
Application of a novel measure of EEG nonstationarity
as‘Shannon entropy of the peak frequency shifting’ for detecting
residual abnormalities in concussed individuals

Cheng Cao and Semyon Slobounov
Department of Kinesiology, 19 Recreation Building, The Pennsylvania State University, University
Park, PA 16802, USA

Abstract
Objective—The aim of this report was to propose a novel measure of nonstationarity of EEG
signals, named Shannon entropy of the peak frequency shifting (SEPFS). The feasibility of this
method was documented comparing this measure with traditional time domain assessment of
nonstationarity and its application to EEG data sets obtained from student-athletes before and after
suffering a single episode of mild traumatic brain injury (mTBI) with age-matched normal
controls.

Methods—Instead of assessing the power density distribution on the time-frequency plane, like
previously proposed measures of signal nonstationarity, this new measure is based on the shift of
the dominant frequency of the EEG signal over time. We applied SEPFS measure to assess the
properties of EEG nonstationarity in subjects before and shortly after they suffered mTBI.
Student–athletes at high risk for mTBI (n = 265) were tested prior to concussive episodes as a
baseline. From this subject pool, 30 athletes who suffered from mTBI were re-tested on day 30
post-injury. Additional subjects pool (student-athletes without history of concussion, n=30) were
recruited and test-retested within the same 30 day interval. Thirty-two channels EEG signals were
acquired in sitting eyes closed condition.

Results—The results showed that the SEPFS values significantly decreased in subjects suffering
from mTBI. Specifically, reduced EEG nonstationarity was observed in occipital, temporal and
central brain areas, indicating the possibility of residual brain dysfunctions in concussed
individuals. A similar but less statistically significant trend was observed using traditional time
domain analysis of EEG nonstationarity.

Conclusions—The proposed measure has at least two merits of interest: (1) it is less affected by
the limited resolution of time-frequency representation of the EEG signal; (2) it takes into account
the neural characteristics of the EEG signal that have not been considered in previously proposed
measures of nonstationarity.

Significance—This new method may potentially be used as a complementary tool to assess the
alteration of brain functions as a result of mTBI.
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1. Introduction
Mild traumatic brain injury (mTBI), otherwise known as concussion (Cantu 2006), is the
most common head injury seen in athletics as well as in other activities of daily life. It can
occur in a myriad of different situations including but not limited to athletic events,
recreational outings, and transportation accidents where the brain accelerates and/or
decelerates differentially in the skull. Current evidence suggests that attempts to classify
mTBI as a traumatic event based upon clinical symptoms at the site of injury may be
erroneous. However, advanced research methods may detect both behavioral (e.g., abnormal
balance see: Cavanaugh et al., 2005a,b; 2006; Slobounov et al., 2007; 2008), neural [e.g.,
abnormal EEG (Thatcher et al., 1989; Slobounov et al., 2002; 2006a,b,c; fMRI (McAllister
et al., 2001; Cheng et al., 2004; Ptito et al 2007; Slobounov et al., 2010; MRS (Bluml and
Brooks, 2006; Goryunova et al., 2007); and DTI (Levin 2003; Bigler and Bazarian 2010)
residual deficits far beyond the early post-injury10 days period.

That said there is still debate in the literature regarding the feasibility of EEG for clinical
assessment of mTBI. For example, it was reported that no clear EEG features are unique to
mTBI, especially late after injury (Nuwer et al., 2005). Therefore, further efforts are needed
to explore unique features of EEG signals enabling the detection of functional brain
abnormalities and classification of mTBI patients.

It is well-documented that EEG signals, as well as many other biological signals (ECG,
EMG, etc), are not wide sense stationary (WSS). The nonstationarity assumes that temporal
and spectral characteristics of the signal vary over time. There are several quantitative
comparisons of a signal's nonstationarity in the literature with regards to neurological
deficits. For example, it has been reported in animal studies that nonstationarity of an EEG
signal can be altered after hypoxicischemic (HI) brain injury, especially in the upper delta
and lower theta band as well as beta2 bands (Tong and Thakor, 2003).

The WSS is traditionally defined in the time domain, meaning that the first moment and
second moment of the stochastic signal are invariant over the time. Thus, the nonstationarity
in the time domain can be quantitatively measured by the variation of the first and second
moments over time. In practice, this can be implemented by first estimating the epoch mean
u and epoch standard deviation σ for each epoch, and then calculating the variation of u and
σ across epochs.

