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Abstract

Background: Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against
pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin.
Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the
molecular mechanisms that modulate skin cell apoptosis in zebrafish.

Methodology/Principal Findings: This study aimed to create a platform to conduct conditional skin ablation and determine
if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live
animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in
superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial
skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great
reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+

signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity
progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line
with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1,
mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole
as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling.

Conclusion/Significance: The killer/testing line binary system established in the current study demonstrates a
nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner,
and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The
current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis
modulators in vivo.
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Introduction

The epidermis is the outermost and largest structure covering the

body. It plays a role in protection against mechanical injury

forming a major barrier to deleterious environmental agents. The

mammalian epidermis comprises four major layers: the basal layer,

spinous layer, granular layer and cornified layer. The stem cells

predominantly distribute in the basal layer and mitotic division

of these cells generates other differentiated cells. In contrast to

mammals, fish epidermis is relatively thin and simple. During early

development, the fish epidermis has only two layers; the outermost

enveloping layer (EVL) and inner epidermal basal layer (EBL),

which provide a first-line defense system against pathogens. Fish

epidermis contains ionocytes and mucous cells that aid secretion of

acid/ions or mucous through the skin [1]. At adult stage, fish skins

differ in thickness and cell type among species [2].

When skin is exposed to environmental stress this triggers an

apoptotic response to prevent accumulation of oncogenic muta-

tions in its layers. Activation of repairing pathways ensues in order

to recover skin integrity [3]. In recent decades, scientists identified

involvement of genes in modulation of skin cell apoptosis using in

vitro culture methods. However, some drawbacks such as dissimi-

larity to real skin physiology [4] make the approach less infor-

mative. The recent solution is to validate the function of potential

apoptosis modulators in skin by generating a genetically modified

mouse, utilizing transgenic (gain-of-function) or knock-out (loss-

of-function) approaches, and then subsequently challenging

them with external stress to evaluate the skin response. These
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combinational strategies led to successful identification of several

genes including Bcl-xL [5], Nrf2 [6], hsp70 [7], Stat3 [8], Akt1 [9],

survivin [10,11], galectin-3 [12], RhoB [13] and peroxiredoxin 6

[14] that suppress skin apoptosis upon receiving UVB- or

chemical-induced damage. The clinical challenge is to discover

new promoters of skin survival against environmental stresses and

to develop a new generation of skin anti-aging or anti-apoptotic

therapeutic reagents [15]. Development of a high-throughput plat-

form to screen for apoptosis modulators in living animals would,

therefore, significantly accelerate progress in validating gene fun-

ction in vivo.

The zebrafish is a powerful model organism that has been ex-

tensively used to study developmental mechanisms, genetics,

apoptosis, and human disease in recent years [16,17,18]. The ad-

vantage of utilizing zebrafish to study apoptosis modulators in skin

is that fish skin does not have a true stratified epithelium and lacks

a stratum corneum. The outermost skin layer in fish consists of

living cells rather than a dead cornified layer as in mammals.

Therefore, the simple and fragile architecture of fish skin provides

ideal tissue to evaluate the impact of environmental stress derived

from mechanical injury [19,20], prey biting [21], pathogen

infection [22], ultraviolet (UV) irradiation [23,24], algae bloom

[25,26] or long-term exposure to eco-toxins [27]. A recent study

by Pai and Chen [28] used a transgenic approach to identify that

overexpression of prothymosin alpha in zebrafish skin attenuated

cell death caused by UV irradiation. This strategy demonstrated

that evaluation of apoptosis modulator function after receiving

damage signals in vivo is possible by adapting a similar approach to

that used in the mouse skin system.

This study aimed to a create a specific platform to conduct skin

ablation by generating a transgenic zebrafish with a skin-specific

promoter to drive nitroreductase (NTR), and then adding

metrodinazole (Met) to cause specific ablation of superficial skin

cells. NTR is a non-toxic reductase isolated from Escherichia coli

converted into toxic form when exposed to Met. Metabolic Met

behaves as a DNA interstrand cross-linking agent to exert a

cytotoxic effect and induce apoptosis. Recently, the wild-type

NTR protein has been engineered into a more powerful version,

by codon-optimization [29] or amino acid mutation [30,31],

which greatly enhanced its cytotoxicity when exposed to CB1954

or Met substrates. Therefore, the NTR/Met cell ablation

technique has been successfully applied in many vertebrate species

[32,33,34,35] and displays superior and more reliable results

compared to other cell ablation systems [36,37,38,39]. Research

groups successfully used the NTR/Met cell ablation system to

stimulate ablation of embryonic pancreatic beta cells [40] and

induce gonadal dysgenesis in zebrafish [41,42]. In this study, a

transgenic line of Tg(krt4:NTR-hKikGR)cy17 (killer line) was

established which overexpressed the NTR-hKikGR fusion protein

under the control of the skin-specific krt4 promoter. Epidermal

apoptosis could be induced by exposing the killer line embryos or

adults to Met. Apoptotic cell death specifically occurred in the

NTR-hKikGR-expressing cells, accompanied by the loss of fluo-

rescent appearance. The zebrafish binary system, which combines

killer and testing lines, therefore provides a unique quantitative

and fast tool to study the signaling molecules which modulate skin

apoptosis in living animals.

Results

Characterization of Zebrafish Skin Cell Organization and a
Skin-Specific Promoter

Prior to performing skin ablation, the basic architecture of

zebrafish skin was characterized. Consistent with previous studies

[43,44], zebrafish larvae skin consisted of EVL and BEL (Fig. 1A).

The sagittal section of fully adult zebrafish skin (age greater than 3

months) was also analyzed. Results showed that the thickness of

the skin varies in different positions. The epithelium surrounding

the head and jaw was thicker than in other regions (data not

shown). In contrast, the epithelium covering the scales was much

thinner and usually organized into three cell layers. At higher

magnification, cell nuclei of the upper superficial layer were flat

and elongated (Fig. 1B, arrow head) while cell nuclei of the middle

and basal skin layer appeared round and much larger than those

in the superficial layer (Fig. 1B, arrows). High glycoprotein content

and positive Periodic Acid Schiff (PAS) staining (data not shown)

characterized larger cells, oval in shape and with peripheral

cell nuclei, as mucous cells (Fig. 1B, asterisk). Cell morphology

suggested the upper skin layer might be the differentiated layer

while the middle and basal layers might form the undifferentiated

layer. To test this hypothesis, BrdU incorporation experiment was

performed to investigate cell proliferation activity in different skin

layers of adult zebrafish. Result showed that BrdU+ skin cells

widely distributed in the middle and basal layers, while the upper

superficial layer displayed very few BrdU+ signals in most cases

(Fig. 1C). This result is consistent with the findings obtained from

tritiated thymidine injection [2], showing that the middle and

basal skin layers have strong cell division/proliferation potential in

adult zebrafish. To further clarify the skin differentiation pattern at

the molecular level, immunohistochemistry was performed on

adult skin to label the putative differentiated skin cells (using CK5/

6 antibody) and epidermal stem cells (using p63 antibody). CK5/6

antibody staining strongly labeled the keratinocytes of the

superficial skin layer (Fig. 1D) while p63 antibody staining strongly

labeled most of the cell nuclei in the basal and middle skin layers

(Fig. 1E). The BrdU, CK5/6 and p63 immunoreactive patterns

suggested that the superficial skin layer is the differentiated layer

while the middle and basal layers are the undifferentiated stem cell

layers in zebrafish.

