
American Journal of Epidemiology

ª The Author 2011. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of

Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Vol. 173, No. 7

DOI: 10.1093/aje/kwq472

Advance Access publication:

March 16, 2011

Practice of Epidemiology

Implementation of G-Computation on a Simulated Data Set: Demonstration of
a Causal Inference Technique

Jonathan M. Snowden*, Sherri Rose, and Kathleen M. Mortimer

* Correspondence to Jonathan M. Snowden, Division of Epidemiology, School of Public Health, University of California, Berkeley,

1918 University Avenue, Suite 3C, Berkeley, CA 94704 (e-mail: jsnowden@berkeley.edu).

Initially submitted April 8, 2010; accepted for publication October 8, 2010.

The growing body of work in the epidemiology literature focused on G-computation includes theoretical expla-
nations of the method but very few simulations or examples of application. The small number of G-computation
analyses in the epidemiology literature relative to other causal inference approaches may be partially due to a lack
of didactic explanations of the method targeted toward an epidemiology audience. The authors provide a step-by-
step demonstration of G-computation that is intended to familiarize the reader with this procedure. The authors
simulate a data set and then demonstrate both G-computation and traditional regression to draw connections and
illustrate contrasts between their implementation and interpretation relative to the truth of the simulation protocol. A
marginal structural model is used for effect estimation in the G-computation example. The authors conclude by
answering a series of questions to emphasize the key characteristics of causal inference techniques and the
G-computation procedure in particular.

air pollution; asthma; causality; methods; regression analysis

Abbreviations: FEV1, forced expiratory volume in 1 second; IPTW, inverse probability-of-treatment weighting; MSM, marginal
structural model.

Editor’s note: An invited commentary on this article ap-
pears on page 739, and the authors’ response appears on
page 743.

Statistical methods from the causal inference literature
are used with increasing frequency in epidemiology to esti-
mate causal effects from observational data (1–6). G-
computation, a maximum likelihood substitution estimator
of the G-formula, is one such approach to causal-effect es-
timation (7). Application of this method allows investigators
to use observational data to estimate parameters that would
be obtained in a perfectly randomized controlled trial. Un-
der certain assumptions, these estimates can be interpreted
causally.

Like other causal inference approaches, G-computation
can be understood and implemented through the use of the
counterfactual framework, which posits the existence of un-
observed outcomes corresponding to theoretical unobserved

exposures in addition to the observed data that are collected.
Because it is impossible to observe each study participant
under all possible treatment or exposure regimens (words
that we use interchangeably), outcomes that would have
occurred under this alternate exposure scenario can be con-
sidered missing data, the absence of which prevents the
straightforward estimation of unbiased causal effects.
G-computation and other methods for causal inference can
use the existence of counterfactuals (8) (i.e., the entire set of
possible outcomes) to enable unbiased estimation of mar-
ginal causal effects.

There is a growing body of work in the epidemiology
literature focused on G-computation, including theoretical
explanations of the method (9) and a didactic demonstration
of the application of the approach to an intervention setting
that uses real data (10). With some notable exceptions (2,
11, 12), however, relatively few examples of the implemen-
tation of G-computation exist. The implementation of the
G-computation approach is not more difficult than inverse
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probability-of-treatment weighting (IPTW), another method
for causal inference that has been used more frequently thus
far in epidemiology (1, 4, 6, 13–15). Both of these estima-
tors can be implemented in standard statistical software and
can estimate parameters in a marginal structural model
(MSM). The relative predominance of the IPTW approach
in published analyses may be partially due to a greater num-
ber of didactic explanations of the method targeted toward
an epidemiologic audience (16–18). Implementation of the
G-computation estimator is equivalent to using the marginal
distribution of the covariates as the standard in standardiza-
tion, a familiar class of procedures in epidemiology (19, 20).

As epidemiologists become more familiar with causal in-
ference methods, the decision to use a statistical approach
should be dictated by the technique that is best suited to an-
swer the research question of interest in a given data set, rather
than which option is most accessible or most commonly used.
Especially in light of concerns about the statistical inefficiency
of the IPTW estimator (21–23), researchers will benefit from
having more than one analytic technique at their disposal.
Also, other more advanced causal inference techniques, such
as targeted maximum likelihood estimation (24), build on the
G-computation approach, which may further motivate re-
searchers to invest in learning this technique.