(1)

(2)

Where, i is the epoch index, M is the number of epochs, N is the length of each epoch
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Compared to the nonstationarity in the time domain, the nonstationarity in the spectrum
domain of the EEG signal has been emphasized more recently, because of the corresponding
neurophysiologic meanings of the EEG spectrum components. Even though the traditional
timeaveraged spectrum of EEG based on WSS assumption is still widely used in the EEG
analyses, it is not appropriate for quantifying the temporal variability in the spectrum of the
nonstationary signals. Therefore, time-frequency analysis methods including Short-Time-
Fourier-Transformation (STFT), Gabor transformation and Wavelet transformation (Gabor,
1946; Grossman and Morlet, 1984) have been utilized to estimate the temporal evolution of
the spectrum. The time-frequency decomposition can provide clear images of the energy
distribution on the time-frequency plane directly demonstrating the nonstationarity of the
signal. However, these methods are unable to provide any quantitative measures of EEG
nonstationarity. To overcome this limitation, several quantifications of the nonstationarity
based on the time-frequency representation (TFR) have been recently introduced. For
example, Tong et al., (2003) proposed time-frequency-complex (TFC) as a measure of how
much the EEG signal is uniformly distributed on the time-frequency plane (see equation 1
for details).

(3)

Where tfr(ai,nΔt) is the time-frequency representation of non-stationary signal at frequency
ai and time nΔt.

It was pointed out in their following paper (Tong et al., 2007) that the TFC is too general to
differentiate whether the non-uniformity of the signal comes from the frequency or the time
domain. To address this concern, three other quantifications have been introduced. These are
the degree of stationarity (DS), Shannon entropy of marginal spectrum (SE) and Kullaback-
Leibler Distance (KLD) between a TFR of certain frequency and a uniform distribution
(Tong et al., 2007).

(4)

(5)

(6)

where
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(7)

It is noteworthy that all of these four quantifications are based on the power density at
individual frequency. It should be also noted that in addition to the spectrum power density,
other spectral characteristics of non-stationary signals, including the peak frequency (PF),
can vary over time, and, thus, can be used to evaluate nonstationarity. Moreover, various
brain functional states may be dominated by certain EEG peak frequencies (PF) and altered
due to cortical damage and/or cerebral functional deficits (Randolph and Miller, 1988;
Holschneider and Leuchter, 2004; Tebano et al., 1988).

In this study, a new quantification of EEG nonstationarity based on peak frequency shifting,
instead of power density, named Shannon Entropy of the peak frequency shifting (SEPFS) is
introduced. We aimed to provide empirical evidence that SEPFS measures are sensitive
towards alteration of brain functions induced by concussive blows. Therefore, it can be
complementary to other advanced measures of EEG dynamics (i.e., EEG wavelet entropy,
Slobounov et al., 2009), and utilized as a new measure of EEG nonstationarity that reveals
additional information to conventional EEG analysis with regards to mTBI.

2. Methods
2.1. Subjects

A total of 265 subjects were initially recruited (baseline testing) for a multipurpose sport-
related concussion study. All subjects were Pennsylvania State University athletes at high
risk for traumatic brain injury (collegiate rugby, football, ice hockey and soccer players),
aged between 18 and 25 years, male (n = 180, mean age − 21.3 years) and female (n = 85,
mean age = 20.8 years). None of these subjects had a history of concussion at the time of
baseline testing. In this report we included data from subjects who met the following
inclusion criteria: (a) suffered a single episode of concussion within 12 months after baseline
testing; (b) a concussive episode was a grade 1 mTBI (Cantu Data Driven Revised
Concussion Grading Guideline, 2006); and (c) neuropsychological (NP) and EEG data were
available from baseline testing. Thirty of the total mTBI subject pool met all of the inclusion
criteria and their data obtained on day 30 +/- 3 days post-injury are included in this report.
The initial diagnosis of mTBI was made on the field by certified athletic trainers (AT) based
on commonly accepted clinical symptoms, such as: complaints of loss of concentration,
dizziness, fatigue, headache, irritability, visual disturbances, and light sensitivity (Bryant
and Harvey 1999). According to interviews with concussed subjects and AT reports, the
majority of documented concussions occurred as a result of direct head-to-head and/or head-
to-torso collision (often with the side of the head as a major site of impact) during the
athletic events. All 30 subjects were clinically asymptomatic on day 7 after mTBI and were
cleared for sport participation based upon neurological assessments (Cooperative Ataxia
Rating Scale, World Federation of Neurology, Trouillas et al,, 1997) as well as clinical
symptoms resolution.