To establish an in vivo animal model to investigate mechanisms

regulating apoptosis of the superficial skin cells, a suitable pro-

moter to drive the suicide/killer gene, specifically expressed in the

superficial skin layer in a temporally and spatially controllable

manner, had to be identified. Previous studies isolated several

useful skin-specific promoters in zebrafish, such as krt4 [45], krt5

[46] and krt18 [47]. However, the specificity of those promoters in

skin has yet to be fully characterized. To test the specificity of the

krt4 promoter in zebrafish skin Tg(krt4:nlsEGFP)cy34 was initially

created. It was confirmed that the zebrafish krt4 promoter could

specifically drive nucleus-targeted EGFP (Fig. 1F, green) express in

the superficial EVL, but not the underlying p63+ basal cells

(Fig. 1F, red), in the embryonic yolk area at 24 hours post fer-

tilization (hpf). Results from immunohistochemistry with GFP

antibody on paraffin sections of adult Tg(krt4:nlsEGFP)cy34 dem-

onstrated that the krt4 promoter can specifically target the super-

ficial skin layer covering the scales (Fig. 1G), esophagus (Fig. 1H)

and gill (Fig. 1I). This result indicated that the endogenous 2.2 kb

krt4 promoter could be useful to promote superficial skin ablation

in the present study’s experiment.

Generation of Killer Line to Express NTR Suicide Gene in
the Superficial Skin Layer

To enhance conditional targeted skin ablation in zebrafish, the

mutated version of NTR (T41Q/N71S/F124T), the most sensitive

version of NTR tested in vitro, was utilized [30]. In order to

facilitate the transgenic line screening and monitor the dynamic

expression of NTR in real-time, in-frame fused NTR with

hKikGR photoconvertiable fluorescent protein at the C-terminus

Skin Ablation System in Zebrafish
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(hereafter, recognized as NTR-hKikGR) was used. The design of

the transgenic cassette, mechanism of NTR/Met ablation system,

and strategy for screening of apoptosis modulators using the killer/

testing line binary system are illustrated in Figs. 2A and 2B. 15

independent lines out of 92 putative founders carrying the

krt4:NTR-hKikGR transgene were identified (germ-line transmis-

sion rate = 16%). Among all transgenic lines identified, line

number 17 (Tg(krt4:NTR-hKikGR)cy17, killer line) displayed the

strongest fluorescent signal and exhibited normal skin develop-

ment, with no evidence of cell toxicity in the absence of prodrug

treatment. It was, therefore, selected to generate the homozygotic

line for further skin ablation studies. In the killer line embryos,

detection of the NTR-hKikGR+ signals first occurred at the 5-

somite stage (data not shown). NTR-hKikGR+ signals in the skin

gradually up-regulated and finally displayed robust expression in

the pharyngeal arch epithelium (Figs. 2C–2F). The fluorescent

signal of NTR-hKikGR fusion protein did not evenly distribute in

the cytoplasm but aggregated into distinct small spots. These

fluorescent dots seemed to localize in specific compartments of skin

cells. To clarify the subcellular identity of NTR-hKikGR+ signals,

the killer line was crossed with Tg(krt4:nlsEGFP)cy34, whose skin

nucleus was highlighted with nlsEGFP fluorescent signals. Results

showed that the NTR-hKikGR+ signals were located adjacent to

the nuclei of EVL in the compound transgenics (Fig. 2G and also

summarized in Fig. 2H). This unique localization of NTR-

hKikGR fusion protein is not specific to the skin compartment,

since NTR-hKikGR fusion protein demonstrated a similar dotted

distribution pattern when driven by a muscle-specific mlyz2

promoter (Fig. 2J).

Loss of NTR-hKikGR+ Signals in Met-Treated Killer Line as
a Living Marker of Skin Apoptosis

To validate whether the NTR/Met-based cell ablation system

works properly in the killer line, killer line embryos were incubated

with 10 mM Met from 24 to 48 hpf to ablate skin cells. Treatment

was stopped by washing out Met after 48 hpf (Fig. 3, protocol

indicated at upper panel). The NTR-hKikGR+ signals were

monitored and photographed every 24 hours until 96 hpf. In the

absence of Met (untreated), NTR-hKikGR+ fluorescent signals

were robust throughout the entire experiment (Figs. 3A–3D). In

the presence of Met, the NTR-hKikGR+ signals greatly dimin-

ished, and pericardial edema appeared at 96 hpf (Figs. 3E–3H). If

Met was withdrawn after 48 hpf, the diminished NTR-hKikGR+

signals partially restored at 96 hpf (Figs. 3I–3L).

This study hypothesized the following reasons for the loss of

NTR-hKikGR+ signals: (1) activated Met suppressed the krt4

promoter and blocked the expression of NTR-hKikGR+ fusion

protein; (2) activated Met caused redistribution of NTR-hKikGR+

Figure 1. The krt4 promoter can target transgene expression in the superficial skin layer in zebrafish. (A) Plastic section at 2 mm
thickness showing that zebrafish skin, at 5 days post-fertilization, consists of an outer enveloping layer (EVL) and inner basal epidermal layer (BEL).
The basement membrane is highlighted by the dotted line. (B) Plastic section at 2 mm thickness showing that adult zebrafish (aged at 3 months) skin
consists of three major layers, including the superficial cells (arrowhead), middle and basal cells (arrows), and mucous cells (asterisk). (C) BrdU
incorporation experiment showing that most skin layers in adult zebrafish are mitotically active. The BrdU+ cells (brown signals) can be detected in
most skin layers at adult stage. (D) CK5/6 and (E) p63 antibodies differentially label the superficial skin layer and the putative epidermal stem cells in
adult zebrafish skin, respectively. For immunohistochemistry, the 5 mm thick paraffin sections were immunostained with antigen-specific antibodies
and visualized with DAB coloring substrate (brown). To visualize the cell morphology, the slides were counterstained with hematoxylin (blue). (F)
Whole-mount immunostaining of p63 (red) on Tg(krt4:nlsEGFP)cy34 (green) embryonic yolk aged at 24 hpf, showing that the krt4 promoter targets
the outermost EVL. The relative position of the captured image is highlighted at the upper right corner. (G–I) Immunohistochemistry of GFP (brown)
on paraffin sections derived from Tg(krt4:nlsEGFP)cy34 aged at 3 months. The positive signals (brown) show that the krt4 promoter targets the
superficial layer in the skin (G), esophagus (H) and gill (I) at adult stage.
doi:10.1371/journal.pone.0020654.g001
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fusion protein back to the cytoplasm compartment causing it to

