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Abstract
The ultimate goal of most shotgun proteomic pipelines is the discovery of novel biomarkers to direct the develop-
ment of quantitative diagnostics for the detection and treatment of disease. Differential comparisons of biological
samples identify candidate peptides that can serve as proxys of candidate proteins. While these discovery
approaches are robust and fairly comprehensive, they have relatively low throughput.When merged with targeted
mass spectrometry, this pipeline can fuel hypothesis-driven studies and the development of novel diagnostics and
therapeutics.
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INTRODUCTION
A common goal of most shotgun proteomic studies

is the discovery of novel biomarkers of disease.

However, discovery alone is insufficient and proteo-

mic pipelines that streamline the process from dis-

covery to diagnostics are beginning to take shape.

This review will focus on several robust quantitative

strategies that fuel the merger of discovery and

hypothesis-driven shotgun proteomics as it applies

to the analysis of human samples. As illustrated in

Figure 1, biological samples are first compared

using various quantitative platforms [e.g. spectral

count comparisons, chemical derivatizations and

label-free differential mass spectrometry (MS)].

These discovery approaches serve to identify differ-

entially expressed peptides which may represent can-

didate biomarkers of disease and/or lead to enhanced

insight in the molecular mechanisms of disease.

While these discovery approaches are robust and

can monitor thousands of proteins in each analysis,

they have relatively low throughput. When merged

with targeted MS, capable of monitoring hundreds

of proteins with high-throughput capacity, this pipe-

line can serve to drive hypothesis-driven studies,

critical for the development of quantitative assays

and novel diagnostics and therapeutics.

DISCOVERY-DRIVEN SHOTGUN
PROTEOMICS
Shotgun proteomic platforms provide robust alterna-

tives to gel-based approaches for the quantitative

analysis of complex protein samples. Because the

analyses are performed at the peptide level, the bio-

chemical heterogeneity of intact proteins is dramat-

ically reduced [1]. A popular example of a shotgun

proteomic platform is MudPIT (Multi-dimensional

Protein Identification Technology), which uses

biphasic microcapillary columns typically packed

with both strong cation exchange (SCX) and reverse

phase (RP) material to resolve protein mixtures that

have been digested and loaded directly onto the

column [1–4]. The solid phase column packing

material allows for the separation of peptides based
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on both charge and hydrophobicity. The column is

then placed inline with a tandem mass spectrometer

to facilitate electrospray ionization (ESI) followed by

mass analysis of the ions as they are eluted off the

column using alternating salt pulses and organic

mobile gradients. MudPIT allows for the identifica-

tion of proteins with variable pI, molecular weight

and hydrophobicity, making this method largely

unbiased.

SPECTRALCOUNTING
A simple differential measure of relative protein

abundance known as ‘spectral counting’ is com-

monly used in conjunction with MudPIT analyses

(Figure 2). The total number of spectra that identify

peptides originating from a given protein shows

good linear correlation with the abundance of that

protein [5–7]. This observation allows for relative

quantitative comparisons of protein levels between

samples by summing all the MS/MS spectral obser-

vations for all peptides of a given protein, including

spectra from the same peptide at multiple charge

states. The major analytical caveat to using this

approach is that spectral count ratios can be biased

by protein size, peptide length and other peptide

physiochemical properties that affect MS detection.

Therefore, appropriate statistical analyses should be

considered [8, 9].

Spectral counting has shown high utility for

simple (tandem affinity purified complexes) and

moderately complex samples (such as fractionated

tissues and yeast lysates) [7, 10, 11]. However,

when analyzing extremely complex samples

(such as unfractionated human tissue), the low

overlap of protein identifications that is observed

between samples can significantly limit the depth

of quantitative coverage. A study by Kline et al.
[12] reported only 51% overlap in protein identifica-

tions from the analysis of total unfractionated protein

from human cardiac explants. Though this study was

practically limited in depth of relative comparisons

between samples, it illustrated the use of spectral

counts as a metric for peptides that are detectable

within a particular biological matrix or sample.