The present article details a step-by-step demonstration of
G-computation that is intended to familiarize the reader with
the procedure. We aimed to clarify both the conceptual basis
and the actual implementation of G-computation, not to pro-
vide detailed information about the estimator’s statistical
properties (7) or to replace the statistical support often needed
to implement causal inference techniques. The intended
audience for this didactic explanation includes researchers
who are well-versed in standard statistical techniques, such
as regression, but who are less familiar with causal inference
methodology. We demonstrated both G-computation and
traditional regression to draw connections and illustrate
contrasts between their implementation and interpretation.
For the purpose of this article, we used ‘‘traditional regres-
sion’’ to denote conventional regression approaches such as
maximum likelihood estimation for parametric models. As
the purpose of this article was to clearly demonstrate a method
rather than a subject-matter analysis, we analyzed simulated
data whose simulation protocol is known. Through simulation,
we know the ‘‘truth’’ about the data-generating distribution
(if there is a true underlying effect), a luxury we never have
in observational data analysis. Causal inference methods
have been applied most frequently in the epidemiology
literature in the context of MSMs; thus, we implemented
G-computation to estimate a parameter in an MSM, al-
though this approach can also be used to estimate parame-
ters without an MSM. We conclude by posing and
answering a series of questions related to G-computation,
to further emphasize the key characteristics of this approach.

SIMULATED DATA

Suppose we are interested in the causal effect of ozone on
pulmonary function in asthmatic individuals. Although we
need to account for possible confounding and interaction in
our sample, we are interested in a marginal estimate of the

exposure effect in this vulnerable population that can be
used to inform regulatory standards. Traditional approaches
for controlling confounding and dealing with effect modifi-
cation produce conditional estimates, which are not of in-
terest in some observational settings. (G-computation can
also be used to estimate adjusted effects that are conditional
only upon stratification variables of interest—e.g., a priori
effect modifiers—rather than nuisance variables that are not
relevant to the question of interest (22).)

We simulated a single data set with a sample size of 300,
a realistic size for a study, and generated 1 outcome variable,
a single exposure variable, and 2 additional covariates. We
used R (version 2.10.0; R Foundation for Statistical Computing,
Vienna, Austria) for all simulations and analyses. The variable
for gender (W1) was generated from a Bernoulli distribution,
with a probability of being male of 40% (P(W1 ¼ 1)¼ 0.4). A
binary baseline variable for controller medication use (W2)
was generated from a Bernoulli distribution, with the proba-
bility of controller medication use of 50% (P(W2 ¼ 1) ¼ 0.5).
The covariates W1 and W2 may collectively be referred to as
the vector W ¼ {W1, W2} and are independent of each other.
The binary exposure variable (A) was ozone exposure. The
following equation describes the probability of being exposed
to levels of ozone above the US Environmental Protection
Agency regulatory standard of 75 parts per billion, where, for
this teaching example, the simulation protocol assigned
higher exposures to males and nonmedication users:

Generation of ozoneðAÞ : LogitðPðA ¼ 1jW1;W2ÞÞ
¼ 0:5 þ 0:2 3 W1 � 0:3 3 W2:

The continuous outcome (Y) represents forced expiratory
volume in 1 second (FEV1) measured in liters and was gener-
ated from a normal distribution with the following mean, and
a standard deviation of 0.4 L:

Generation of FEV1ðYÞ : EðYjA;W1;W2Þ
¼ 3 � 0:5 3 A þ 1 3 W1 þ 0:3 3 A 3 W2:

This simple simulated data set, the properties of which are
described in Table 1, has 1 exposure of interest (ozone; A) and
2 covariates (W1 and W2) that must be considered when an-
alyzing the effects of exposure on the outcome (FEV1; Y).
Gender (W1) affects both A and Yand therefore confounds the
exposure-outcome association, requiring some method of ad-
justment for an unbiased effect estimate of A. In contrast,
controller medication use (W2) affects the exposure and the
outcome, yet W2 has no independent effect on Y, as evidenced
by the lack of a main term for W2. Instead, W2 is an effect
modifier for the effect of A on Y, with no independent contri-
bution beyond its joint effect with A.

This data generation protocol implies that ozone has
a negative effect among non-controller medication users
and an attenuated negative effect among controller medica-
tion users. The effect of ozone is described by both the main
term A and the A 3W2 interaction term. The main term for A
taken independently estimates the ozone effect in the non-
controller medication group (�0.5 L), in contrast to the
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estimate for controller medication users, which requires sum-
mation of the A main-term coefficient and the coefficient for
the A 3 W2 interaction term (�0.5 þ 0.3 ¼ �0.2 L). A
weighted average based on the population distribution of W2

results in a population-level effect of �0.35 L, which is the
‘‘truth’’ of the marginal effect of exposure A on outcome Y.

