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Abstract
Developments in whole genome biotechnology have stimulated statistical focus on prediction methods.We review
here methodology for classifying patients into survival risk groups and for using cross-validation to evaluate such
classifications. Measures of discrimination for survival risk models include separation of survival curves,
time-dependent ROC curves and Harrell’s concordance index. For high-dimensional data applications, however,
computing these measures as re-substitution statistics on the same data used for model development results in
highly biased estimates. Most developments in methodology for survival risk modeling with high-dimensional data
have utilized separate test data sets for model evaluation. Cross-validation has sometimes been used for optimiza-
tion of tuning parameters. In many applications, however, the data available are too limited for effective division
into training and test sets and consequently authors have often either reported re-substitution statistics or ana-
lyzed their data using binary classification methods in order to utilize familiar cross-validation. In this article we
have tried to indicate how to utilize cross-validation for the evaluation of survival risk models; specifically how to
compute cross-validated estimates of survival distributions for predicted risk groups and how to compute
cross-validated time-dependent ROC curves. We have also discussed evaluation of the statistical significance of a
survival risk model and evaluation of whether high-dimensional genomic data adds predictive accuracy to a model
based on standard covariates alone.
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INTRODUCTION
Statistical regression methods have traditionally been

used for problems where the number of cases (n)
exceeds the number of candidate variables (p). For

time-to-event modeling, the effective sample size n
is the number of events. n/p ratios of 10 or even 20

are frequently recommended for the development of

stable models. With the development of biotech-

nology that enables genome-wide measurement of

DNA sequence, RNA abundance and gene copy

number, there has been an explosion of interest in

predictive modeling where the number of candidate

variables (p) greatly exceeds n. Predictive modeling is

of importance in medical applications and most of
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the work on p> n modeling has been in the context

of predictive classification; i.e. predicting the class of

a sample based on the measurement of its p vector of

variables (i.e. features).

For predictive classification in p> n settings it has

been recognized that the ‘apparent error’ of a model,

computed on the same data used to develop the

model, is a highly biased estimator of the true error

of the model for classifying new samples [1]. The

apparent error is also called the re-substitution error

estimate. The split sample method and complete

cross-validation are widely used for estimating pre-

diction error in p> n classification modeling. With

the sample splitting approach, a model is completely

developed on a training set and then the samples in a

separate test set are classified to determine the error

rate. The samples in the test set should not be used

for any aspect of model development including

variable selection. For many studies, the number of

samples (n) is too small to effectively separate the data

into a training set and a test set [2] and re-sampling

methods provide more accurate estimates of pre-

dictive accuracy [3]. With complete K-fold cross-

validation, for example, the full data set D is

partitioned into K approximately equal parts

D1, . . . ,DK, a predictive classification model Mk is

developed on training set D^Dk and used to classify

cases in Dk, for k¼ 1, . . . ,K. The models are

developed from scratch, repeating variable selection

and calibration, for each loop of the cross-validation.

The classification error is estimated from the discre-

pancies between the predictive classifications of the

n cases and their true classes.

For many applications of predictive modeling

using high-dimensional gene expression data, sur-

vival time or disease-free survival (DFS) time is the

primary endpoint and the re-sampling methods used

for evaluating classification models are not directly

available. Dupuy and Simon [4] and Subramanian

and Simon [5] have reviewed the literature of such

applications in oncology and identified serious defi-

ciencies in the validation of survival risk models.

Many of these studies involved too few cases to

have adequate sized separate training and test sets.

Consequently, they frequently presented Kaplan–

Meier curves of high- and low-risk groups estimated

using the same data employed to develop the

models. In some publications, in order to utilize

the cross-validation approach developed for classifi-

cation problems, they dichotomized their survival or

disease-free survival data. How to cross-validate the

estimation of Kaplan–Meier curves has not been in-

tuitively obvious. Another problem identified in this

literature was failure to adequately evaluate whether

prediction models based on high-dimensional gen-

omic variables added predictive accuracy to those

based on standard clinical and histopathological

covariates.

Our objective here is to describe re-sampling

based methods for estimating predictive accuracy

of survival risk models in p> n modeling settings.