Indeed, a list of proteotypic peptides (defined as

peptides that are most representative and most

likely to be observed for a protein of interest in a

particular biological matrix) was generated in this

study, and 98.3% of the peptides identified with

high spectral counts (>200 spectra) had calculated

observation frequencies >0.5 (i.e. the peptide was

identified in at least 50% of the MS runs where the

corresponding protein was identified). Databases

such as these provide a valuable resource for the

selection of peptides which may serve as quantitative

proxys, representative for proteins of interest in a

targeted MS analysis (further discussed in ‘Targeted

MS’ section).

The ability to accurately quantify proteins in an

extremely complex mixture by spectral counting

largely depends on the number of spectra obtained

and the coverage of sampling. This presents a large

obstacle for those proteins present at low abundance,

such as integral membrane proteins, which may

never be selected for data-dependent acquisition

due to limitations associated with depth of sampling

of complex mixtures. A common solution to these

limitations is sample fractionation to reduce com-

plexity and increase the depth of sampling in

Figure 1: Overview of discovery and candidate quantitation approaches.
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MudPIT experiments. However, fractionation

increases the overall number of samples to be ana-

lyzed and compared, drastically increasing the

amount of MS time required. Furthermore, compre-

hensive coverage by MudPIT analyses of unfractio-

nated complex samples typically requires multiple

technical replicates from each sample to achieve sat-

uration of unique protein identifications and obtain

good statistical analyses for spectral count compari-

sons [12]. This requires significant commitments of

instrument and data processing time. Furthermore,

sample fractionation requires significant amounts of

starting material, which is often incompatible with

human samples and thereby limits the practical utility

of spectral counting for human studies.

STABLE ISOTOPE LABELING
STRATEGIES
A common strategy to increase the quantitative pre-

cision of a proteomic analysis is the incorporation of

stable isotope-labeled internal standards. There are

two general approaches to incorporate stable isotopes

into proteins, metabolic labeling and chemical deri-

vatization. The method of stable isotope metabolic

labeling has successfully been used in both cell cul-

ture and mammals [13–15]. However, given the

practical limitations of this approach in the analysis

of human samples, it will not be discussed further in

this review. Chemical derivatization platforms utilize

various isotopically labeled tags or reagents (Review

available [16]) [17–20]. Two popular tagging meth-

ods are discussed below.

In the ICAT (isotope-coded affinity tag) method,

proteins from two different biological samples are

labeled with either an isotopically ‘heavy’ (typically

deuterium or 13C) or isotopically ‘light’ (native)

ethylene glycol linker with a biotin affinity tag and

a thiol-specific reactive group that selectively couples

to the side chain of a reduced cysteine residues

(Figure 3) [19]. Following covalent modification of

all the cysteine residues in the samples with either a

‘heavy’ or ‘light’ isotope tag, the samples are mixed

together, digested with protease and incubated on an

avidin column to allow for enrichment of labeled

peptides by the biotin moiety located on the isotope

tag [21]. Following MS analysis, the relative abun-

dance of peptides is determined by the ratio of the

signal intensities from the ‘heavy’ and ‘light’ forms of

each peptide. Individual peptide ratios from the same

protein are then combined to produce abundance

ratios of identified proteins in the sample. A major

advantage of this tagging system is that it facilitates

the enrichment of the modified peptides via affinity

purification of the biotin moiety, thereby enhancing

the detection of low-abundance proteins. However,

because ICAT reagents selectively label proteins/

peptides containing cysteine residues, those proteins

which do not contain a cysteine residue will not be

quantified using this method.
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Figure 2: Differential protein comparison using spec-
tral count. A complex human sample is digested, chro-
matographically separated and analyzed using MS/MS.
Following peptide identification, spectral counts of all
the peptides in a given protein are combined to yield a
measure of relative protein abundance.
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More recently, the iTRAQ method was devel-

oped, which solved some of the limitations of ICAT.