lose its aggregated, high fluorescent nature; (3) activated Met

triggered cell apoptosis in skin. The lack of significant difference in

nlsEGFP+ cells between untreated (23656124 mm22, n = 22) and

Met-treated Tg(krt4:nlsEGFP)cy34 (23726177 mm22, n = 17) ruled

out the hypothesis that the same krt4 promoter also drives the

nlsEGFP reporter gene (Figs. 4A–4C). Western blot analysis

showed that the relative amount of NTR-hKikGR fusion pro

tein greatly reduced after Met treatment, indicating that the

redistribution of NTR-hKikGR+ proteins was also not feasible

(Fig. 4D). The loss of pan-cytokeratin provided further evidence of

the death of skin cells triggered by activated Met (Fig. 4E). To

examine whether Met-induced cell death occurred via cell

apoptosis, the expression of an apoptosis downstream effector of

caspase 3 was analyzed by Western blot. Results showed a

significant reduction in pro-caspase 3 signals and a sharp increase

in activated caspase 3 signals in Met-treated killer lines (Fig.

4F). Histological examination demonstrated strong apoptotic skin

Figure 2. Establishment of Tg(krt4:NTR-hKikGR)cy17 killer line. (A) The work flow to conditionally ablate zebrafish skin using NTR/Met-mediated
system. The superficial skin-specific krt4 promoter controls NTR-hKikGR fusion protein. Tol2 transposon elements flank the whole transgene cassette
and enhance the germ-line transmission rate. Dimerization of NTR-hKikGR transfers electrons from NADH/NADPH to Met prodrug. Activated Met
crosslinks DNA and specifically triggers apoptotic death in skin. (B) The killer line carrying the krt4:NTR-hKikGR transgene was crossed with several
testing lines which overexpress human constitutively active myrAkt1 (myrAkt1), mouse constitutively active Stat3 (Stat3), or HPV16 E6 (E6) genes. The
double transgenics were then subjected to Met incubation to assay the potential function of apoptosis modulators. (C–F) The ontogenic expression
pattern of NTR-hKikGR fusion protein in killer line aged from 24 to 96 hpf. (G) The living fluorescent signals detected in double transgenics from the
crossing of the killer line and Tg(krt4:nlsEGFP)cy34 aged at 72 hpf show that the NTR-hKikGR+ signals (yellow) aggregated adjacently to the nlsEGFP+

(green) skin nucleus. (H) Model to illustrate the spatial distribution of NTR-hKikGR fusion protein in zebrafish embryo skin. (I) The native hKikGR
protein displays cytoplasmic distribution pattern in the skeletal muscle of Tg(mylz2:hKikGR). The relative position of the captured image is highlighted
at the upper right corner. (J) The NTR-hKikGR fusion protein aggregated in skeletal muscle of Tg(mylz2:NTR-hKikGR). EVL, enveloping layer; BEL, basal
epidermal layer; Met, metrodinazole.
doi:10.1371/journal.pone.0020654.g002
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death in Met-treated killer line embryos. Compared to the

untreated groups (Figs. 4G and 4I), the integrity of the NTR-

hKikGR-expressing EVL greatly reduced after exposure of the

killer line embryos to short term 10 mM Met incubation (Fig. 4H).

To detect the apoptotic event in situ, killer line embryos aged at

24 hpf were treated with Met and TUNEL assay was performed

on embryos at 48 hpf. Results showed that TUNEL+ cells in Met-

treated killer line embryos (35486341 mm22, n = 18, Fig. 4J) have

a much higher cell densities than in untreated killer line embryos

(10986668 mm22, n = 19, p,0.001, Fig. 4I). This result support-

ed the theory that apoptosis mediates loss of NTR-hKikGR+ signal

in Met-treated killer line and this can be used as a real marker to

report skin apoptosis in vivo.

In addition to embryos, skin ablation in adult zebrafish was also

investigated. At adult stage, the killer line continued to express

strong NTR-hKikGR+ signals specifically in the skin tissues. Some

regions like the gill operculum (Figs. 5A and 5B), oral cavity

(Fig. 5C), scales (Fig. 5D) and tail fin fold (Fig. 5E), which are rich

in epithelial folding, displayed robust NTR-hKikGR+ fluorescent

signals (indicated by arrows). Compared to embryos, the adult

killer line displayed higher efficacy of NTR/Met-ablation system.

Administration of Met concentration higher than 2.5 mM was too

stressful and, therefore, lethal. Compared to the untreated group

(Fig. 5F), some NTR-hKikGR+ skin cells detached from the living

fish (Fig. 5G) in the killer line after continuous exposure to 2.5 mM

Met for three consecutive days. The fish also presented behavioral

and physiological evidences of hypoxic exposure, such as difficulty

in maintaining upright posture and vertical swimming balance,

bleeding, and reduced swimming mobility (Movie S1). To examine

the integrity of skin before and after Met-incubation, paraffin

sectioning was performed on adult killer lines treated without or

with Met. Consistent with findings in embryos, the superficial skin

(Fig. 5K), esophagus (Fig. 5O) and gill epithelium (Fig. 5S) of Met-

treated killer lines presented significant injuries. In skin and

esophagus, the disruption of superficial skin led to the release of

cellular content stored in the underlying mucous cells. PAS

staining characterized this material. In gill epithelium, formation

of pseudobranchia-like structures, characterized by fusion between

secondary lamellae, provided evidence of disruption to the

epilthelium (Fig. 5S). In contrast, wild-types treated without

(Figs. 5H, 5L, 5P) or with (Figs. 5I, 5M, 5Q) Met, or untreated

killer lines (Figs. 5J, 5N, 5R) displayed no evidence of skin injuries.

Activated caspase 3 immunostaining revealed robust apoptotic

activity in the Met-treated killer line (Fig. 5W). In contrast, Met-

untreated (Fig. 5T), treated wild-types (Fig. 5U), and Met-

untreated killer lines (Fig. 5V) demonstrated minimal activated

caspase 3 activity. These results clearly demonstrated that dis-

ruption to skin integrity in Met-treated killer line is mediated by

apoptotic cell death, and also highlighted the specificity and low

leakage of the NTR/Met-skin ablation system when applied in

living zebrafish.