We will describe the calculation of cross-validated

Kaplan–Meier curves of high- and low-risk groups

and the estimation of cross-validated time-dependent

receiver-operating characteristic (ROC) curves. We

will also describe the use of permutation methods to

test the hypotheses that survival is independent of all

p variables and the hypothesis that the genomic vari-

ables do not add predictive accuracy to a survival risk

model developed using a smaller number of standard

covariates. This approach does not require that the

outcome data be pre-divided into classes of good

and poor outcome prior to analysis. Cross-validation

methods for evaluating the accuracy of predictive

modeling of survival data are available in the

BRB-ArrayTools software [6] available at: http://

brb.nci.nih.gov without charge for non-commercial

use. Information about BRB-ArrayTools is provided

in the Appendix 1.

SURVIVALRISKCLASSIFICATION
Regression models are commonly used either for

inference or for prediction. Inferential applications

focus on which variables are important and how

that importance depends on which other variables

are in the model. Such inferential objectives can

often be achieved only to a limited extent in the

p> n setting. In p> n problems it may be possible

to develop models that are useful for prediction,

but there will often be many models that predict

about equally well. The models are generally un-

stable to small changes in the data and the number

of events is often not nearly sufficient to distinguish

among the accurately predicting models to deter-

mine which are the ‘best’ variables. Survival risk

models can be developed in some p> n settings to

provide accurate and useful predictions, however.

Several methods based on Cox’s proportional

hazard model have been developed for survival risk

modeling in the p> n setting. For these models, the

log hazard function at time t for an individual with
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covariate vector x¼ (x1, . . . ,xp) is of the form

log[h(t)]þ b� f(x) where h(t) is the baseline hazard

function, b is a vector of regression coefficients and

f(x) is a vector of projections of the full covariate

vector x. Often, the projections are a selected set

of the original individual variables. Proportional haz-

ards models are popular because the effect of the

predictors (b) can be estimated independently of as-

sumptions about the form of the dependence of the

log hazard on time. With the method of supervised

principal components, the first q principal compo-

nents of the variables with the strongest univariate

correlation with survival are used as the predictors in

the proportional hazards model [7]. Several alterna-

tive approaches have been proposed. For example

f(x) may be taken as the full set of variables and

b� f(x) is estimated by maximizing the L1 or L2

penalized log partial likelihood [8, 9]. Several authors

have used partial least squares types of components of

the projections f(x) [10–12] and others have adapted

the classification tree methodology for use with

survival data [13, 14]. For L1 penalized propor-

tional hazards models the predictive index is

b� f(x)¼ b1�x(1)þ ��� þ bm� x(m) where the vari-

ables x(1), . . . ,x(m) represent a subset of the full set of

p variables that are selected as having non-zero

coefficients by the penalized regression algorithm.

These and other approaches have been reviewed

and compared by Bovelstad et al. [15] and by van

Wieringen et al. [16]. In this article, the BRB-

ArrayTools package for survival risk modeling

using supervised principal components proportional

hazards modeling will be used to illustrate the

cross-validation based approach.

Survival modeling is usually performed to classify

patients into two or more risk groups, not to predict

exact survival time. The survival outcome for a

group of patients is usually summarized by comput-

ing the Kaplan–Meier estimate of the survival func-

tion for that group. The Kaplan–Meier estimates for

the risk groups computed on the same set of data

used to develop the survival model are, however,

very biased. Figure 1 shows results from a simulation

performed by Subramanian and Simon [5] for

high-dimensional survival modeling. There were

129 cases whose survival times and censoring indica-

tors were known. Five thousand random variables

were simulated from the standard normal distribu-

tion independently of the survival data. The 129

cases were randomly divided into training and test

sets. A survival risk model involving feature selection

and proportional hazards modeling was developed

on the training set and the same training set patients

were then classified into high- and low-risk based

upon whether their predictive index was above or

below the median. The entire simulation was re-

peated 10 times using different random divisions of

the data into training and test sets. Kaplan–Meier

survival estimates for the training set risk groups are

shown in Figure 1. In this case, the survival distribu-

tion for patients classified as high risk should be the

same as for those classified as low risk since the data

was generated with no variables prognostic for sur-

vival. However, the wide separation of the Kaplan–

Meier curves for high- and low-risk sets in this figure

indicates the enormous bias of using the same data to

develop a survival risk model and applying that

model to the same patients without using any form

Figure 1: Re-substitution Kaplan^Meier survival estimates for cases in the training set classified as high- or
low-risk based on survival risk models developed in the same training set. The training set data were simulated
from a model in which none of the variables used for modeling were actually prognostic for survival. Each simulation
is numbered.
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of cross-validation. Figure 2 shows the Kaplan–

Meier curves, computed by applying the same risk

classifiers developed on the training sets shown in

Figure 1 to cases in the corresponding independent

test sets. The lack of separation between Kaplan–

Meier curve for high- and low-risk patients for

these independent test sets indicates that the classifiers

developed in the training sets have no predictive

value. This is as it should be based on the way that

the data sets were generated.