In an addition, we recruited 30 age and sex-matched normal controls (Penn State student-
athletes without history of concussion) and tested these subjects twice within the 30 days
interval. This allowed us to conduct a cross-sectional study comparing normal controls and
mTBI subjects as well as to assess the reproducibility of our EEG measures over time. All
subjects signed an informed consent form and the protocol was approved by the Institutional
Review Board of the Pennsylvania State University.
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2.2. Neuropsychological (NP) assessments
The neuropsychological tests were administered at baseline testing and before EEG testing
as standard paper and pencil tests. The subjects were seated at a table and administered the
test battery by the tester. The subject was instructed to complete the tests as quickly and
accurately as possible. The NP testing battery consisted of three segments: Subjective
Symptom Rating Scale (e.g., Penn State University Standard Concussion Rating Scale) to
assess mTBI symptom severity; Symbol Digit Substitution test to assess information
processing speed and working memory; Trails “B” test to assess information processing
speed and scanning ability (Randolph, 2001). Several other conventional NP tests,
commonly used in concussion research (see Slobounov & Sebastianelli, 2006 for details in
terms of its sensitivity to detect the brain dysfunctions induced by a concussive blow), were
administered, including subjects' reported fatigue, the Hopkins Verbal Learning Test –
Revised (HVLT) Stroop tests. All subjects were asymptomatic at the time of the post-injury
testing (see Slobounov et al., 2009 for details of neuropsychological testing, see also Table 1
for details of NP testing under this study).

2.3. EEG recording and processing
Subjects were seated with eyes closed in an electrically shielded and dimly lit environment.
The continuous EEG was recorded using Ag/AgCl electrodes mounted in a 19-channel
spandex Electro-cap (Electro-cap International Inc., Eaton, OH). The electrical activity from
the scalp was recorded at 19-sites: FP1, FP2, FZ, F3, F4, F7, F8, CZ, C3, C4, T3, T4, T5,
T6, PZ, P3, P4, O1, O2, according to the International 10–20 system (Jasper, 1958). The
ground electrode was located 10% anterior to FZ, linked earlobes served as references and
electrode impedances were below 5kΩ. EEG signals were recorded using a programmable
DC coupled broadband SynAmps amplifier (NeuroScan, Inc., El Paso, TX.). The EEG
signals were amplified (gain 2500, accuracy 0.033/bit) with a recording range set for ±55
mV in the DC to 70-Hz frequency range. The EEG signals were digitized at 1000 Hz using
16-bit analog-to-digital converters. The EEG data were initially processed off-line using
EEGLAB 5.03 (Delorme and Makeig, 2004) using Matlab open source toolbox (Mathworks,
Natick, USA). Imported data were down sampled to 200 Hz to reduce computing time and
epoched from 0 to 500 ms. After baseline normalization these epochs were automatically
screened for unique, non-stereotypic artifacts using a probabilistic function within
EEGLAB. This procedure allows the removal of epochs containing signal values exceeding
3 SD and controls for artifacts such as eye blinks, eye movements, heartbeats etc. Following
this procedure at least 2 min of artifact free EEG signal were subjected to further analysis.
Since the frequency band between 2Hz and 40 Hz was considered in this study, the
frequency components outside of this range were filtered out. The continuous wavelet
transform (CWT) coefficients of the filtered EEG signal at exponentially increased
frequencies f1, f2… f63, where f1=2Hz, fn =2*1.05(n-1) were calculated.

2.4. Time-Frequency Representation of EEG
In this study, we used the CWT as a time-frequency representation of the EEG signal. The
time-frequency resolution of CWT is normalized in such a way that the higher-frequency
component of the signal has higher temporal resolution than the lower frequency resolution
and the lower-frequency component has lower temporal resolution than higher frequency
resolution. As a result of this normalization, the time-frequency characteristics of the signal
can be represented more efficiently. The equation of CWT is shown as follows:

(8)
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where ψ(·) is the wavelet function which can be considered as a band-pass filter, and τ is the
translation in time, variable 1/a gives the frequency scale and τ gives the temporal
localization. For the low-frequency component of the signal, a large scale parameter is
chosen, the basis function ψ(·) is stretched, whereas for the high-frequency component, a
small scale parameter is chosen, the basis function ψ(·) is contracted. The squared magnitude
of the CWT coefficient, |CWTx(a,τ)|2, is used to present the energy distribution. For a given
CWT, an exact relation between scale and frequency is:

(9)

where fa is the pseudo-frequency corresponding to the scale a, fc is the centre frequency of a
wavelet, fs is the sampling frequency.