Our simulated data set takes the place of the reader’s own
real data, with the benefit of knowing that there is a true
effect because we generated the relation between variables.
We note that evaluation of a statistical estimator requires
repeated simulation from the data-generating distribution,
and we use a single simulated data set in this article to
demonstrate the implementation of regression and G-com-
putation only. We also discuss similarities and differences in
assumptions and parameter interpretation for both regres-
sion and G-computation.

REGRESSION IMPLEMENTATION

Because epidemiology focuses on data collected in ob-
servational settings regarding human beings living freely, it
is unlikely that investigators can, a priori, specify the correct
model for the data-generating distribution of the outcome
given covariates and exposure. We fitted 4 different linear
regression models, each one representing a different model
that might have been reasonably selected by the investigator
before analyzing the data. Other, more complex models
could also have been selected.

One analysis used the correct model specification, 2 in-
tentionally misspecified the model, and another contained
the correct specification nested within it. We subsequently
carried forward these regression models to the model-fitting
step of the G-computation demonstration.

The first regression model we fitted was a crude regres-
sion of the outcome on the exposure.

Regression model 1 : EðYjA;W1;W2Þ ¼ a0 þ a1 3 A:

This model, denoted model 1, is incorrect in that it ex-
cludes the confounder W1 and does not account for the in-
teraction by W2. Model 2 is another misspecified model,
with main terms for A, W1, and W2:

Regression model 2 : EðYjA;W1;W2Þ
¼ a0 þ a1 3 A þ a2 3 W1 þ a3 3 W2:

A third model has the correct specification nested within it.
Model 3 contains the main terms for A, W1 and the A 3W2

interaction term, but also includes a main term for W2,
despite the absence of an independent effect for controller
medication use:

Regression model 3 : EðY jA;W1;W2Þ
¼ a0 þ a1 3 A þ a2 3 W1 þ a3 3 W2 þ a4 3 A3 W2:

Model 4 is the correct model fit, with main terms for A and
W1, and a single interaction term between A and W2.

Regression model 4 : EðY jA; W1;W2Þ
¼ a0 þ a1 3 A þ a2 3 W1 þ a3 3 A 3 W2:

Because we are interested only in the effects of exposure A
on outcome Y, our discussion of the model results focuses on
the effects of ozone rather than the confounders (W1, W2),
which in this case may be considered nuisance parameters.
Traditional regression model 1 estimates a crude ozone ef-
fect of approximately �0.23 L, as indicated in Table 2. This
effect estimate is not adjusted for the confounding by gen-
der, nor does it reflect the interaction present between con-
troller medication use and ozone. Under traditional model 2,
the A coefficient by itself summarizes the population-wide
effect of ozone, which is a decrement of �0.36 L. The effect
of ozone in model 3 is described by 2 coefficients: the effect
of ozone among non-medication users is estimated by a1 to
be �0.48 L, and the effect of ozone among medication users
is estimated by the sum of a1 þ a4 to be �0.19 L. Similarly,
the effect of ozone is not summarized in 1 single effect esti-
mate in the correctly specified traditional model 4, which es-
timates an ozone effect of �0.49 L among the non-medication
users and �0.18 L among controller medication users.

The presence of interaction between a covariate and the
exposure means that the coefficients in a traditional regres-
sion do not estimate a population-level marginal effect. The
effect estimate for the exposure in the correctly specified
model for our data is conditional and, thus, is a fundamen-
tally different parameter than the one we will estimate with
G-computation. This situation might be desirable if the in-
teraction is of a priori interest, such as in clinical settings
where treatment would be effective or safe only in certain

Table 1. Summary Statistics and Protocol for Sex, Controller Medication Use, High Ozone Exposure, and Forced Expiratory Volume in 1

Seconda (n ¼ 300)