CROSS-VALIDATED
KAPLAN^MEIERCURVES
We will present here a cross-validation based method

for estimating the survival distribution of two or

more survival risk groups for use when the number

of cases is too small for effective sample splitting.

To develop a cross-validated estimate of the survival

distributions of the risk groups, the full data set D is

partitioned into K approximately equal parts

D1, . . . ,DK. One then starts with forming a training

set T1¼D�D1 by omitting the first subset of cases

D1. A survival risk model M1 is developed using only
the data in T1 for variable selection, regression coef-

ficient fitting and tuning parameter optimization. If a

tuning parameter such as a penalty value for fitting an

L1 or L2 penalized proportional hazards model is

to be optimized by cross-validation, that cross-

validation for model selection should be performed

strictly within the training set T1 [17]. One can then

classify each of the cases in the test set D1 into a

survival risk group. One specifies in advance how

many risk groups are of interest and how patients

will be classified based on the models developed.

For example, one might classify patients as low risk

if their predicted probability of surviving 5-years

is at least 0.75, high risk if their predicted probability

is less than 0.5 and intermediate risk otherwise. For

proportional hazards models, however, a method

of assigning patients to risk groups will be described

below that does not require the estimation of

the baseline hazard function in the training set T1.

At the second step another survival risk model is de-

veloped from scratch using training set T2¼D�D2.

Variable selection, tuning parameter optimization

and model calibration are all re-performed using

only data in T2. The patients in the omitted set D2

are then classified into risk groups based on this new

model.

This process is repeated for each of the K loops of

the cross-validation. After the cross-validation is

complete, each case has been classified into one of

the risk groups. Each case was classified using a

model developed on a training set that they were

not part of. A Kaplan–Meier curve estimate can be

computed for each of the risk groups. Kaplan–Meier

curves are not computed for each loop of the cross-

validation. All the patients classified as low-risk in

any of the loops of the cross-validation are grouped

together and a single Kaplan–Meier curve is com-

puted for that low-risk group. The Kaplan–Meier

curves for the other risk groups are computed

similarly. Since the classification process was

Figure 2: Kaplan^Meier survival estimates for cases in independent test sets classified as high- or low-risk using
the same models developed in the corresponding training sets shown in Figure 1. Data for the independent test
sets was simulated from the same model used for simulating data for the training sets; none of the variables used
for modeling was prognostic for survival.
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cross-validated, we refer to the Kaplan–Meier curves

as cross-validated.

Censoring of survival times is accommodated in

two aspects of this process. First, within each loop of

the cross-validation, the censored data is modeled to

develop the survival risk model. In classifying the

patients in some Dk based on the model developed

in Tk¼D�Dk, it does not matter whether the pa-

tients in Dk are censored because they are classified

based only on their covariates and the model. After

all the loops of the cross-validation are completed

and the high and low (and any other) risk groups

are fully defined, the Kaplan–Meier curves are com-

puted in the usual way that takes censoring into

account.

For proportional hazards models, risk group pre-

diction can be performed without estimating the

baseline hazard function. For example, consider a

model in which the log hazard is log[h(t)þ b�x],

where h(t) is the baseline hazard function, b denotes

the vector of regression coefficients and x denotes

the vector of expression measurements for all

genes. In this notation, bj¼ 0 if gene j is not included

in the model. Let b(k) denote the estimated vector of

regression coefficients determined based on training

set Tk¼D�Dk. If two approximately equal sized

risk groups are desired, a case i in partition Dk can

be assigned to the higher risk group if its

cross-validated predictive index b(k) xi is above the

median of fbðkÞxj :xj 2 Tkg, the full set of predictive

indices for all cases in Tk. This is provided in

BRB-ArrayTools software and permits survival risk

classification of individual future cases.