NTR/Met-Mediated Skin Apoptosis Associates with tp53
Activity and Oxidative Stress

To investigate if NTR/Met-mediated skin apoptosis associates

with tp53 activity and oxidative stress protein expression level of

tp53 was knocked down by morpholino injection. Embryos were

Figure 3. Administration of Met caused the killer line to lose the NTR-hKikGR+ fluorescent signals. (A–D) The ontogenic expression of
NTR-hKikGR fusion protein in killer line embryos aged from 24 hpf to 96 hpf. (E–H) Consecutive incubation of killer line embryos with 10 mM Met,
from 24 hpf to 96 hpf, caused the NTR-hKikGR+ fluorescent signals to gradually diminish by 48 hpf, totally disappear by 72 hpf, and show pericardial
edema in Met-treated embryos by 96 hpf. (I–L) If Met was withdrawn and replaced with fresh fish water from 48 hpf onwards, the NTR-hKikGR+

fluorescent signals partially restored by 96 hpf. Scale bar = 100 mm in L (applies to A–L). The experimental design and work flow are illustrated at the
top panel. Met, metrodinazole.
doi:10.1371/journal.pone.0020654.g003
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then incubated with 10 mM Met from 24 hpf onwards to trigger

skin ablation. Compared to the Met-untreated killer line embryos

(24266693 mm22, Figs. 6A, 6E) or tp53-MO injected killer line

embryos (23246627 mm22, Figs. 6B, 6E), the loss of NTR-

hKikGR+ cells in Met-treated killer line embryos (3126332

mm22, Figs. 6C, 6E) was greatly attenuated by the blocking of tp53

expression (19566743 mm22, Figs. 6D, 6E). The impact of

oxidative stress on skin cell death in Met-treated embryos was

then assessed. Compared to Met-treated killer line embryos

(2266186 mm22, Fig. 6G, 6L), the loss of NTR-hKikGR+ cells

significantly attenuated in a dose-dependent manner after incu-

bation with the anti-oxidative agent N-acetyl-L-cysteine (L-NAC)

from 10 to 100 mM to scavenge the oxidative stress (Figs. 6H–6K).

These results indicated that elevated oxidative stress mediates the

loss of NTR-hKikGR+ signals and skin cell death in Met-treated

killer line embryos in a tp53-dependent manner.

The Killing Effect of NTR/Met System Specifically Targets
the Superficial Skin Layer

The bystander effect is a key component in tumor eradication

using gene-directed enzyme prodrug therapy. Reportedly, NTR

metabolizes another prototype NTR prodrug, CB1954 (5-aziri-

dinyl-2, 4-dinitrobenzamide), to potent alkylating agents which

can diffuse and kill non-NTR expressing neighboring cells by

a bystander effect [48,49]. In order to specifically ablate the

superficial skin layer, the possible occurrence of the bystander

effect was examined. Firstly, killer line embryos at 24 hpf were

incubated with 10 mM Met and then fixed at 48 hpf to examine

the integrity of other skin derived cells, such as basal epidermal

cells/epidermal stem cells (Figs. 7A and 7B), Na,K-ATPase rich

cells (which regulate ion homeostasis in zebrafish embryo skin,

Figs. 7C and 7D), H-ATPase rich cells (which regulate acid-base

and ion homeostasis in zebrafish embryo skin, Figs. 7E and 7F)

and mucous cells (which secrete mucous in zebrafish embryo

skin, Figs. 7G and 7H) by whole-mount antibody staining with

respective antibodies as described in the Materials and Methods.

The cell density for each cell type on the trunk region between

untreated and Met-treated killer line embryos was quantified.

The cell densities for p63+ cells (34026421 mm22 VS 3104

6204 mm22, P = 0.068, Fig. 7I), Na,K-ATPase rich cells

(380669 mm22 VS 401659 mm22, P = 0.247, Fig. 7J),

H-ATPase rich cells (3286112 mm22 VS 3166113 mm22,

P = 0.822, Fig. 7K) or mucous cells (229653 mm22 VS

228696 mm22, P = 0.989, Fig. 7L) displayed no significant

differences between killer line embryos treated without or with

Met. These results clearly indicated that apoptosis specifically

occurs in NTR-hKikGR-expressing cells and the possible

bystander killing effect of NTR/Met-mediated skin ablation

can be ignored.

Figure 4. Apoptotic cell death mediates the loss of NTR-hKikGR+ fluorescent signals in Met-treated killer line. krt4 promoter
suppression does not mediate loss of NTR-hKikGR+ fluorescence in Met-treated killer line because downregulation of nlsEGFP+ fluorescence signal
intensity (A and B) or nlsEGFP+ cells (C) in Tg(krt4:nlsEGFP)cy34 did not occur with or without Met treatment. (D–F) Western blot analysis showed that
apoptotic cell death mediates the loss of NTR-hKikGR+ fluorescent signals in Met-treated killer line embryos because the relative expression levels of
NTR-hKikGR fusion protein (D), pan-cytokeratin (E) and pro-caspase 3 (F) greatly reduced in Met-treated embryos. Note that the relative intensities of
the cleavaged caspase 3-immunoreactive signals greatly increased in the Met-treated killer line (F). (G–H) Plastic sections at 2 mm thickness show the
greatly compromised superficial skin integrity in Met-treated killer line embryos (arrow). Whole-mount TUNEL assay demonstrated significantly
enhanced cell death signals in Met treated killer line embryos (J) compared to the untreated group (I). The cell number is presented as the mean6S.D.
Student’s t-test was used to make statistical comparisons between untreated (2Met) and Met-treated (+Met) killer lines. Met, metrodinazole.
doi:10.1371/journal.pone.0020654.g004
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Testing Potential Apoptosis Modulators in Living
Zebrafish Skin

The successful generation of a killer line which triggers apo-

ptosis in the superficial skin layer provided the opportunity to test

whether it is possible to validate potential apoptosis modulators in

living zebrafish skin. Using rapid plasmid construction by Gateway

recombination and germ line transmission by Tol2-mediated

transgenic technology, three testing lines were created which

overexpressed human constitutively active Akt1 (myrAkt1), mouse

constitutively active Stat3 (Stat3), or HPV16 E6 (E6) in a

superficial skin-specific manner. Previous studies documented the

attenuation of UVB-induced apoptosis in skin culture cells or

genetic modified mice by the three testing genes [50,51,52,53].

Initially, the stable transmission and expression of the three testing

transgenes in their corresponding testing lines were confirmed

using PCR genotyping (Fig. S1A) and RT-PCR (Fig. S1B).

Western blot analysis was performed on myrAkt1 transgenics (Fig.

S1C) and real-time RT-PCR was performed on Stat3 and E6

transgenics (Figs. S1D–E) to validate the functionality of the

exogenous transgenes. Detection of the activation of downstream

targets confirmed that all three transgenes were functional. In

myrAkt1 transgenics, the phosphorylation levels of downstream

targets of GSK3a/b and p70S6K significantly elevated (Figs.

