plications for this work in other disorders such as Pierre Robbin [51],

Down Syndrome [52], Fetal Alcohol Syndrome [53], and others [54].

Deformation-based analyses have created some controversy in

the neuroimaging literature due to their inability to match dif-

fering gyrification patterns between individuals [55]. This approach

is, however, ideal for the analysis of craniofacial structure as homo-

logous anatomy (e.g. eyes, nose, mouth) is present in almost all

individuals. Since parameters optimized for neuroimaging data were

used for the estimation of nonlinear transformations, it is possible

that the nonlinear transformations estimated were suboptimal. The

approach used for averaging used eight different levels of resolution

(where the blurring kernel and the spacing between the local trans-

lation estimated decreases at each successive iteration; see Table 2)

and the changes in craniofacial structure are not morphologically

complex. Optimizations of ANIMAL used for histological data [56]

suggest that parameter choice may be dependent on image contrast

and not entirely on structure. For example, the regularization

parameter used for deformation-based morphology using MRI data

from the mouse [33,34] are similar to those optimized for human

MRI data [41]. Nonetheless, optimization of nonlinear registration

techniques for analyses of craniofacial structure presents a different

challenge in comparison with neuroimaging, and will likely require

exhaustive analyses similar to those previously presented in the brain

nonlinear registration literature [57,58,59]. Each of these studies

presents challenges in the definition of a ‘‘gold-standard’’ used for

comparison and optimization [44,57]. Our own analysis of the

accuracy of the nonlinear transformations demonstrates very high

precision between the automatically and manually defined land-

marks. For 5 of these landmarks, however, we see some discordance

between the two sets of landmarks. This may reflect poor accuracy

of the nonlinear deformations in this particular region of the face.

But given the high level of repeatability of the nonlinear trans-

formations, we feel that this is unlikely. Since the manual rater did

not have the benefit of a three-dimensional surface (like the one used

to define the initial landmarks on the average face), this discrepancy

might reflect a systematic difference between the two landmarking

methodologies. Moreover, it underscores a need for robust auto-

mated techniques for defining craniofacial landmarks.

The atlas-building strategy may also require further investiga-

tion. A large field of research suggests that there are optimal me-

thods for the creation of an atlas that best represents the group

being studied. Some of these methods involve the simultaneous

estimation of transformations that warp all subjects to a group

average in an iterative unbiased fashion [60] using large defor-

mation diffeomorphic template estimation techniques [61,62].

While our PDM uses 56 landmarks, the number of landmarks

can be increased by creating an equally spaced grid over the entire

craniofacial structure, similar to the work done in the analysis of

the hominoid cranium [63]. This type of analysis would limit bias

but it would increase the computational complexity and dimen-

sionality of the analysis. Similarly, the total number of anatom-

ically localized landmarks could also be increased.

Unlike previous methodologies, our method can analyze the

entire ensemble of facial features using voxel-wise analyses and

simulations are only limited to the number of landmarks chosen.

Further, more sophisticated models of shape analysis could be used

to analyze the modes of variance directly from the deformation

fields, such as an active appearance model [64] which has been

previously used in the computer aided diagnosis of different forms

of Alzheimer’s disease and dementia [65,66].
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