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Exposure lagging and exposure-time window analysis are 2 widely used approaches to allow for induction and
latency periods in analyses of exposure-disease associations. Exposure lagging implies a strong parametric
assumption about the temporal evolution of the exposure-disease association. An exposure-time window analysis
allows for a more flexible description of temporal variation in exposure effects but may result in unstable risk
estimates that are sensitive to how windows are defined. The authors describe a hierarchical regression approach
that combines time window analysis with a parametric latency model. They illustrate this approach using data from
2 occupational cohort studies: studies of lung cancer mortality among 1) asbestos textile workers and 2) uranium
miners. For each cohort, an exposure-time window analysis was compared with a hierarchical regression analysis
with shrinkage toward a simpler, second-stage parametric latency model. In each cohort analysis, there is sub-
stantial stability gained in time window-specific estimates of association by using a hierarchical regression ap-
proach. The proposed hierarchical regression model couples a time window analysis with a parametric latency
model; this approach provides a way to stabilize risk estimates derived from a time window analysis and a way to
reduce bias arising from misspecification of a parametric latency model.

cohort studies; hierarchical model; latency; neoplasms; regression

Abbreviations: CI, credible interval; DIC, deviance information criterion; ERR, excess relative risk; WLM, working-level months.

In epidemiologic studies, exposures often are protracted
or repeated over time. An epidemiologist may summarize
a protracted history of exposure by calculating a summary
metric, such as a person’s cumulative exposure. Under the
premise that there is typically an induction and a latency
period between exposure and its impact on disease risk,
a summary metric of exposure is often ‘‘lagged’’ by exclud-
ing exposures that occurred in the immediately preceding
months or years (1, 2).

The basic method of lagging exposures can be extended
by considering exposure ‘‘windows’’ (3, 4). An exposure-
time window analysis is implemented by partitioning an
exposure history into intervals. This permits estimation
of the association between disease risk and exposures that
occurred at different time intervals in the past. This ap-
proach can provide a relatively flexible, piecewise constant
model for variation of an exposure-response function with
time since exposure. However, in epidemiologic studies of

low-level protracted exposures, reliable estimation of expo-
sure effects may be difficult when exposure histories are
partitioned into multiple time windows, and findings may
be sensitive to decisions about the number of time windows
and the boundary points between them. Moreover, correla-
tion of exposure levels for adjacent windows may lead to
statistically unstable effect estimates.

Both exposure lagging and time window analysis involve
disjointed, piecewise-constant models for variation in expo-
sure effects with time since exposure. Other parametric
functions have been described to model temporal variation
in an exposure-response association. These include bilinear
and lognormal models for latency functions, as well as more
flexible spline functions (5–11).

In this paper, a hierarchical regression model is proposed
that couples a first-stage exposure-time window model with
a second-stage parametric latency model. This approach
allows estimates of exposure-time window-specific effects
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to diverge from the posited parametric latency function if
there is substantial evidence of departure in the data. In this
way, one may reduce some of the arbitrariness inherent in
the choice of a parametric latency model, reduce mean
square error, and increase the precision of estimates of
exposure-time-response associations (12). We illustrate this
method using analyses of lung cancer mortality in 2 occu-
pational cohorts.

MATERIALS AND METHODS

Standard (single-stage) regression analysis

Consider a case-control study in which incident cases of
disease have been ascertained over a period of follow-up,
and controls have been randomly sampled from the study
base, defined as the population at risk at the time of case
failure. Suppose that the time-varying exposure history of
person i, observed at attained age t, is represented by xi(u),
for ages u � t. If exposure histories are recorded in discrete
time intervals (e.g., estimates of daily or annual exposure),
then the cumulative exposure accrued by person i at attained

age t is
Pt
u¼0

xiðuÞ:

Exposure lags. Lagging of exposure assignment is
a commonly used approach in epidemiologic analyses to
account for a time interval between exposure and its ob-
served effect. Lagging of exposure assignment may be
viewed as the application of a time-dependent weighting
function: A weight of 0 is applied to recent exposures, and
a weight of 1 is applied to those in the more distant past (1).
Under an l-year lag assumption, the cumulative exposure
accrued by person i at attained age t is given by

Xt

u¼0

xiðuÞwðt � uÞ

where (t � u) denotes time since exposure, and w(t � u) is
a time-dependent function that equals 1 for l � (t � u)
else 0.