The iTRAQ method uses amine-specific isobaric

reagents to label the primary amines of peptides

for the concurrent quantitative comparison of up

to eight different biological samples (Figure 4)

[22, 23]. Labeled peptides from the different samples

are mixed together to collectively undergo mass

analysis. The MS spectrum of each peptide in the

sample does not increase in complexity due to the

isobaric nature of the tagging reagents, as compared

to the ICAT method which results in multiple MS

peaks per peptide. During peptide fragmentation, the

isobaric amine groups are also fragmented to release

reporter ions with distinct m/z’s (e.g. 114.1, 115.1,

116.1 and 117.1 in the 4-plex reaction shown in

Figure 4). Relative peptide abundance measurements

between the four samples are then made based on

the relative intensity of each reporter ion. Similar to

the ICAT method, multiple peptide measurements

can then be combined to result in relative abundance

measurements at the protein level. The iTRAQ

method has recently been used to monitor small

molecule binding to proteins and map drug-induced

changes in protein phosphorylation states in human

cells, illustrating this method’s potential use in drug

discovery experiments [24]. However, although

iTRAQ labeling allows for incorporation of labels

into all peptides in a mixture (in contrast to

ICAT), this inclusive feature inherently requires

that the labeling be done after protease digestion,

thereby limiting their use as internal standards

because experimental variations at prior sample prep-

aration steps are not accounted for.

DIFFERENTIALMS
QUANTITATION
Recently, label-free approaches (collectively referred

to as differential MS or dMS) have been developed,

which utilize computational methods to find differ-

ences in the intensity of peptides in the MS signals,

rather than the total number of MS/MS spectra that

were stochastically sampled. These approaches rely

on the comparison of distinct regions of m/z and

retention time which represent the same analyte

across multiple analyses, and are based on the con-

cept of comparing samples via MS ‘images’ to detect

feature differences after computational processing. In

general, these computational methods can be divided

into two groups. In the first group, spectral features

(typically isotopic clusters indicating a peptide)

are detected first and then statistically compared

[25–29]. Alternatively, the second group applies

statistics first so that only differential features are

detected from the extracted ion chromatograms

[30–33]. Both computational methods rely on

the ability to chromatographically align multiple

LC-MS runs from different samples, identify differ-

ences between the samples and determine the

magnitude of the change (Figure 5). The absence

of internal standards requires the careful use of
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Figure 3: Peptide quantitation using ICAT. Samples
are compared by differentially labeling the cysteine resi-
dues in the proteins with a ‘light’ or ‘heavy’ ICAT tag.
The two protein groups are combined, digested and
tagged peptides are affinity enriched and analyzed by
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experimental and computational methods to normal-

ize and correct experimental variances which affect

retention time and MS intensity.

Regardless of the approach used, chromato-

graphic alignment is an essential component to

dMS analyses and also minimizes the chromato-

graphic error so that signals measured at a given

time and m/z in the mass spectrometer from different

runs can be assumed to originate from the same

molecular species. This can be addressed computa-

tionally by two classes of algorithms. The first class

uses full scan MS data to ‘align’ the retention times of

one run to another. This alignment is performed by

algorithms such as dynamic time warping or corre-

lation optimized warping which find an optimal

mapping of retention times between runs that max-

imizes their similarity [34–36]. The second class

matches detected features (such as peptide isotope
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Figure 4: Peptide quantitation using iTRAQ. Digested protein samples are modified with isobaric tags on the
N-terminus of all peptides. All tagged peptide groups are mixed together and undergo LC-MS/MS analysis. After
fragmentation and peptide identification, the low mass region of the MS/MS spectrum displays the reporter ions
produced by the fragmentation of the isobaric reporter tag. The ratio of reporter ions in the MS/MS spectrum
provides relative abundance of the peptide in each biological sample.
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distributions or MS/MS spectra) between runs,

and applies algorithms such as regression to fit a

time correction function to the matched markers

[29, 37, 38]. Additionally, variations in signal inten-

sity can be addressed by normalization. Callister et al.
[39] assessed multiple normalization techniques for

the label-free analysis of LC-FTMS data, and

Wang et al. [40] use global normalization ratios

while adjusting for low-intensity signals missing in

some runs. Methods for the statistical discovery of

differences in label-free MS data have been reviewed

recently [41, 42]. The identification of peptide iso-

tope distributions, or regions of m/z and RT, which

significantly differ between samples have been

implemented in numerous software packages, and

summarized in multiple reviews [42–44]. Figure 6A

shows an example of base peak chromatograms

from two human heart biopsy samples following

chromatographic alignment and normalization.