S1C). The homozygotic killer line was then crossed with hemi-

zygotic testing lines to generate double transgenics, which could be

unambiguously identified based on their green skin and green

heart appearance. Double transgenic embryos aged at 24 hpf were

incubated with 10 mM Met to induce skin ablation and the

number of NTR-hKikGR+ skin cells after ablation were calculated

and statistically compared at 48 hpf by one-way ANOVA. In the

untreated killer line (Fig. 8A) or untreated double lines derived

from the crossing of the killer line and testing lines (Figs. 8C, 8E,

8G), the density of NTR-hKikGR+ cells maintained a consistent

level of 25616475 mm22 (n = 134, Fig. 8O). Upon exposure

to prodrug Met, the NTR-hKikGR+ cells in Met-treated killer

line sharply declined to only 1% of the untreated control

Figure 5. Evaluation of skin ablation by NTR/Met ablation system in adult killer line. The lateral (A) and ventral (B) views of fluorescent
appearance of NTR-hKikGR fusion protein in the killer line at adult stage. Some regions like gill operculum (A, B), oral cavity (C), scale (D) and tail fin
(E), which are rich in epithelial structures, showed robust fluorescent signals (heighted by arrows). (F–G) Test of the possibility of performing skin
ablation in the adult killer line. Treatment of the killer line with 2.5 mM Met for three consecutive days resulted in greatly compromised skin integrity
and some detached skin debris (NTR-hKikGR+) in the fish tank. (H–S) Histological assessment of skin integrity in wild-types or killer lines treated with
or without 2.5 mM Met. Paraffin sections stained with hematoxylin and eosin showing the serial morphological changes in the regions of superficial
skin (H–K), esophagus (L–O) and gill epithelium (P–S). Included for comparison, the normal epidermal histology in superficial skin (H), esophagus (L)
and gill (P) before performing skin ablation. To highlight the position of mucous cells, PAS staining (blue color) in paraffin sections derived from skin
(H–K) and esophagus (L–O) shown in lower right corners. (T–W) Detection of cell apoptosis in the damaged skin by activated caspase 3 antibody
staining on paraffin sections (brown signals). The killer line adults were first incubated with 2.5 mM Met solution for three consecutive days to
execute cell ablation and then paraffin sections, at 5 mm intervals, were cut for histological assay or immunohistochemistry. Met, metrodinazole; PAS,
Periodic Acid Schiff.
doi:10.1371/journal.pone.0020654.g005
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(32655 mm22, n = 69, Fig. 8B). However, in myrAkt1 (11046

409 mm22, n = 16, Fig. 8D), Stat3 (12426500 mm22, n = 11,

Fig. 8F) or E6 (17446325 mm22, n = 6, Fig. 8H) overexpression,

the loss of NTR-hKikGR+ cells greatly attenuated when chal-

lenged with the NTR/Met ablation system.

The possibility of developing a high-throughput assay based on

transient testing at F0 generation was another area investigated in

the study. The plasmid DNAs carrying myrAkt1, Stat3 or E6

genes, which are driven by the krt4 promoter, were injected into

homozygotic killer lines embryos and then skin ablation was

triggered by following the protocol used in stable transgenics.

Consistent with results obtained from the stable lines, the transient

overexpression of myrAkt1 (Fig. 8J), Stat3 (Fig. 8L) or E6 (Fig. 8N)

genes in skin significantly attenuated apoptotic cell death in Met-

treated killer line embryos (statistical comparisons are presented in

Fig. 8O).

This study used a killer/testing binary system to quantitatively

evaluate the apoptosis-modulating genes in living vertebrate skin

for the first time. Researchers can use this approach in stable and

transient transgenic backgrounds, providing the potential for

screening of apoptosis-modulating genes in high-throughput assays

in vertebrates.

Discussion

This study established a transgenic zebrafish line which ex-

presses the NTR-hKikGR suicide gene under the control of a

superficial skin-specific promoter. Its findings demonstrated that

the NTR/Met cell ablation system can be utilized to perform

conditional zebrafish skin ablation in a real-time manner, and also

provides a valuable tool to visualize and quantify apoptotic events

in vivo. Successful monitoring of the fluorescent appearance of

NTR-hKikGR validated the possibility of screening potential anti-

apoptotic genes in living fish skin.

The NTR gene has successful clinically applications in gene-

directed enzyme prodrug therapy on cancer cells [54,55,56] and

tissue/lineage-specific cell ablation in living animals [32,34,35].

After administration of Met prodrug, the NTR enzyme converts

Figure 6. The loss of NTR-hKikGR+ fluorescent signals in Met-treated killer line correlates with tp53 activity and oxidative stress in
skin. (A–D) Test of tp53-dependency on the loss of NTR-hKikGR+ fluorescent signals by tp53 morpholino injection. (E) Statistical comparison of the
relative number of NTR-hKikGR+ fluorescent signals in tp53 morphants treated with or without Met. (F–K) Test of oxidative status-dependency on the
loss of NTR-hKikGR+ fluorescent signals by incubation with various concentrations of L-NAC as an anti-oxidant. (L) Statistical comparison of the
relative number of NTR-hKikGR+ fluorescent signals in killer line embryos treated with Met and/or L-NAC. The cell number is presented as the
mean6S.D. Different letters above the error bars indicate significant differences, as tested by one-way ANOVA with Tukey’s pair-wise comparison
method. L-NAC, N-acetyl-L-cysteine.
doi:10.1371/journal.pone.0020654.g006

Skin Ablation System in Zebrafish

PLoS ONE | www.plosone.org 8 May 2011 | Volume 6 | Issue 5 | e20654



the prodrug into cytotoxic alkylating agents and induces apoptosis

following the formation of intrastrand DNA crosslinks on target

cells. In recent years, improvements to the NTR/Met ablation

system enhanced its efficacy and specificity on cell ablation. It now

displays superior killing effects and specificity compared to other

cell ablation systems, such as diphtheria toxin A, Kid/Kis, HSV

thymidine kinase/ganciclovir, tamoxifen-inducible c-Myc, and

toxic viral protein M2(H37A) [57]. To improve NTR cell sen-

sitization, previous studies tested several amino acid substitution

[30,58,59], codon-optimized [29] and organelle-targeted [60,61]

versions of NTR. In the killer line, incubation with Met caused

ablation of at least 99% of the superficial skin cells within a short

duration; from 24 to 36 hpf (Fig. 8). In the adult killer line, as low

as 2.5 mM Met incubation induced massive skin ablation (Fig. 5).

This lower, optimal working Met concentration is about 1/2 to 1/

4 lower than previous works performed on zebrafish testis [41],

ovary [42], heart, liver, or pancreas [32]. The possible reasons for

the superior killing effect of the NTR/Met ablation system in this

study may include that: (1) skin is the outermost tissue and directly

exposed to the external chemical stimulation, therefore it is more

accessible to cytotoxic damage after administration of prodrugs to

the killer line; (2) the triple mutated NTR (T41Q/N71S/F124T)

is the most active NTR mutation tested in vitro and displays a

100-fold improved specificity constant than the wild-type enzyme

Figure 7. Skin ablation in Met-treated killer line specifically targeted the EVL and showed no bystander effect on the neighboring
cells. Whole-mount immunostaining on killer line embryos aged at 48 hpf showing that the number of epidermal stem basal cells (A and B, stained
with p63 antibody), NaRC (C and D, stained with Na,K-ATPase antibody), HRC (E and F, stained with H-ATPase antibody) and MC (G and H, stained
with anterior gradient 2 antibody) did not significantly change between untreated (2Met) and treated (+Met) groups. (I–L) Statistical comparisons,
using Student’s t-test, of the relative cell numbers of p63+ cells, NaRC, HRC and MC between untreated (2Met) and Met-treated (+Met) groups. The
cell number is presented as the mean6S.D. NaRC, Na-K-ATPase rich cell; HRC, H-ATPase rich cells; MC, mucous cells; Met, metrodinazole.
doi:10.1371/journal.pone.0020654.g007
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[30]; (3) the unique sub-cellular localization of NTR-hKikGR

fusion protein might facilitate the attack of chromosomal DNA by

activated Met and trigger apoptotic cell death. The appropriate

subcellular localization of NTR has important consequences for

suicide gene therapy [61].