Exposure-time windows. Suppose that exposure histories
are partitioned into a series of exposure-time windows de-
fined by time since exposure (e.g., exposures accrued 0–<5,
5–<10, 10–<15, 15–<20, and 20 or more years prior to
attained age, t). Let z1i, z2i, . . ., zni denote the exposures
accrued by person i during a series of n time windows, with
the ages at the midpoints of these time intervals indexed by
u1, . . ., un. In an exposure-time window analysis, the inves-
tigator examines separate estimates of the association be-
tween disease risk and exposures accrued in different time
intervals; often, the effects of all time windows are esti-
mated simultaneously providing a piecewise constant model
for variation of an exposure-response function with time
since exposure (7, 13, 14).

Suppose that the estimated model coefficients,
b̂1; . . . ; b̂n, correspond to time window-specific exposure
effects associated with the exposure variables z1i, . . ., zni.
Reliable estimation of exposure effects may be difficult

when exposure histories are partitioned into many time
windows. Correlation of exposure levels for adjacent win-
dows may lead to statistically unstable estimates of time
window-specific dose-response trends, and, in studies of
low-level protracted exposures, the magnitude of exposure
accrued within a given time window may be small (15).

There is a clear relation between an exposure lag analysis
and an exposure-time window analysis. Suppose that the
first m exposure-time windows, z1i, . . ., zmi, span the prelag
interval, (t � u) < l. Suppose that the remaining n � m
time windows, zmþ1i, . . ., zni, span the postlag interval,
l � (t � u). The regression model parameters associated
with the exposure-time windows in these 2 periods are
b1, . . ., bm and bmþ1, . . ., bn, respectively. In an exposure
lag analysis, these pre- and postlag intervals correspond
to the periods when w(t � u) takes values of 0 and 1,
respectively. The standard exposure lag analysis, therefore,
might be viewed as a set of constraints imposed on this
exposure-time window analysis, namely, b1 ¼ 0, . . ., bm ¼ 0
and bmþ1 ¼ d, . . ., bn ¼ d, or equivalently, bk ¼ w(t � uk)d,
for k ¼ 1, . . ., n. These constraints imply precisely no effect
during the prelag interval and a constant effect thereafter.

Hierarchical regression analysis

We can relax the constraints imposed by a standard ex-
posure lag analysis by use of a hierarchical model that al-
lows deviations of the time window-specific effects from the
parametric latency function. In the proposed hierarchical
regression model, the bk parameters are a function of a linear
term and residual effects, gk:

bk ¼ wðt � ukÞdþ gk; for k ¼ 1; :::; n;

where bk, as defined above, is the effect of exposure in the
kth time window; w(t � uk) is a specified time-dependent
weighting function, bounded by 0,1, that expresses variation
in the effect of exposure with time since exposure; d is
interpreted as the maximal effect of exposure on the out-
come; and gk ~ N(0,s2) represents the residual effect of time
window k (i.e., deviation of the time window-specific effect
from the simpler parametric latency function).

Unlike the (single-stage) exposure-time window analysis,
the dose-response coefficients b1, . . ., bm may be shrunk
toward 0, and the dose-response coefficients bmþ1, . . ., bn
may be shrunk toward the common mean value, d. However,
a hierarchical regression approach allows the time window-
specific estimates to deviate from the constraints implied by
an exposure lag model if there is substantial evidence of
departure from that model. As a consequence, the hierarchi-
cal regression approach will tend to result in time window-
specific effect estimates, b̂1; . . . ; b̂n, that have lower mean
square error than those estimates obtained via a standard
(single-stage) exposure-time window analysis (12, 16).
Moreover, estimates from the hierarchical regression model
regarding exposure-time-response associations will tend to
be less susceptible to bias due to incorrect specification of
the parametric latency function than estimates obtained via
a standard (single-stage) exposure lag analysis.
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The degree to which the exposure-time window esti-
mates are shrunk toward the simpler parametric latency
model depends upon s2, the variance for the time window
effects (12). When s2 is large, the results will be close to
those obtained by using an exposure-time window analysis;
as s2/0, the fitted exposure-time-response association,
will approach an analysis under the constrained model
(e.g., an exposure lag analysis). This variance parameter,
s2, can be treated as an unknown parameter in the hierar-
chical regression model. In this way, the data directly in-
form the estimated value of s2, and the hierarchical
regression analysis follows an approach to ‘‘shrinkage’’
estimation commonly used for inverse variance weighting
(12, 17).