Differences are then detected by comparing peptide

maps of two mean, aligned human samples based on

their m/z intensities and chromatographic retention

time (obvious visual differences highlighted by

black boxes in Figure 6B).

Importantly, label-free MS quantitation requires

reproducible sample preparation and chromato-

graphic separations, which can be difficult when

working with extremely complex samples such as

human tissues. Also, because differences between

samples are identified from the MS scans, the map-

ping of differentially expressed features to peptide

identifications continues to be limited by the scan

speed of the mass analyzer, causing only a fraction

of identified features to be mapped back to peptide

identifications by MS/MS. To by-pass this obstacle,

‘inclusion’ lists can be generated to modify

Figure 5: Relative quantitation using dMS. Samples are digested and chromatographically separated. Samples
are then sequentially analyzed using LC-MS/MS. The collected data are then chromatographically aligned to allow
for peak or feature identification that differ between the samples. Differential features are then mapped back to
MS/MS spectra to obtain peptide identifications.
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subsequent data-dependant MS/MS analyses to focus

instrument time on the identification of previously

unidentified ions that gave rise to significant

differences [45].

Universal to all the quantitative platforms

described above is the preferential identification of

high-abundance proteins in a complex sample, with

lower sampling of low-abundance protein species. In

the case of the isotope tagging strategies, quantitative

information is further restricted to peptides that

contain the chemical derivatization. While many

differentially expressed features or regions may be

identified using dMS, only a subset of those may

be linked to peptide identifications by MS/MS.

For the analysis of highly complex samples, such as

unfractionated human tissue, these techniques are

invaluable for discovering differentially expressed

peptides (protein candidates), but remain limited

in utility for the targeted quantitation of peptides

(especially those derived from proteins of low abun-

dance) in a high-throughput manner.

TARGETEDMS
The necessity for highly sensitive and selective detec-

tion strategies for analytes in complex human samples

was recognized early by researchers interested in the

detection of small molecule analytes, such as drug

metabolites and hormones. In fact, the development

of selective reaction monitoring (SRM) was largely

pioneered by those interested in detecting these types

of compounds in highly complex and typically

unfractionated samples [46–51]. The use of SRM

for the robust detection of a multitude of com-

pounds has been reported in human plasma

[49, 52–54] and other complex human samples

[55, 56]. Indeed, the use of isotope-labeled internal

standards using SRM is well established for the

robust and high-throughput analysis of metabolites

in complex human samples. Only more recently has

the proteomics field begun using the SRM tech-

nique as a selective way to detect and quantitatively

monitor unique peptides from proteins of interest

[57–60]. This shift in proteomics to targeted MS

Figure 6: Finding differences between human heart tissue samples using dMS. (A) Acquired chromatograms are
computationally aligned and normalized, and feature differences are identified. (B) Peptide maps can be plotted as
2D images following chromatographic alignment and normalization. Regions of m/z and retention time that have a
difference in abundance between the samples can then be identified (as illustrated by black boxes).
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methods was largely based upon the difficulty in the

detection of low-abundance proteins within the

context of unfractionated complex samples such as

human tissue and plasma. In fact, the accurate quan-

titation of peptides and proteins in human plasma is

incredibly challenging due to the extreme dynamic

range of �108 [61]. Furthermore, monitoring low-

abundance proteins in human tissue biopsies, such as

the heart, which combines the complexity of a het-

erogeneous tissue with blood contamination, can be

a daunting task.

Targeted MS (LC-MS/MS in the SRM mode)

approaches require prior knowledge of the analyte

to be detected. However, when coupled with the

discovery methods described above, targeted MS

provides the sensitivity, selectivity and throughput

required for the analysis of human clinical samples.