In this study, the complex Morlet wavelet was used. The complex Morlet wavelet has been
widely used in EEG signal analysis because it has good time-frequency localization and its
sinusoidal shape approximates the shape of EEG signal quite well (Li et al., 2005; Meyer,
1993). The complex Morlet wavelet is defined as follows:

(10)

Where: fc is the centre frequency of the wavelet and σ is the variance of the Gaussian
window, and fb the bandwidth parameter of the wavelet.

The Fourier transformation of ψ (t) is a Gaussian function centered at fc with variance of 1/
fb:

(11)

2.5. Shannon Entropy of the Peak Frequency Shifting
To compute the Shannon entropy of the peak frequency shifting, the spectrum of signal x is
divided into M sub-bands from the lowest frequency fmin to the highest frequency fmax,
denoted as Sb1, Sb2 … SbM, with central frequencies fc1< fc2…< fcM. The CWT scales a1, a2…
aM corresponding to these central frequencies are determined by (7). The peak frequency at
any time point τ is defined as follows:

(12)

The SEPFS can be computed as follows:

(13)
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Where: N is the length of the signal x, and ni is the frequencies that the fp (τ) is equal to fci.

2.6. Simulation
A frequency modulated sinusoid signal s1=sin(2π(1+5t)t) was simulated with 200 Hz
sampling frequency (Fig. 1a). The power distribution of s1 on the time-frequency plane is
shown in Fig. 1b.

For comparison, another synthesized signal s2 was simulated. s2 is the summation of two
signals x1 and x2: x1 is a 20 Hz sinusoid signal with linearly increasing magnitude: x1=0.1t
sin(2π f1t), and x2 is a 40 Hz sinusoid signal with exponentially decreasing magnitude: x2=
e−0.5t sin(2πf2t). The two components and the synthesized signal s2 = x1 + x2 are presented
in Fig. 2a, the power distribution of s2 on the time-frequency plane is shown in Fig. 2b.

The frequency band of 2 Hz to 50 Hz was equally divided into 75 sub-bands. The SEPFS of
s1 and s2 was calculated according to (10) and (11) are 5.56 bit and 1.08 bit, respectively.
The SEPFS of s1 is much higher than that of s2, because s1 can be considered as a
combination of infinite number of transient sinusoid components with different frequencies
and phases; whereas s2 is merely the summation of two amplitude modified sinusoid
components. This result is in agreement with the simulation results of DS, SE and KLD
using the same signals reported in Tong et al. (2007) study, that s1 has lower stationarity
index at all frequencies other than s2. However, it should be noted that SEPFS can directly
measure the nonstationarity of the whole signal rather than those at individual frequencies.

2.7. Time domain representation of EEG signal
For comparison, the nonstationarity of EEG signals obtain before after concussion in time-
domain was also assessed by the variation of the standard deviation of EEG signal across
epochs.

2.8. Statistical analysis
The SEPFS of the full frequency band on each channel was estimated. A two-way ANOVA
(testing day, prior to and after concussion X EEG channel) with repeated measures within
subjects' design was conducted and paired t-test at each channel was implemented, to assess
significant effect of concussion on SEPFS. A paired t-test was conducted to assess
statistically significant differences of SEPFS measures between groups and within normal
control subjects at test-retest. The significance level for the statistic tests was set to p< 0.05.

3. Results
3.1. Neuropsychological Test Performance Data

Table 1 shows the neuropsychological data for the concussion (mTBI) and normal controls
groups. As can be seen from the data presented in Table 1, no significant differences were
observed between mTBI subjects and normal controls for all of the variables under NP
testing. It should also be noted that no significant differences for all of the variables under
NP testing were observed at baseline and those obtained on day 30 +/- 3 days post-injury (p
> 0.05).