This approach is quite flexible. For example, an investiga-
tor could allow separate variances for the parameters span-
ning the pre- and postlag periods, conforming to a model
where g1; :::;gm ~N

�
0; s2

1

�
and gmþ1; :::;gn~N

�
0; s2

2

�
. Such

an extension might be justified, for example, if one expected
greater variability in exposure effects during the postlag
period than during the prelag period (or if one had much
more confidence in the validity of the exposure lag assump-
tion and wished to specify a more precise prior for the
effects in the prelag period than for the effects following
that period).

This approach can be extended to analyses that use para-
metric latency functions other than the standard exposure
lag model. For example, in settings where it is appropriate to
posit that the impact of exposure increases and then dimin-
ishes with time since exposure, a bilinear function consist-
ing of 2 attached lines that form a triangular function might
be considered (7, 8). The relative effect of exposure in-
creases linearly to its maximum value, a1 years after expo-
sure; then, the effect diminishes linearly with additional
time since exposure, reaching a relative effect of 0 (no ef-
fect) at a2 years, so that

wðt � uÞ ¼
�
t � u

a1
I½ðt�uÞ � a1�

�

þ
�
a2 � ðt � uÞ
a2 � a1

I½a1 < ðt�uÞ � a2�
�
;

where the function I (‘‘logical expression’’) equals 1 if
‘‘logical expression’’ is true and 0 if it is false. The Web
Appendix, which is posted on the Journal’s Web site (http://
aje.oxfordjournals.org/), provides further details regarding
fitting of such hierarchical regression models by using the
SAS statistical package (SAS Institute, Inc., Cary, Norh
Carolina).

A relatively large number of exposure-time windows can
be specified for the first-stage model of the hierarchical re-
gression analysis, thereby minimizing the impact of deci-
sions regarding specification of exposure-time windows.
Because information is shared within a set of parameters,
estimates of the first-stage parameters may be obtained
via a hierarchical regression model even if, in an ordinary
(single-stage) regression model, some of these parameters
are not estimable (12).

Empirical examples

Two empirical examples are provided to illustrate fitting
hierarchical latency models in analyses of exposure-response
associations.

Lung cancer and asbestos exposure. We used data from
a recent analysis of mortality among workers employed in
asbestos textile production at a plant in South Carolina be-
tween January 1, 1940, and December 31, 1965 (18). Vital
status was ascertained through December 31, 2001. The
outcome of interest, lung cancer mortality, was defined on
the basis of underlying cause of death. Chrysotile exposure
concentrations were expressed as fibers longer than 5 lm
per mL of air, and the primary exposure of interest was
cumulative asbestos exposure, defined as the sum of the
assigned exposure concentrations over all days worked
and expressed in fiber-years per mL. There were 198 lung
cancer deaths included in this analysis. For each lung cancer
death, a risk set was formed by incidence density sampling
on attained age, sex, race (classified as white vs. other), and
year of birth (classified as born before 1900, 1900–1909,
1910–1919, 1920–1929, or 1930 or later). Up to 40 controls
were selected for each case. Cumulative exposure was ex-
amined in 8 time windows defined by the periods 0–<5,
5–<10, 10–<15, 15–<20, 20–<25, 25–<30, 30–<35, and
35 or more years since exposure.

Following Hein et al. (18), exposure-response associa-
tions were estimated by using a linear excess relative risk
(ERR) model for the lung cancer-cumulative exposure as-
sociation. First, we fitted a single-stage regression model
that included 8 parameters for the 8 time window-specific
exposure-response associations. Next, we fitted a single-
stage regression model that included a linear term for
cumulative exposure under a 10-year lag. Last, we fitted
a hierarchical regression model that included parameters
for the 8 exposure-time windows as a first stage, while the
second-stage model conformed to an analysis of cumulative
exposure under a 10-year lag. All regression models were
fitted by using a Markov Chain Monte Carlo algorithm;
each model was run for a minimum 500,000 iterations with
the first 10,000 iterations discarded to allow for initial
convergence. A diffuse prior was specified for d (the param-
eter quantifying the cumulative exposure effect in the
second-stage model), and 1/s2 was assumed to follow
a gamma (0.01, 0.01) distribution, thereby permitting
s2 / 0. Models were run under alternative assumptions
about the distribution of 1/s2 to assess the robustness of
results. From Markov Chain Monte Carlo samples, we es-
timated model coefficients as well as the deviance informa-
tion criterion (DIC), which is a hierarchical modeling
generalization of the Akaike information criterion (19);
for each coefficient, we also derived an estimate of the as-
sociated 95% credible interval, which is a Bayesian analog
to the frequentist confidence interval and was based on the
95% highest posterior density interval.