Few previous studies have addressed if NTR/Met-mediated

apoptosis is related to tp53, oxidative status or other gene activities.

In an early study, Cui et al. [62] crossed BLG-NTR transgenic

mice to a tp53-deficient mouse strain and discovered that a tp53-

independent apoptotic pathway mediates NTR/CB1954-mediat-

ed cell ablation in mammary glands. However, in the zebrafish

system in the present study, a tp53- and oxidative status-dependent

apoptosis pathway mediated NTR/Met-mediated skin ablation

in embryos. Knockdown of functional tp53 gene expression by

morpholino injection greatly attenuated skin ablation. Relief of

oxidative stress by anti-oxidant reagent administration had a

similar effect. Whether this difference relates to tissue- or species-

differences warrants further investigation.

Based on TUNEL staining, Pai and Chen [28] discovered that

UV-irradiation greatly attenuates skin cell apoptosis in prothymo-

sin alpha transgenic embryos. However, the TUNEL assay does

not detect live apoptotic events as it must be applied on fixed

samples. Due to the transparency of zebrafish embryos, the UV

irradiation, which targets the superficial skin layer, cannot be fully

controlled. Therefore, overall skin apoptotic events might be

overestimated. The routine TUNEL assay is a semi-quantitative

method therefore anti-apoptotic potential among different testing

genes cannot be statistically compared. Therefore, to improve

on this assay, a high throughput, high specificity, in vivo apoptotic

quantification method is necessary. This study overcame the pro-

blems of the previously mentioned study by creating a fluores-

cence-tagged killer line and several testing lines to validate poten-

tial anti-apoptotic gene function in living zebrafish. Due to its

quantitative nature, the method could compare the anti-apoptotic

potential of different testing lines. The anti-apoptotic potential of

the genes validated in the study’s binary system of killer/testing

lines are largely consistent with previous in vitro and in vivo findings,

which showed that the overexpression of human myrAkt1, mouse

Stat3C, or HPV16 E6 in the skin attenuates apoptotic stress

[50,51,52]. HPV16 E6 displayed superior anti-apoptotic effects to

two other well-known survival factors, myrAkt1 and Stat3, when

expressed in zebrafish skin. Previous research on cell line assays

characterized HPV16 E6 as a powerful oncoprotein that can de-

grade p53 [63,64]. p53 plays a key role in promotion of apoptotic

cell death, therefore, down-regulation of p53 by morpholino

injection or HPV16 E6 overexpression effectively attenuates skin

apoptosis in zebrafish.

In the past few decades, use of genetically modified mice en-

abled the discovery of apoptosis modulating genes which fun-

ctionally protect the skin from UV or chemical stresses. However,

disadvantages of this method include low throughput, high cost

and extensive manpower requirements. These factors greatly

slowed the progress of investigation into apoptosis modulators.

The zebrafish system has the advantages of short generation time,

external fertilization, matured gateway recombination, and high

efficiency Tol2-based transgenic techniques [65,66]. Future gen-

eration of hundreds of testing lines will, therefore, be possible,

along with large scale in vivo anti-apoptotic screening, by crossing

Figure 8. Functional validation of potential apoptosis modulators in the living killer line embryos by crossing transgenic lines or
transient plasmid DNA injection. (A–H) The NTR-hKikGR+ fluorescent signals in embryos derived from crossing of killer line with testing line
carrying human constitutively active Akt1 (myrAkt1) (C, D), mouse constitutively active Stat3 (Stat3) (E, F), or HPV16 E6 (E6) transgenes (G, H). (I–N)
NTR-hKikGR+ fluorescent signals in killer line embryos after injection with plasmids carrying myrAkt1 (I, J), Stat3 (K, L), or E6 transgenes (M, N). (O)
Statistical comparison of the relative number of NTR-hKikGR+ fluorescent signals in embryos derived from stable line assay (black bars) or transient
assay (red bars). The cell number is presented as the mean6S.D. Different letters above the error bars indicate significant differences as tested using
one-way ANOVA with Tukey’s pair-wise comparison method. Met, metrodinazole.
doi:10.1371/journal.pone.0020654.g008
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these testing lines with the killer line. This study provided evidence

to demonstrate that screening throughput can be greatly improved

by performing transient assay at the F0 generation. Success in

using exogenous testing genes from mammals or virus to attenuate

apoptosis in zebrafish skin indicates that, although fish skin differs

from its mammalian counterpart in terms of structure and cell

kinetics, the underlying mechanism to control skin homeostasis is

evolutionary conserved among vertebrates.

Materials and Methods

Plasmid Construction
Tol2 kit [65] was used to rapidly assemble expression vectors

by two-fragment gateway recombination cloning. For 59 entry

cloning, 2.2 kb krt4 promoter was amplified from genomic DNA of

wild-type zebrafish by PCR with forward primer (59-GG-

GGACAACTTTGTATAGAAAAGTTGCCTTCCCTTCTAC-

TTTTGACGTCC -39) and reverse primer (59-GGGGACT-

GCTTTTTTGTACAAACTTGCCGGATCCTGTGTCTTTG-

AGTTGC-39). For p5E entry cloning, the attB4 and attB1r sites

were added for forward and reverse primers, respectively, at the

59end of primers and highlighted by underlines. The PCR pro-

ducts were then cloned into pDONRP4-P1R (Invitrogen) by

BP reaction to obtain p5E-krt4. The resulting p5E-krt4 vector

contained 2.2 kb upstream regulatory sequences of krt4 gene

sufficient to target transgenes specifically expressed in skin cells

[45]. For pME middle entry cloning, chimera PCR was used to

fuse the mutated NTR (T41Q/N71S/F124T) in frame with

hKikGR photo-convertible fluorescent protein at its C-terminus.

This green-to-red photoconversion (green: 507/517; red: 583/

593 (Excitation/Emission)) is sensitive to UV light (350–410 nm).