3.2. EEG (SEPFS) data
The ANOVA revealed a significant main effect of testing day and concussion, (F (1, 29)
=12.5, p=0.001). The mean values of the SEPFS of each EEG channel before and after
concussion are listed in Table 2, along with the corresponding t-scores and p-values. The
distribution of the t-scores is also shown in Fig. 3.

Cao and Slobounov Page 7

Clin Neurophysiol. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As can been seen from Table 2 and Fig. 3, the SEPFS values significantly decreased after
concussion. This effect was most pronounced at electrode sites representing occipital region,
O1(t=5.18, d.f.=14, p<0.001), O2, (t=5.9612, d.f.=14, p<0.001), temporal region,
T6(t=4.45,d.f.=14, p<0.001), T5(t=4.21,d.f.=14, p<0.001), and parietal regions, P4(t=3.19,
d.f.=14, p<0.001), P3(t=3.62, d.f.=14, p<0.001). No other brain regions were affected by
concussion as assessed by SEPFS.

The same EEG data set was subjected to traditional time domain nonstationarity analysis.
The results are shown in Table 3. As can be seen they were similar to SEPFS trend
indicating the reduction of nonstationarity values after concussion. This effect was most
pronounced at the same brain regions (e.g., occipital, temporal, and parietal, p<0.05). It
should be noted however, the effect of concussion was less significantly pronounced
(statistically) compared to SEPFS.

Finally, no statistically significant differences for the SEPFS data were observed between
normal controls as a function of testing days (p> 0.05). However, SEPFS data were
significantly lower in mTBI subjects compared to age/sex matched normal controls at
occipital (O1 & O2, p< 0.001), temporal (T5 & T6, p<0.05) and parietal (P3, p<0.05)
electrode sites (see Table 4).

4. Discussion
The major finding from this study is that EEG nonstationarity, as assessed by SEPFS values,
was reduced in subjects after a single concussive episode. SEPFS has at least two unique
merits. First, since it is based on the order statistic, it is less affected by the spectrum
distortion of the higher-frequency component. It should be noted, however, that SEPFS
values were consistent with those obtained using traditional time domain analysis of EEG
nonstationarity. Overall, this indeed indicates the reduction of EEG nonstationarity in
concussed individuals. Second, SEPFS has an interesting biological meaning of the EEG
signal, since it is directly associated with the quality (peak frequency) rather than with the
amplitude of EEG waveform.

The change in the quality of EEG waveforms is a more common phenomenon than change
in the amplitude (Berger 1929). For example, as an individual moves from a relaxed state to
one of stimulation and activity, the EEG does not increase in amplitude but rather changes in
quality of the waveforms from alpha rhythm to beta rhythm. Moreover it has been reported
recently that the positive shift in EEG frequency band during the life span may reflect the
process of brain maturation. It is assumed that the better feedback loops become integrated
and interconnected with other brain areas, the faster the frequency of EEG oscillations will
be (Klimesh, 1999). In agreement with this assumption, impaired long-distance connection
of the brain (Cao and Slobounov, 2010) and the shift in the mean frequency in the alpha
(8-10 Hz) band towards the lower band (Tebano et al., 1988) were both observed in patients
who suffered from mTBI. It should be noted that the shift in the mean frequency in the
alpha band may be biased by temporal average. Therefore, details of how the frequency
shifts over time may be biased and/or eliminated by the averaging procedure are important
issues that are beyond the scope of this report.

The most pronounced alteration of SEPFS values after concussion was observed in the
occipital, temporal and parietal areas. The localized reduction of EEG nonstationarity is
similar to our previous observation that EEG abnormal features in concussed subjects are
concentrated in occipital, temporal and parietal areas (Cao et al., 2008). Specifically, the
non-supervised pattern recognition algorithm, the support vector machine (SVM), has been
applied as a tool to classify concussed athletes residual functional deficits. Indeed,
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discriminative features were observed at theta, alpha and beta frequency bands. Most
importantly, the EEG features selected for classification were linked to occipital and
temporal areas.

Localized reduction of EEG nonstationarity observed in the present study is complementary
to results of our most recent EEG wavelet entropy study (Slobounov et al., 2009). Indeed,
the reduced EEG-IQ (information quality) within 30 days post-injury was observed at
parietal, temporal and occipital areas in concussed athletes. This effect was most
pronounced in subjects suffering from recurrent and multiple concussive episodes. The
consistent appearance of EEG alterations within this spatial distribution may be explained
by the fact that most subjects reported the concussive injury following impact to the side of
their head. A recent report by Delaney et al. (2006) has also indicated that temporal impact
of the head or helmet frequently results in a mechanism producing the mTBI.