Figure 1A illustrates 8 estimated parameters (light dotted
lines) and associated 95% credible intervals (in gray) for the
association between lung cancer mortality and asbestos ex-
posures accrued in the 8 exposure-time windows as derived
by using a single-stage regression model. The model
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coefficient was negative for the second time window (expo-
sures accrued in the period 5–<10 years prior to the risk set
age) and positive for the other time windows. Parameter
estimates were highly imprecise for all of the exposure time
windows. Also shown in Figure 1A is the estimated associ-
ation between cumulative asbestos exposure under a 10-year
lag assumption and lung cancer mortality (dark dashed line;
ERR per 100 fiber-years per mL ¼ 2.31, 95% credible in-
terval (CI): 1.18, 3.53).

Figure 1B illustrates the 8 estimated parameters (light
dotted lines) and associated 95% credible intervals (in gray)
for the association between lung cancer mortality and as-
bestos exposures accrued in the 8 exposure-time windows as
derived by using a 2-stage regression model. Compared with

a (single-stage) exposure-time window analysis, the hierar-
chical regression approach results in a substantial reduction
in variability of the estimates of time window-specific ex-
posure effects, as assessed by a comparison of the width of
the 95% credible intervals (Figure 1, A and B). There is
a high degree of shrinkage toward the simpler step function
implied by a 10-year exposure lag assumption. The variance
parameter, s2, was estimated as 1.49 (95% CI: 0.04, 6.07).
The dotted line in Figure 1B depicts the estimated ERR
per 100 fiber-years per mL ¼ 2.43 (95% CI: 0.96, 4.09) de-
rived from the second-stage model. A comparison of the DIC
for the hierarchical model (DIC ¼ 1,396.6) and for the single-
stage exposure-time window model (DIC ¼ 1,402.8) supports
preference for the hierarchical model. A sensitivity analysis
was conducted in which 1/s2 was assumed to follow a gamma
(0.1, 0.1) distribution; the exposure-time window-specific
risk estimates derived from the hierarchical regression model
appeared very similar to those shown in Figure 1B (ERR per
100 fiber-years per mL ¼ 2.47, 95% CI: 0.98, 4.22), and s2

was estimated as 1.73 (95% CI: 0.04, 6.88).
Lung cancer and radon exposure. We used data from

a study of men first employed in underground uranium min-
ing operations in the Colorado Plateau between January 1,
1950, and December 31, 1960 (7, 20). Vital status was as-
certained through December 31, 1990. The outcome of in-
terest, lung cancer mortality, was defined by underlying
cause of death, and the primary exposure of interest was
defined as cumulative radon exposure, expressed in work-
ing-level months (WLM). This data set included 263 lung
cancer deaths. We used the nested case-control data de-
scribed by Langholz et al. (7); for each lung cancer death,
up to 40 controls were selected by incidence density sam-
pling with matching on attained age and calendar year at
risk (defined in 5-year categories from before 1960 to 1990 or
later). As in Langholz et al. (7), the cumulative radiation dose
was partitioned into 6 time windows defined by the intervals
0–4, 5–9, 10–14, 15–19, 20–29, and 30 or more years since
exposure, and, in computing any of the exposure history
summaries, we lagged exposure assignment by 2 years. For
illustrative purposes, we also report the results of analyses in
which the cumulative radiation dose was partitioned into 20
time windows defined by the intervals 0–2, 3–4, . . ., 37–38,
and 39 or more years since exposure.