Variable Notation
Binary Continuous

Simulation Protocol
No. % Median Interquartile Range

Male sex: 1 ¼ yes, 0 ¼ no W1 122 40.7 P(W1 ¼ 1) ¼ 0.4

Controller medication user:
1 ¼ yes, 0 ¼ no

W2 148 49.3 P(W2 ¼ 1) ¼ 0.5

High ozone exposure:
1 ¼ high, 0 ¼ low

A 119 39.7 Logit(P(A ¼ 1jW1, W2)) ¼ 0.5 þ 0.2 3 W1 �
0.3 3 W2

Forced expiratory volume in
1 second, L

Y 3.12 2.75–3.74 E(YjA, W1, W2) ¼ 3 � 0.5 3 A þ 1 3 W1 þ
0.3 3 A 3 W2 (standard deviation, 0.4)

a All variables are binary except for forced expiratory volume in 1 second, which is continuous.
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subgroups of patients. However, with policy-related re-
search questions, marginal effects are often of greater in-
terest. The distinction between marginal and conditional
parameters is important, as it further highlights the limita-
tions of a traditional regression approach when a population-
level estimate is of interest.

G-COMPUTATION IMPLEMENTATION

The first step of G-computation is to fit a regression of the
outcome on the exposure and relevant covariates, using the
observed data set. This regression model is frequently called
the ‘‘Q-model’’ in the context of G-computation. We em-
phasize that despite the unfamiliar terminology and appli-
cations of the model, our Q-model is no different than a
traditional regression of Yon A and W, such as the ones fitted
above (regression models 1–4), and can also be imple-
mented in standard statistical software. The equivalence of
the regression model used in the traditional approach and
the Q-model used in G-computation is demonstrated in
Figure 1, which schematically outlines the steps of both
approaches. For G-computation to estimate an unbiased
exposure effect, the Q-model must be correctly specified, just
as correct model specification is required for unbiased esti-
mation in traditional regression. However, investigators may
select from additional tools to nonparametrically or semipara-
metrically estimate the Q-model, including machine-learning
algorithms that cannot be incorporated into a traditional
regression approach (for example, super learner (25)).

Once estimated, the Q-model is used to predict counter-
factual outcomes for each observation under each exposure
regimen. This is accomplished by plugging a ¼ 1 and then
subsequently a ¼ 0 into the regression fit to obtain a pre-
dicted outcome under these 2 settings. The counterfactual
outcome associated with exposure intervention a can be
represented as Ya. Because we have a dichotomous treat-
ment setting, the counterfactual outcomes correspond to
Y1 for exposed and Y0 for unexposed. Generating counter-
factual outcomes for each observation in under exposed and
unexposed settings furnishes the investigator with a full data
set that is free of confounding under causal assumptions
and resolves the missing data problem described above.
The decision to implement G-computation using continuous
exposures raises many important considerations concerning
the research question and resulting inference (26), including
frequent violations of the experimental treatment assign-
ment assumption (discussed in the next section). We have
assumed time-ordering, where W was generated before A,
and A before Y.

We fitted each of the 4 models described earlier as pos-
sible Q-models to predict Y for each of the 300 observations.
We used the coefficients from each model to predict the
values of Y1 and Y0 for each observation, leaving their co-
variates at the observed values but intervening on the value
of a as described above (a ¼ 1 when exposed, a ¼ 0 when
unexposed), thus generating, for each individual, Y1 and Y0,
respectively. A step-by-step outline, including an illustra-
tion of the full data, is presented in the Web Appendix
(available at http://aje.oxfordjournals.org/).T
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Having generated the full data with G-computation, we
subsequently fitted an MSM of the outcome Ya on the
treatment a, to estimate the marginal effect of ozone on
FEV1:

MSM : EðYaÞ ¼ b0 þ b1 3 a:

Because we were interested in a marginal effect, our
MSM included only the exposure of interest, ozone. Con-
founders and nuisance effect modifiers were adjusted for in
the Q-model. We used the same MSM (presented above) for
each of the 4 Q-models and corresponding full data sets,
targeting the same parameter in each of the 4 MSM regres-
sions. In this example, the causal risk difference estimated
by our MSM is identical to the estimate that we could have
calculated without an MSM, still defining our parameter of
interest as E(Y1 � Y0), as described in the Web Appendix.
Our described G-computation implementation does not im-
mediately extend to more complicated data structures (e.g.,
continuous A) and MSM specifications (e.g., unsaturated
(16)).