Cross-validated Kaplan–Meier curves are illu-

strated in Figure 3 using the null data described

for the 129 cases in Figures 1 and 2 with K¼ 10.

Figure 4A shows the re-substitution estimate of

Kaplan–Meier curves for the training set data re-

ported by Shedden et al. [18] for patients with

non-small cell lung cancer. Figure 4B shows the

cross-validated Kaplan–Meier curves for that same

data. See the Appendix 1 for details on our analysis

of the Shedden et al. [18] data.

Although the log-rank statistic is a convenient

measure of spread among the cross-validated survival

curves, the log-rank test is not valid because the

curves are cross-validated survival curves and hence

the observations are not independent. In order to

evaluate the statistical significance of the log-rank

statistic, we obtain the permutation distribution of

the cross-validated log-rank statistic. That is, we ran-

domly permute the correspondence of survival times

and censoring indicators to different gene expression

profiles and repeat the entire K-fold cross-validation

process. Then we compute the cross-validated

survival curves and the cross-validated log-rank stat-

istic for that random permutation. We repeat that

entire process for many random permutations and

generate the null distribution of the cross-validated

log-rank statistic. The proportion of replicates

with log-rank statistic greater than or equal to the

value of the statistic for the un-permuted data is

the statistical significance level for the test that sur-

vival is independent of all covariates. For the cross-

validated Kaplan–Meier curves shown in Figure 4B,

the log-rank statistic is 0.12 and the statistical sig-

nificance level is 0.85 based on 500 random

permutations.

TIME-DEPENDENT ROCCURVES
For binary disease classification problems (i.e. disease

versus no disease), the commonly used measures of

Figure 3: Cross-validated Kaplan^Meier survival estimates for the training sets shown in Figure 1.
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predictive accuracy are sensitivity, specificity, positive

predictive value, negative predictive value and ROC

curve [19]. Suppose we have a quantitative test result

M and that values greater than a threshold c are con-

sidered positive and predictive of disease presence

(D¼ 1). The sensitivity and specificity of the test

are defined as Pr[M� c | D¼ 1] and Pr[M< c|
D¼ 0]. An ideal test has sensitivity and specificity

of 1. A plot of sensitivity (y) versus 1-specificity (x)

as the threshold c varies is called the ROC curve. If

the test is un-informative, the plot will be the diag-

onal line y¼x and the area under the curve will be

0.5. The area under the ROC curve is frequently

taken as a measure of predictive accuracy of the

test. The positive and negative predictive values are

defined as Pr[D¼ 1 |M� c] and Pr[D¼ 0 |M< c],
respectively. They are important in practice, but are

less frequently used for evaluation of tests in devel-

opmental studies because they depend on the preva-

lence of the disease Pr[D¼ 1] which may vary

among contexts of use of the test.

Heagerty et al. [20] defined measures of sensitivity,

specificity and ROC curve for use with survival data.

These are based on a defined landmark time t. The

sensitivity and specificity are defined as Pr[M� c |

T� t] and Pr[M< c |T> t], respectively, whereT is

the random variable denoting survival time, M is

the test value and c the threshold of positivity. For

applications with proportional hazards survival risk

models, the test value M for a patient is taken as

the cross-validated predictive index for that patient.

Using Bayes’ theorem, sensitivity and specificity can

be estimated as:

Pr½M � c jT � t�

¼ Pr½T � t jM � c�Pr½M � c�= Pr½T � t�
ð1Þ

and

Pr½M < c jT > t�

¼ Pr½T > t jM < c� Pr½M < c�= Pr½T > t�:
ð2Þ

Uno et al. [21] modeled Pr[T� t|M] directly for a

fixed landmark t, but for the general kinds of survival

models considered here, Kaplan–Meier estimators of

the terms Pr[T� t|M� c] and Pr[T> t|M< c] can

be computed for subsets of patients with M� c and

M< c, respectively. The denominators can be esti-

mated by Kaplan–Meier estimators for the entire set

of cases. The term Pr[M� c] is just the proportion of

cases with cross-validated predictive index greater

than or equal to the threshold c. Heagerty et al.
[20] also provide ‘nearest neighbor’ estimators of

the sensitivity and specificity as functions of the

threshold c that ensure monotonicity as a function

of the threshold. A plot of the sensitivity versus one

minus the specificity is called the ‘time-dependent

ROC curve’. It can be estimated for various values

of the landmark time t. The area under the time-

dependent ROC curve can be used as a measure of

predictive accuracy for the survival risk group model.