Although SEPFS and EEG-IQ measures of concussed individuals yield similar results, they
are conceptually different. SEPFS measures the spectral variability of the EEG signal over
time (i.e. non-stationarity), whereas the EEG-IQ is an indicator of the spectral complexity of
the EEG signal. Theoretically, nonstationarity can be considered as a factor of complexity
but complexity may not necessarily indicate nonstationarity. A stationary signal with low
SEPFS values can have a complex spectrum (high EEG-IQ).

As a final note, we would like to stress that this report has focused on method and clinical
issues rather than aimed at addressing physiological meaning and conceptual aspects of EEG
measures in general, and SEPFS in particular. That said, our results are in favor of a major
concept in that different rhythmic properties of EEG may be linked to general brain
functions and brain health status. Specifically, as we recorded EEG during the resting state
(not in response to specific tasks, such as mental or physical activities), we could claim that
different EEG rhythms are associated with the activity of various large-scale resting
networks. This claim is consistent with notion that RSNs 1 (default) and 2 (dorsal attention)
have a stronger relationship with alpha and beta rhythms, albeit in opposite directions, with
RSN1 showing positive correlation and RSN2 showing negative correlations with alpha and
beta rhythms. Moreover, RSNs 3 (visual network) may be linked to all rhythms with the
exclusion of the gamma rhythm, whereas, RSN 4 (auditory network) may be linked to delta,
theta, and beta rhythms. Finally, RSN 5 (somato-motor network) may be linked to beta
rhythm, whereas the RSN 6 (self-referential network) to gamma rhythm (Mantini et al,
2007). We hypothesize that the entropy of the spectral peak reflects the fluctuations of the
resting state networks and switching among various brain states, a concept that requires
further experimentation.

In conclusion, this current report is complementary to our previous research indicating that
both variability and complexity of the EEG signal may be altered as a result of mTBI. The
major empirical finding from this study provides further evidence that residual brain
dysfunction in a concussed individual may be detected in “asymptomatic” subjects via EEG
SEPFS measures. The current findings further reveal that alteration of brain functions as a
result of mTBI may not be detected using conventional assessment tools. Whether this
alteration is relatively transient resulting in reallocation of neural processing resources
during increased processing load (McAllister et al., 2001), or a long-term persistent residual
brain dysfunction, is yet to be determined.
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Fig.1.
(a) frequency modulated sinusoid signal s1=sin(2π(1+5t)t) simulated with 200 Hz sampling
frequency; (b) Power distribution of s1 on the time-frequency plane.
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Fig.2.
(a) The time course of two components (tom and middle) and the synthesized signal s2 = x1
+x2 (bottom): (b) the power distribution of the synthesized signal s2 on the time-frequency
plane, the peak frequency shift from 40 Hz to 20 Hz.
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Fig.3.
The scalp distribution of the t-scores of SEPFS difference before and after a concussive
episode, note the most pronounced effect (e.g., significant decreased of SEPFS values) after
concussion at electrode sites representing occipital, temporal and parietal regions.
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Table 1

Neuropsychological Test Performance Variables including Reported Fatigue Scores prior to EEG testing for
normal controls (NC) and mTBI subjects at day 30 post-injury

Subjects Groups NC MTBI

M (SD) M (SD) t-test p-value

Reported fatigue:

Beatty Test Fatigue Rating

 Cognitive fatigue 9.3 (3.3) 10.4 (3.7) 2.05 .071

 Physical fatigue 9.9 (3.1) 10.7 (4.2) 2.05 .086

 Total fatigue 21.6 (5.1) 22.3 (11.3) 2.074 .081

Neuropsychological (NS) test performance:

Trailmaking A 31(4) 30(6) 1.93 .071

Trailmaking B 88 (5) 87(1) 1.28 .133

Stroop Color-Word (CS) & Color-Word Interference (CW-I)

 CW total time 51.9 (7.8) 50.3 (6.1) 3.25 .077

 CW-I total time 101.5 (25.5) 101.4 (21.6) 3.12 .077

 CW total errors 0.0 (0.0) 0.3 (0.5) 1.41 >.10

 CW-I total errors 1.5 (0.7) 1.6(1.4) 1.46 .088
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