Initially, the mutated NTR open reading frame (without stop

codon) was amplified from plasmid pCG.Ad2v45 (kindly provided

by Dr. Peter Searle) using forward primer (59-GGGGACAA-

GTTTGTACAAAAAAGCAGGCTATGGATATCATTTCTG-

TCGC-39) and reverse primer (59-CGCTGGTGATCACGCT-

CACCATCACTTCGGTTAAGGTGATGTTT-39). The hKikGR

open reading frame was amplified from plasmid phKikGR1-MN1

[67] using forward primer (59-AAACATCACCTTAACC-

GAAGTGATGGTGAGCGTGATCACCAGCG-39) and reverse

primer (59-GGGGACCACTTTGTACAAGAAAGCTGGGTT-

TACTTGGCCAGCCTGGGCAGGC-39). The two primary PCR

products were mixed and subjected to a secondary round of PCR

with forward primer (59-GGGGACAAGTTTGTACAAAAAAG-

CAGGCTATGGATATCATTTCTGTCGC-39) and reverse

primer (59-GGGGACCACTTTGTACAAGAAAGCTGGGTT-

TACTTGGCCAGCCTGGGCAGGC-39). The attB1 and attB2

sites were added for forward and reverse primers, respectively, at

the 59end of primers and highlighted by underlines. The final

PCR products were cloned into pDONR221 (Invitrogen) to

generate pME-NTR-hKikGR. Finally, p5E-krt4, pME-NTR-

hKikGR or pME-nlsEGFP [65] were assembled together with

pTolDestR4R2pA [66] by LR reaction to create two expression

vectors of pTolDest-krt4-NTR-hKikGR-pA and pTolDest-krt4-

nlsEGFP-pA.

Microinjection and Identification of Transgenic Zebrafish
Transposase RNA was synthesized in vitro using pCS-transpos-

ase plasmid (kindly provided by Dr. Koichi Kawakami) as a tem-

plate. DNA was linearized with NotI at 37uC overnight and

cleaned up using DNA Clean/Extraction Kit (GeneMark Inc.,

Taiwan). Capped mRNA was synthesized using mMESSAGE

mMachine SP6 Kit (Ambion). For generation of transgenic zebra-

fish, expression constructs of pTolDest-krt4-NTR-hKikGR-pA

(50 ng/mL) or pTolDest-krt4-nlsEGFP-pA (50 ng/mL) were mixed

with in vitro transcribed transposases mRNA (50 ng/mL), and

approximately 1–3 nL DNA solution was injected into the animal

pole of one-cell stage embryos. The injected embryos were raised

to adulthood and the putative founders were screened according to

the green fluorescent signals in the skin of their F1 progenies. The

detail procedures to generate Tg(krt4:Hsa.myrAkt1)cy18 (testing line

to express human constitutively active Akt1), Tg(krt4:Mmu.Stat3)cy6

(testing line to express mouse constitutively active Stat3), Tg(krt4:

Hpv.E6)cy38 (testing line to express HPV16 E6) will be available

upon request. For assay of gene function at F0 generation, 5 nL of

a solution containing expression constructs of either pTolDest-

krt4-myrAkt1-pA, pTolDest-krt4-stat3-pA, or pTolDest-krt4-HPV16

E6-pA at 50 ng/mL concentration, together with transposases

mRNA at 50 ng/mL concentration, was injected into killer line

embryos at one-cell stage. The transgenic fish line nomenclatures

were approved by the Zebrafish Nomenclature Committee of

ZFIN (http://zfin.org). All experiments were approved by the

animal use committee at Chung Yuan Christian University

(approval ID: 9612).

Applications of NTR/Met-Based Cell Ablation
Metronidazole (Sigma, M1547) was dissolved in double distilled

water as a 20 mM stock and stored at 220uC in the dark. For skin

ablation/recovery at embryonic stage, at least twenty wild-type or

transgenic zebrafish embryos aged at 24 hpf were incubated with

10 mM Met solution (diluted with fish water) at 28.5uC. At

indicated times Met solution was removed and replaced with Met-

free fish water for recovery. For adult skin ablation/recovery, wild-

type and transgenic fish were incubated with 2.5 mM Met solution

for 3 days at 27uC, then Met was withdrawn and replaced with

Met-free fish water for recovery. At each time point, at least five

fish were deeply anesthetized using 0.03% MS222 and sacrificed

for histological assessment.

Histology and Immunohistochemistry
For plastic section, embryo or adult zebrafish were fixed in 4%

paraformaldehyde/PBS for 1 day, washed with PBST and then

dehydrated with 100% methanol for 1 day. After completely

dehydration, samples were infiltrated and embedded in Technovit

7100 resin (Heraeus Kulzer). Samples were sectioned at 1–2 mm

intervals and stained with hematoxylin and eosin staining kit

(Merck). For paraffin section, adult zebrafish were fixed in 4%

paraformaldehyde/PBS for 1 day and transferred to Davidson’s

solution (30% Ethyl alcohol (95%), 10% Acetic acid, 20%

Formalin, and 30% double distill water) for 3 days at room

temperature. This procedure decalcifies the hard tissues and also

keeps the skin in good morphology. The decalcified samples were

then dehydrated in ascending ethanol, cleared with Neo-clear

(Merck) and embedded in Paraplast Plus/Paraplast HM (Leica) in

a 7:3 ratio (vol/vol). The paraffin embedded tissues were sectioned

at 5 mm intervals with a rotational microtome (HM360, Microm)

and then stained with H&E or PAS staining kit according to the

manufacturer’s instructions (Merck). For immunohistochemistry,

the deparaffined slides were treated for antigen retrieval by

incubating with 1 mM EDTA (pH 8.0) solution [68] at 95uC for

30 min. The slides were then subjected to antibody staining with

primary antibodies as follows: mouse anti-human p63 (1:200, sc-

8431, Santa Cruz), rabbit anti-activated caspase 3 (1:200, 559565,

BD Biosciences), mouse anti-CK5/6 (1:100, M7237, DAKO),

rabbit anti-GFP (1:200, sc-8334, Santa Cruz). The HRP-con-

jugated goat anti-mouse/rabbit IgG secondary antibodies were

applied at 1:300 dilution and the immunoreactive signals were

developed using DAB as substrate (SK-4100, Vector Laboratories).
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Finally, the slides were counterstained with hematoxylin for

5 seconds and mounted using Neo-Mount (Merck).

BrdU Incorporation
Adult transgenic zebrafish were systematically incubated in

10 mM BrdU (B5002, Sigma)/5% DMSO solution for 24 hr and

then transferred to fresh fish water for 1 hr to remove the un-

incorporated BrdU. After performing fixation, decalcification

and paraffin section processes according to the protocol men-

tioned previously, the de-paraffined slides were depurinated with

2.5N HCl for 30 min at room temperature and immersed in

0.1 M borate buffer for 10 min to enhance the detection

sensitivity for the BrdU-positive cells in skin. The depurinated

slides were then subjected to antibody staining with mouse anti-

BrdU (1:100, G3G4, DSHB) and HRP-conjugated goat anti-

mouse IgG (Jackson ImmunoResearch).