Following Langholz et al. (7), we estimated the radon
exposure-lung cancer associations by using a linear ERR
model. We fitted a single-stage regression model that in-
cluded 6 parameters for the 6 time window-specific exposure-
response associations; we also fitted a single-stage regres-
sion model that included a single parameter for cumulative
radon dose under a 10-year lag. Next, we fitted a hierarchical
regression model in which the first-stage model included
terms for the 6 exposure-time windows, and the second-
stage model conformed to an analysis of cumulative expo-
sure under a 10-year exposure lag. Last, we fitted a hierar-
chical regression model in which the second-stage model
conformed to an analysis of cumulative exposure under a bi-
linear exposure weighting function (a weight function de-
fined by 2 attached lines that form a triangular function).
Each model was run for a minimum 500,000 iterations
with an initial 10,000 iterations discarded to allow for

Figure 1. Analysis of the association between lung cancer mortality
and asbestos exposure among the cohort of asbestos textile workers
employed at a Charleston, South Carolina, plant between 1940 and
1965. A, single-stage analysis with 8 exposure-time windows (light
dotted lines) and a 10-year lag analysis (dark dashed line); gray bars
indicate 95% credible intervals. B, a 2-stage model where the fitted
first-stage model includes 8 exposure-time windows (light dotted
lines), and the second-stage model is a 10-year lag model (dark
dashed line); gray bars indicate 95% credible intervals. ERR, excess
relative risk.
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convergence. A diffuse prior was specified for d, and 1/s2

was assumed to follow a gamma (0.01, 0.01) distribution.
The robustness of results to alternative assumptions about
the distribution of 1/s2 was assessed.

Figure 2A illustrates the 6 estimated parameters (light
dotted lines) and associated 95% credible intervals (in gray)
for the association between lung cancer mortality and radon
dose accrued in the 6 exposure-time windows as derived by
using a single-stage regression model. The estimated model
coefficients were positive for each time window; however,
these estimates were highly imprecise. Also shown in Figure
2A is the estimated association between cumulative radon
dose under a 10-year lag assumption and lung cancer mor-
tality (dark dashed line) (ERR per 1,000 WLM ¼ 2.58, 95%
CI: 1.34, 4.00).

Figure 2B illustrates the 6 estimated parameters (light
dotted lines) and associated 95% credible intervals (in gray)
for the association between lung cancer mortality and radon
dose accrued in the 6 exposure-time windows as derived by
using a hierarchical regression model. The 6 estimated pa-
rameters for the exposure-time window-specific associa-
tions do not conform very closely to the underlying
second-stage model, suggesting that an exposure lag model
does not characterize the exposure-time-response function
well. The hierarchical regression approach allows the time
window-specific parameter estimates to diverge from the
parametric form implied by the simpler exposure lag func-
tion. There was little shrinkage toward the second-stage
model; the variance parameter, s2, is large: s2 ¼ 18.54
(95% CI: 0.16, 65.11). The dark dashed line in Figure 2B
depicts the estimated association in the postlag period (ERR
per 1,000 WLM ¼ 3.17, 95% CI: �0.82, 7.95). A sensitivity
analysis was conducted in which 1/s2 was assumed to follow
a gamma (0.1, 0.1) distribution; under this analysis, s2 was
estimated as 12.63 (95% CI: 0.11, 41.50).

Figure 2C illustrates the time window-specific estimated
parameters (light dotted lines) and associated 95% credible
intervals (in gray) for the association between lung cancer
mortality and radon dose as derived by using a hierar-
chical regression model in which the second-stage model
is a bilinear function. The point estimates for these time
window-specific estimates are similar in magnitude to
those values shown in Figure 2B (i.e., to those values ob-
tained in an analysis in which the second-stage model was
specified as a step function for a 10-year exposure lag).
However, there is greater stabilization of the time win-
dow-specific estimates in the analysis depicted in Figure
2C (as assessed by comparing the width of 95% CIs). The
relatively small value for the parameter, s2, 0.37 (95% CI:
0.002, 1.55), is supportive of the conclusion that the bi-
linear second-stage model conforms well to the observed
data. A comparison of the DIC for the hierarchical model
with a second-stage bilinear function (DIC ¼ 1,807.9) and
for the hierarchical model with a step function for a 10-
year exposure lag (DIC ¼ 1,813.6) supports preference for
the hierarchical model utilizing a bilinear latency function.
The dotted line in Figure 2C shows the estimated associa-
tion derived by the second stage (bilinear) model; the fitted
bilinear function attained its peak at 10.2 years (95% CI:
5.0, 16.1) and no excess effect more than 36.2 years after

exposure (95% CI: 25.7, 54.9). The maximal estimated
association was ERR per 1,000 WLM ¼ 7.06 (95% CI:
2.85, 11.94).