Table 2 shows the results of the MSMs fitted using the
G-computation estimator and the 4 separate Q-models de-
scribed in the previous section. We used the notation
MSMQ1 to refer to the MSM run on the counterfactual out-
comes obtained by using model 1 for the Q-model. Recall
from the discussion of model 1 that the corresponding
MSMQ1 parameter estimate of �0.23 L for A is not adjusted
for confounding by W1 and does not account for the effect
modification by W2. Based upon the main-term-only

Q-model that failed to include the A 3 W2 interaction term
from the simulation protocol, MSMQ2 produced an effect
estimate of �0.36 L for A. MSMQ3 relied on a nested model,
thus estimating an ozone effect of �0.33 L, which was
similar to the ozone effect of �0.34 L that was estimated
by the MSMQ4, which relied on the correctly specified
Q-model.

Because the standard errors generated by software pro-
grams are not correct for G-computation parameter estima-
tors in an MSM, the user must implement resampling-based
methodology, such as bootstrapping, to determine accurate
standard errors. For an accessible introduction to bootstrap-
ping, we refer the reader to the appendix of another didactic
article (10). We implemented a nonparametric bootstrap
with 10,000 repetitions.

TRADITIONAL REGRESSION ANALYSIS AND
G-COMPUTATION

The 2 approaches discussed here rely on similar assump-
tions. The G-computation estimator relies on the experimen-
tal treatment assignment or positivity assumption, which
requires that there be a nonzero probability of each treat-
ment regimen within all subgroups for which the effect of
treatment is being assessed. This is analogous to the caution
against extrapolating beyond the observed data in a tradi-
tional regression framework. Both estimators described here
rely on the assumption of no unmeasured confounding for
unbiased estimation and also time-ordering of certain

Step 1 (model-fitting): 
Select a model for a 
regression of Y on A and W
(i.e., model E(Y|A, W))

Step 2 (traditional effect 
estimation): 
Extract and present the 
coefficient for A,
representing the treatment 
effect, conditional on W

Step 2 (G-computation): 
Use the model fit in step 1 
to predict outcomes for 
each observation under 
each possible treatment 
regimen, Ya = {Y0, Y1} for 
binary treatment A

Step 3 (MSM): 
Regress the entire set of 
predicted counterfactuals 
on the treatment 
(i.e., model E(Ya))

Step 4 (G-comp MSM 
effect estimation):
Extract and present the 
coefficient for a,
representing the marginal 
causal treatment effect

Steps for traditional 
regression 

Steps for the 
G-computation MSM

Steps shared by 
traditional regression 
and G-computation

Figure 1. Contrasts between the implementation of traditional regression and the G-computation marginal structural model (G-comp MSM). A is
a binary treatment, W ¼ {W1, W2} a vector of confounders, and Y a continuous outcome.
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variables (e.g., A occurs before Y). Correct model specifica-
tion is assumed in the traditional regression and the G-
computation MSM approach (in which both the Q-model
and the MSM are assumed to be correctly specified). As-
sumptions relating to the existence of counterfactuals and
the consistency of counterfactual outcomes apply to the
G-computation estimator and not traditional regression. De-
tailed explanations of these assumptions appear elsewhere
(7, 16, 27, 28).

As we discuss results from these 2 analyses, it is impor-
tant to remember that a direct comparison between the tra-
ditional regression and G-computation estimators is
problematic because they estimate different parameters.
The results from the traditional regression analysis and the
subsequent G-computation analysis revealed that both ap-
proaches estimated the same ozone effect value for models 1
and 2. This was not a coincidence or a rounding artifact, but
rather a necessary occurrence with a continuous outcome.
Because models 1 and 2 both modeled the effect of ozone as
a main term without any ozone-covariate interactions, the
effect value of ozone on FEV1 was estimated to be identical
across all strata of the covariates. Therefore, the effect esti-
mate produced by the initial regression is exactly repro-
duced for each individual in the G-computation step, with
only the offset varying according to each subject’s controller
medication use and sex. Although in these cases the tradi-
tional regression coefficient and the MSM coefficient are
numerically identical, they have different interpretations
based on their assumptions (causal vs. noncausal) that pre-
clude direct comparison.

In addition to the theoretical problems associated with com-
paring marginal estimates with conditional estimates, models
3 and 4 present additional problems that hinder comparison of
the traditional regression findings with the G-computation
MSM findings. In contrast to the MSM approach we demon-
strated, each of these traditional models targeted different
parameters. The treatment-covariate interaction present in
traditional models 3 and 4 means that there is not a single
effect estimate for ozone as estimated by these models.
Rather, there is a heterogeneity of ozone effect, with one effect
estimate corresponding to the controller medication users and
a separate effect estimate corresponding to the nonusers. In
contrast, the G-computation effect estimated by MSMQ3 and
MSMQ4 describes the effect estimate with a single value,
weighted by the observed frequency of the effect modifier
in the data set. In our simple example, standardization using
the marginal distribution of the covariates as the standard also
yielded the same marginal effect. If the effect modification is
of a priori interest, it may actually be desirable to present
multiple effect estimates—something that both the traditional
approach and G-computation allow. However, if not, this in-
ability to easily report a single effect estimate in the presence
of effect modification represents a shortcoming of traditional
regression techniques relative to G-computation.