Most targeted MS techniques utilize the discriminat-

ing power of quadrupole mass analyzers to select

specific peptides in a complex sample mixture for

detection. Peptide SRM uses ESI followed by two

phases of mass selection. The first phase (in Q1)

selects for the m/z of the precursor ion (charged

unique peptide). Following fragmentation of the

selected peptide by collision induced dissociation

(CID in q2), the second phase (in Q3) selects for

the m/z of fragment ion derived from the precursor

ion (Figure 7).

The use of two mass filters in the triple quadru-

pole allows for the peptide analyte to be selectively

detected, even if it is present in very low abundance

in an unfractionated complex mixture. This level of

mass selection increases sensitivity by only allowing

the transmission of a small population of ions,

thus minimizing chemical background noise [62].

Additionally, SRM measurements are easily multi-

plexed [63], due to the rapid duty cycle of current

instrumentation (10–100 ms), facilitating hundreds of

peptides to be monitored on a chromatographic

time scale in a single MS run. Because SRM assays

are typically optimized for peptides separated using

single phase chromatography, analyses are high-

throughput and rapid with minimal sample con-

sumption (0.5–5 mg peptides/analysis) and therefore,

well suited to accommodate the large sample num-

bers of clinical studies.

SRM data analysis involves the comparison of the

area under the curve (AUC) from extracted ion

chromatograms for each transition monitored.

Relative changes between multiple samples can be

made without the inclusion of internal standards.

However, the incorporation of stable isotope-labeled

internal standards allows for high precision quantita-

tion of each unique peptide [57, 59, 60, 64]. Because

the amount of internal standard peptide is known

and calibrated for the linear quantitative range,

the ratio between the areas under the extracted ion

chromatograms of endogenous peptide and isotope-

labeled peptide allows for the calculation of the

absolute amount of the endogenous peptide [57].

Quantitation of proteins using this method is based

on the detection of one or more peptides from that

protein [65]. In contrast to global MS quantitation

methods, targeted MS requires prior knowledge

of the peptides (proteins) selected for quantitation.

This distinction, along with the throughput and

sensitivity, makes it ideal for hypothesis-driven

queries, and for the verification and validation of

those protein candidates identified using global MS

analyses.

However, obstacles may arise due to the fact that

specific unique peptides are used as quantitative

proxys for the protein from which they are cleaved

to yield a measure of the protein abundance. While

this can be advantageous in many ways because it

allows for separate detection and quantitation of

multiple peptides from a single protein to provide

information concerning protein abundance, or

even potentially varied modification states [57, 64],

it can also be limiting if the detection of multiple

peptides is difficult and/or modified peptide isoforms

are below the limits of detection or quantitation

within the given sample matrix. While the most

comprehensive read out of protein abundance and

state is achieved by the detection of multiple peptides

per protein, working with an unfractionated com-

plex sample can make this extremely difficult. This

challenge becomes particularly apparent due to the

shortened single dimension (RP) chromatographic

separation that is used for SRM measurements,

which causes all peptide components to be eluted

over a short time window. Massive peptide

co-elution can cause significant ion suppression and

decreased signal of the peptide of interest. The phe-

nomena of ion suppression has been extensively

studied by the small molecules field, but its impact

on peptide detection using SRM has been less char-

acterized [66, 67]. What is clear is that significant

optimization of the chromatography may be neces-

sary for the ideal detection and quantitation of

each unique peptide from candidate proteins of

interest.
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CONCLUSION
The proteomics field has recognized the need for

quantitative methods that are compatible with the

analysis of complex biological samples, particularly

human samples such as tissue and plasma.

However, proteomic analysis of unfractionated com-

plex human samples is difficult due to the large

dynamic range of protein expression. Currently

there are a number of robust discovery platforms

that are used in the field to identify differentially

expressed proteins in human samples, either utilizing

isotope-tags or label-free methods. When merged

with targeted MS platforms, capable of monitoring

hundreds of proteins with high-throughput capacity,
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this pipeline (illustrated in Figure 8) can serve to

drive hypothesis-driven studies, critical for the devel-

opment of novel diagnostics and therapeutics.
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