Last, we conducted analyses in which exposure histories
were partitioned into 20 windows of exposure. When the
second-stage model is a 10-year exposure lag model, the
estimated association in the postlag period is ERR per
1,000 WLM ¼ 2.97 (95% CI: 1.04, 6.22), and the variance
parameter, s2, is 7.21 (95% CI: 0.33, 21.47). Figure 2D
illustrates the 20 estimated parameters (light dotted lines)
and associated 95% credible intervals (in gray) for the as-
sociation between lung cancer mortality and radon dose
accrued in the 20 exposure-time windows as derived by
using a 2-stage regression model in which the second-stage
model is a bilinear function. The fitted bilinear function
(shown as a dotted line) attained its peak at 10.3 years
(95% CI: 5.00, 16.13) and no excess effect more than 37.5
years after exposure (95% CI: 26.82, 55.48). The maximal
estimated association was ERR per 1,000 WLM ¼ 7.11
(95% CI: 2.78, 12.78). The estimated variance for the model
parameters, bk, was s2 ¼ 1.04 (95% CI: 0.10, 3.70).
As illustrated by Figure 2D, the bilinear second-stage
model appears to conform quite well to the exposure-time
window-specific estimates.

RESULTS AND DISCUSSION

This paper describes a hierarchical regression modeling ap-
proach to estimation of exposure-time-response associations.
A first-stage exposure-time window model is coupled with
a second-stage parametric latency model; this approach allows
estimates of exposure-time window-specific effects to diverge
from the second-stage parametric latency function if there is
substantial evidence of departure in the data. A hierarchical
regression approach may reduce mean square error and in-
crease the precision of estimates of exposure-time-response
associations. The resultant estimates of the temporal evolution
of an exposure-response association will tend to have greater
precision than estimates derived from a single-stage regression
model that includes parameters for exposure-time window-
specific effects, and the resultant estimates of association
should be less susceptible to model misspecification bias.

This hierarchical regression approach may minimize the
impact of some of the arbitrariness in choice of the weight
function that describes the latency pattern. Often, in a single-
stage regression analysis, concerns about choice of latency
function are addressed by examination of exposure-time win-
dow-specific estimates of association (1, 7). However, this
approach is limited by the fact that time window-specific
estimates are often highly unstable (as illustrated in Figure
1A) and may be poorly estimated because of correlations
between adjacent windows. Moreover, inferences regarding
parametric form may be influenced by choice of the number
of time windows and their boundaries. Consequently, an in-
vestigator may be justifiably concerned that a modeling ap-
proach that imposes a specific parametric form for the latency
function, in the absence of strong prior knowledge regarding
its shape, may lead to biased results if the weighting function
is improperly specified. Use of hierarchical regression models
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for latency analysis may improve the accuracy of estimates of
dose-time-response associations.

In our first example, there was substantial instability in
exposure-time window-specific effect estimates (Figure 1A)
that precluded a strong conclusion regarding the shape of
the latency function. A hierarchical regression model was
fitted that used a standard exposure lag model as a second-
stage parametric latency function. This resulted in time
window-specific estimates of association that were stabi-
lized relative to estimates derived via a single-stage expo-
sure-time window analysis, and the estimated dose-response
association was similar in magnitude and precision to the
estimate obtained via a standard lag analysis. This example
illustrated how a hierarchical regression model provides
a balance between these modeling approaches and may
yield results that will tend to minimize mean square error
in resultant estimates.

In our second example, the data from the occupational
cohort did not conform well to a standard exposure lag
analysis. The resultant estimates suggested a rise, then fall,
in association with time since exposure. When a standard
exposure lag model is used as a second-stage model, the
hierarchical regression analysis yielded estimates of the
exposure-time-response association that diverged from that
model (Figure 2B). Notably, the point estimates for the
time window-specific estimates were similar to the point es-
timates obtained when a more appropriate bilinear weight
function was used as a second-stage model; however, there
was greater stabilization of time window-specific estimates
when the bilinear model was specified as the second-stage
latency function. The estimates of the bilinear model
parameters derived via the hierarchical model (Figure 2C:
a1 ¼ 10.2, a2 ¼ 36.2) were similar to the parameter
estimates reported by Langholz et al. (7) when fitting