Whole-Mount Immunostaining
Zebrafish embryos aged at 48 hpf were fixed in 4% para-

formaldehyde/PBS for 12 h at 4uC. After extensive washing in

PBST, embryos were transferred to 100% methanol at 220uC for

2 h and subsequently subjected to rehydration with PBST. After

blocking with 3% BSA/PBST at room temperature for 60 min,

embryos were incubated at 4uC overnight with 1:200 diluted

primary antibodies as follows: mouse anti-human p63 (sc-8431,

Santa Cruz), mouse anti-chicken Na+-K+-ATPase (a5, DSHB),

rabbit anti-Atlantic salmon anterior gradient 2 [69], and rabbit

anti-dace H-ATPase [70]. After extensive washing in PBST for

10 min, embryos were incubated with Alexa Fluor 568-conjugat-

ed goat anti-mouse/rabbit IgG (Molecular probe) or HRP-

conjugated goat anti-mouse IgG (Jackson ImmunoResearch)

for fluorescent or color detection of immunoreactive signals,

respectively.

Western Blot
Tail fins dissected from 15 individuals of wild-type or killer lines

were pooled and homogenized in protein extraction solution

(250 mM sucrose, 20 mM Hepes, 1 mM EDTA, pH 7.4, 1%

protease inhibitor, Sigma). The total lysates were centrifuged at

13,000 rpm for 20 min at 4uC to remove cell debris, and the

supernatant was collected for further study. The protein con-

centration was determined using BCA protein assay kit (23225,

Thermo) and detected using Synergy HT Multi-Mode Microplate

Reader (BioTek Instruments Inc., Vermont, USA). Total cellular

proteins of 35 mg were separated by 12.5% SDS-PAGE and

transferred to polyvinylidene difluoride (PVDF) membranes

(Millipore). Following incubation with blocking solution, PVDF

membranes were incubated with primary antibodies overnight and

then HRP-conjugated secondary antibodies (1:1000 dilution) for

1 hr at room temperature. The primary antibodies and their

dilution factor were as follows: mouse anti-hKikGR (1:1000,

M129-3, MBL), rabbit anti-activated caspase 3 (1:1000, 559565,

BD Biosciences), mouse anti-pan cytokeration (1:1000, C2931,

Sigma), rabbit anti-human phosphorylated GSK3a/b (pY279/

pY216) (1:1000, 2309-1, Epitomics), rabbit anti-human phosphor-

ylated stat3 (pY705) (1:5000, 2236-1, Epitomics), rabbit anti-

human phosphorylated p70 S6 kinase (pT421/pS424) (1:5000,

1135-1, Epitomics), and mouse anti-b actin (1:2000, sc-69879,

Santa Cruz). After a series of washing, locations of protein were

revealed by incubating in the WEST-ZOL PLUS solution

(iNtRON Biotechnology, Korea) for 2 min at room temperature

in the dark room, and the images were acquired using FUJIFILM

LAS 3000 Imaging Analyzer (FUJIFILM, Taiwan).

TUNEL assay
For TUNEL assay, embryos aged at 18 hpf were pre-treated

with PTU and then processed to PFA fixation at 48 hpf. Following

washing in PBST for 10 min they were then stored in 100%

methanol at 220uC for over 2 h. Embryos were incubated with

3% H2O2/MeOH for 10 min at room temperature. Subsequently,

embryos were rinsed two times with PBS and incubated with

labeling solution, 10 mL of enzyme solution plus 90 mL of label

solution at 37uC for 2 h following the kit instructions (Roche

Applied Sciences). Embryos were then washed three times in PBS,

for 5 min each time, at room temperature. Subsequently, embryos

were incubated with 100 mL of converter POD at 37uC for

30 min. Embryos were rinsed three times in PBS and incubated

with DAB solution (SK-4100, Vector Laboratories) for 5 min.

RT-PCR
Thirty embryos aged at 3 dpf from wild-type or testing lines

were collected and homogenized in RNAzol RT (RN190, MRC,

Inc) with Bullet Blender (Next Advance, Inc) tissue lyser to isolate

total RNA according to the manufacturer’s instructions. Total

RNA concentration was determined by spectrophotometry, and

the RNA quality was checked by running electrophoresis in RNA-

denatured gels. For RT-PCR, 1 mg of total RNA was reverse-

transcribed with RevertAid first cDNA synthesis kit (K1622,

Fermentas) and then PCR was performed with SYBR green dye

according to the manufacturer’s instructions. The primer

sequences used to perform RT-PCR and the PCR amplicon size

are listed in Table S1.

tp53 Morpholino Oligo Injection
To achieve the maximal knock-down effect, tp53 MO (59-

AGAATTGATTTTGCCGACCTCCTCT-39, Gene Tools), at a

concentration of 5 ng/embryo, was injected into yolks at the one-

cell stage. The specificity and efficacy of tp53 MO has been

validated previously [71].

Image Acquisition, Skin Cell Quantification and Statistics
Representative DAB-stained or fluorescent images were ac-

quired using an upright microscope (BX51, Olympus) equipped

with a digital camera (DP72, Olympus) or a dissecting microscope

(SMZ1500, Nikon) equipped with a cool CCD (Evolution VF). For

quantifying the relative density of skin cells or TUNEL+ cells, the

original images were processed using Photoshop CS3 software to

select a region of interest (ROI) at 300 mm6150 mm dimensions.

The total cell number in this ROI was calculated using ImageJ

software (http://rsbweb.nih.gov/ij/) and statistically compared

using t-test or one-way ANOVA.

Supporting Information

Figure S1 Validation of the transmission, expression
and function of testing lines in stable transgenics using
genotyping, RT-PCR and Western blot analysis. Assay of

the stable transmission and expression of transgenes in different

testing lines at the DNA and mRNA levels by genotyping (A) and

RT-PCR (B), respectively. The relative position of the primers

used to perform genotyping or RT-PCR is illustrated by red

arrows. The predicted amplicon size is also illustrated in the right

panel. The plasmid architectures were highlighted in the upper

panel. (C) Western blot assay on protein lysates extracted from

adult tail fins showing highly phosphorylated Akt downstream

targets of GSK3a/b and 70S6K in myrAkt1 testing line. b-actin

served as a protein loading control. (D) Quantitative real-time RT-

PCR showed that overexpression of pro-survival genes of Stat3
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down-regulates the pro-apoptotic genes bida and puma in trans-

genic embryos aged at 48 hpf. (E) Quantitative real-time RT-PCR

showed that overexpression of virus oncogene of HPV16 E6 up-

regulates the cell cycle-related genes ccne and cdk2 in transgenic

embryos aged at 48 hpf.

(PDF)

Table S1 The PCR amplicon size and primer sequences
used to perform RT-PCR.
(XLSX)

Movie S1 Swimming behavior assessment of killer line
treating without (2Met, left tank) or with (+Met, right
tank). Met, metrodinazole.
(WMV)
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