This highlights a key advantage of G-computation: its im-
plementation and interpretation remove the researcher’s focus
from estimation of nuisance parameters, drawing attention to
the parameter(s) of interest. Because G-computation decou-
ples adjustment for cofounding and nuisance effect modifi-
cation from estimation of parameter(s) of interest, the final

MSM estimates only the intercept and the ozone effect. This
encourages investigators to define a research question in ad-
vance of the analysis stage, clearly distinguishing between
nuisance variables and the exposure(s) of interest.

DISCUSSION

Below we present and answer a series of questions that
are commonly asked by colleagues as they learn and imple-
ment this methodology.

Question 1. G-computation seems very similar to tradi-
tional regression techniques; in fact, the first step of G-com-
putation is a traditional regression. Given this similarity,
what are the advantages of G-computation?

Answer. As with other causal inference techniques, the
G-computation approach decouples the estimation of effects
of interest from the estimation of parameters that are not
directly related to the research question (e.g., effects of
confounders). Additionally, when the effect of exposure on
the outcome varies by strata of a third covariate—in other
words, interaction exists for the treatment variable—
G-computation permits the estimation of a single, marginal
effect estimate averaged across the observed distribution of
that third variable. The estimation of a single effect may
simplify interpretation of exposure effects as compared with
multiple effect estimates, depending on the research question.

Question 2. Is G-computation’s only application as an
estimator of a parameter in an MSM?

Answer. No, G-computation is a general technique that
can estimate many parameters, including parameters esti-
mated without the use of an a priori specified parametric
model. One point that is seldom explicitly stated in the
epidemiologic literature on causal inference methods is that
the reliance on counterfactuals for inference does not neces-
sitate reliance on MSMs. For example, one may go through
the Q-model step of G-computation and create Y1 and Y0. At
that point, the investigator has a choice to merely take the
difference between Y1 and Y0 and then average across the
observed distribution of the confounders and report that.

Question 3. What if I misspecify the Q-model?
Answer. This is common in practice; investigators are

frequently (and justifiably) worried about model misspeci-
fication. As is the case with model specification in tradi-
tional regression, a misspecified Q-model will lead to
a biased effect estimate. One of the benefits of the
G-computation approach is that it allows, but does not re-
quire, the researcher to use data-adaptive methodology to
obtain the best estimator for the data. Machine-learning
techniques are not new but have only recently been gaining
traction in epidemiology. One approach, called super learn-
ing (25), selects from a set of so-called candidate learners
(e.g., random forests, splines, etc.) to compute an estimator
for the predicted values that outperforms each of the candi-
date estimators. If an investigator believes he or she has
a regression that fits the data, it can be included as a candidate.

Question 4. Can G-computation be implemented for lon-
gitudinal exposure regimens?

Answer. Yes, but implementation of G-computation for
longitudinal data is more complex than in the point
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treatment setting. An illustration of a Monte Carlo simula-
tion approach (12) and another, more flexible and less com-
putationally intensive algorithm (29) have been published
elsewhere. IPTW is used more frequently in the literature for
estimation of causal parameters in longitudinal data (4, 5,
13, 30, 31), and the emerging targeted maximum likelihood
estimation approach has also been proposed as a suitable
alternative for this purpose (32, 33).

We have provided a justification for the implementation
of causal inference methods, specifically G-computation, as
well as identified some limitations of traditional regression.
Comparison of the implementation and interpretation of
both methods has been provided. The actual mechanics used
in each method are similar; i.e., standard regression soft-
ware may be utilized. The G-computation approach requires
several steps beyond the initial fitting step, but the process is
straightforward. The G-computation procedure has some
advantages relative to traditional regression, including the
decoupling of confounding adjustment and effect estima-
tion, and the causal parameter interpretation. Although G-
computation is not necessarily well-suited to every data
structure, it is nonetheless an important building block for
more sophisticated estimators in the causal inference liter-
ature, and researchers working with these techniques benefit
from a comprehensive understanding of it.
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