Figure 2. Analysis of the association between lung cancer mortality and radon exposure among the cohort of underground uranium miners in
the Colorado Plateau first employed between 1950 and 1960. A, single-stage analysis with 6 exposure-time windows (light dotted lines) and
a 10-year lag analysis (dark dashed line); gray bars indicate 95% credible intervals. B, a 2-stage model where the fitted first-stage model
includes 6 exposure-time windows (light dotted lines), and the second-stage model is a 10-year lag model (dark dashed line); gray bars indicate
95% credible intervals. C, a 2-stage model where the fitted first-stage model includes 6 exposure-time windows (light dotted lines), and the
second-stage model is a bilinear model (dark dashed line); gray bars indicate 95% credible intervals. D, a 2-stage model where the fitted first-
stage model includes 20 exposure-time windows (light dotted lines), and the second-stage model is a bilinear model (dark dashed line); gray
bars indicate 95% credible intervals. ERR, excess relative risk; WLM, working-level months.
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a single-stage model (a1 ¼ 8.5, a2 ¼ 34.0). Importantly,
however, the hierarchical model allows for the estimated
exposure-time-response association to diverge from the
bilinear function. In our second example, our initial
exposure-time window analysis (Figure 2A) was based
upon 6 exposure-time windows, as defined previously by
Langholz et al. (7). An investigator might be concerned
about the sensitivity of conclusions regarding latency pat-
terns to the choice of number of exposure-time windows
and their cutpoints. Figure 2D illustrates a hierarchical
regression analysis with 20 equally spaced time windows.
Although a single-stage regression analysis with so many
windows yields highly unstable estimates (results not
shown), a hierarchical model allows for stabilization of
rates. A hierarchical regression model provides a modeling
approach that may help to respond to such concerns re-
garding sensitivity of conclusions to modeling decisions,
while yielding estimates of exposure-time-response associ-
ations that should tend to minimize mean square error.

Among the latency modeling approaches previously de-
scribed in the literature, cubic B splines for modeling
latency functions stand as a particularly flexible approach
to modeling the latency weight function (9, 10). Cubic
splines are piecewise polynomial functions; the investigator
specifies the number of knots (i.e., join points) and their
location (21). A spline function would be another possible
option for the second-stage parametric latency function.
Although a flexible approach for specifying a parametric
latency function, in practice cubic spline latency functions
often display a high degree of curvature and inflection, and
they may exhibit instability in the tails of the spline (10, 21).
In the applied examples of modeling latency functions via
cubic B splines, investigators have preferred splines with
few interior knots (10, 21, 22). Furthermore, parameters
such as knot location and B-spline coefficients are not read-
ily interpretable, often lending support for preference for
other simple parametric functions, such as standard lag or
bilinear function.

Exposure lagging and time window analysis remain the
most commonly used approaches to accounting for induc-
tion and latency periods. The proposed hierarchical regres-
sion approach allows an investigator to build upon these
familiar analytical approaches to assessing latency func-
tions. However, by means of a hierarchical modeling ap-
proach, the analysis may reduce bias and uncertainty in
risk estimation. Under a hierarchical regression approach,
the second-stage (parametric) latency model represents an
initial ‘‘guess’’ about the pattern of temporal variation in
exposure effect. However, the hierarchical modeling ap-
proach allows the data to adjust some aspects of the para-
metric model for the exposure-time-response association to
better conform to the data.

These models are readily implemented by using the SAS
statistical package (Web Appendix). Although the empirical
examples in this paper involve analysis of temporal varia-
tion in exposure-response associations that were modeled
by using a linear excess relative rate model, in the Web
Appendix to this paper we also provide guidance on fitting
these models using a standard log-linear model form. This
hierarchical regression approach provides a useful way to

assess exposure-time-response function in a variety of epi-
demiologic settings with protracted exposures.

Editor’s note: The citation of reference 23 appears only
in the Web Appendix.

ACKNOWLEDGMENTS

Author affiliations: Department of Epidemiology, School
of Public Health, University of North Carolina, Chapel Hill,
North Carolina (David B. Richardson, Stephen R. Cole);
Division of Epidemiology and Community Health and
Division of Biostatistics, School of Public Health, Univer-
sity of Minnesota, Minneapolis, Minnesota (Richard F.
MacLehose); and Division of Biostatistics, Department of
Preventive Medicine, Keck School of Medicine, University
of Southern California, Los Angeles, California (Bryan
Langholz).

This project was supported by grant R01-CA117841 from
the National Cancer Institute, National Institutes of Health.

Conflict of interest: none declared.

REFERENCES

1. Checkoway H, Pearce N, Hickey JL, et al. Latency analysis in
occupational epidemiology. Arch Environ Health. 1990;45(2):
95–100.

2. Salvan A, Stayner L, Steenland K, et al. Selecting an exposure
lag period. Epidemiology. 1995;6(4):387–390.

3. Rothman KJ. Induction and latent periods. Am J Epidemiol.
1981;114(2):253–259.

4. Pearce N. Multistage modelling of lung cancer mortality in
asbestos textile workers. Int J Epidemiol. 1988;17(4):747–752.

5. Breslow NE, Day NE. Statistical Methods in Cancer Re-
search: The Design and Analysis of Cohort Studies. Lyon,
France: International Agency for Research on Cancer; 1987.

6. Thomas DC. Models for exposure-time-response relationships
with applications to cancer epidemiology. Annu Rev Public
Health. 1988;9:451–482.

7. Langholz B, Thomas D, Xiang A, et al. Latency analysis in
epidemiologic studies of occupational exposures: application
to the Colorado Plateau uranium miners cohort. Am J Ind Med.
1999;35(3):246–256.

8. Richardson DB. Latency models for analyses of protracted
exposures. Epidemiology. 2009;20(3):395–399.

9. Hauptmann M, Wellmann J, Lubin JH, et al. Analysis of
exposure-time-response relationships using a spline weight
function. Biometrics. 2000;56(4):1105–1108.

10. Sylvestre MP, Abrahamowicz M. Flexible modeling of the
cumulative effects of time-dependent exposures on the hazard.
Stat Med. 2009;28(27):3437–3453.

11. Berhane K, Hauptmann M, Langholz B. Using tensor product
splines in modeling exposure-time-response relationships:
application to the Colorado Plateau uranium miners cohort.
Stat Med. 2008;27(26):5484–5496.

12. Greenland S. Principles of multilevel modelling. Int J
Epidemiol. 2000;29(1):158–167.

13. National Research Council, Committee on the Biological Ef-
fects of Ionizing Radiation (BEIR IV). Health Risks of Radon

Hierarchical Latency Models 701

Am J Epidemiol 2011;173:695–702



and Other Internally Deposited Alpha-Emitters. Washington,
DC: National Academy Press; 1988.

14. Finkelstein MM. Use of "time windows" to investigate lung
cancer latency intervals at an Ontario steel plant. Am J Ind
Med. 1991;19(2):229–235.

15. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology.3rd
ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.

16. MacLehose RF, Dunson DB, Herring AH, et al. Bayesian
methods for highly correlated exposure data. Epidemiology.
2007;18(2):199–207.

17. Gelman A. Prior distributions for variance parameters in
hierarchical models. Bayesian Anal. 2006;1(3):515–533.

18. Hein MJ, Stayner LT, Lehman E, et al. Follow-up study of
chrysotile textile workers: cohort mortality and exposure-
response. Occup Environ Med. 2007;64(9):616–625.

19. Spiegelhalter DJ, Best N, Carlin B, et al. Bayesian measures
of complexity and fit. J R Stat Soc (B). 2002;64(4):583–639.

20. Hornung RW, Meinhardt TJ. Quantitative risk assessment of
lung cancer in U.S. uranium miners. Health Phys. 1987;52(4):
417–430.

21. Hauptmann M, Berhane K, Langholz B, et al. Using
splines to analyse latency in the Colorado Plateau uranium
miners cohort. J Epidemiol Biostat. 2001;6(6):417–424.

22. Hauptmann M, Pohlabeln H, Lubin JH, et al. The exposure-
time-response relationship between occupational asbestos
exposure and lung cancer in two German case-control studies.
Am J Ind Med. 2002;41(2):89–97.

23. Langholz B, Richardson DB. Fitting general relative risk
models for survival time and matched case-control analysis.
Am J Epidemiol. 2010;171(3):377–383.

702 Richardson et al.

Am J Epidemiol 2011;173:695–702