If the cross-validated predictive indices are used for

the test values, then the time-dependent ROC curve

is cross-validated.

Figure 4: Kaplan^Meier survival curves for the data from Shedden et al. [18]. (A) Re-substitution estimates and
(B) cross-validated estimates.
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One can determine the null distribution of the

area under the cross-validated time-dependent

ROC curve by permuting the survival times (and

censoring indicators), repeating the cross-validation

procedure to create the cross-validated predictive in-

dices for the permuted data, and re-computing the

cross-validated time-dependent ROC curve and the

area under the curve. This can be repeated for

multiple permutations to generate the null distribu-

tion. Figure 5(B) shows the cross-validated

time-dependent ROC curve for the Shedden et al.
[18] data in Figure 4. The area under this curve is

0.53 and the statistical significance level of the test

that this AUC¼ 0.5 is 0.25 based on 500 random

permutations. The ROC curves in Figure 5 are

based on a landmark time t¼ 180 months. In some

cases it may be useful to compute cross-validated

time dependent ROC curves using several clinically

relevant time points, although issues of multiple

statistical significance testing would then have to be

considered. The R package survivalROC (version

1.0.0) was used for plotting the time dependent

ROC curves and to compute the area under the

time dependent ROC curve using the nearest neigh-

bor option. We provided cross-validated predictive

indices as input to the package. The survivalROC
package can be downloaded from the

Comprehensive R Archive Network (http://cran.r-

project.org) and run within R. The calculation of

cross-validated time-dependent ROC curves and

use of AUC values in permutational testing will be

included in the next release of BRB-ArrayTools.

COMPARISON TOMODEL
CONTAINING STANDARD
COVARIATES
Many disease areas utilize standard staging systems or

other prognostic variables for evaluating patient prog-

nosis. A new survival risk classifier is only likely

to have medical utility if it provides classifications

that are more refined than those provided using

the accepted standard measurements. The methods

described above can also be used to evaluate whether

genomic variables add survival risk discrimination to

a model based on standard covariates.

Several approaches to developing combined sur-

vival risk models are possible [22]. The BRB-

ArrayTools software uses a method based on the

supervised principal component approach of Bair

and Tibshirani [7]. For each training set, genes are

selected for the combined model by fitting p propor-

tional hazards regressions each containing a single

gene and all of the clinical covariates. Genes are

selected if their expression adds significantly to the

clinical covariates at a pre-specified nominal signifi-

cance level. The first few (q) principal components of

those selected genes are computed for the training set

and a proportional hazards model is fit to the training

set using those q principal components and the clin-

ical covariates. That model is used to compute the

predictive index for the test cases and the test set

cases are assigned to risk groups. When all K loops

of the cross-validation are completed, the cross-

validated Kaplan–Meier curves for the combined

model are computed for these predicted risk groups.

Figure 5: Time dependent ROC curves for the data from Shedden et al. [18]. (A) Re-substitution estimates and
(B) cross-validated estimates. The resubstitution area under the curve (AUC) is 0.79 and the cross-validated
AUC is 0.53.
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Other methods of building combined models are

also possible. For example one can use L1 penalized

proportional hazards regression in which the penalty

applies only to the gene expression variables and the

clinical covariates are automatically included in the

model [23]. The boosting approach of CoxBoost of

Binder and Schumacher [24] also allows for the in-

clusion of mandatory clinical covariates. Boulesteix

and Hothorn [25] have developed a two-stage boost-

ing approach for penalized logistic regression which

is also applicable to proportional hazards model-

ing with mandatory clinical covariates. Bovelstad

et al. [22] also describe other approaches. Whatever

method is used for building combined models con-

taining the standard covariates and the gene expres-

sion measurements, one uses the approach described

above to obtain cross-validated predictive indices

for the combined model. One can compute cross-

validated Kaplan–Meier curves for the combined

model based on grouping cases into risk groups

based on these cross-validated predictive indices.

One can similarly obtain cross-validated predictive

indices for the standard covariate only model.

It is best to cross-validate the standard covariate

only model also because over-fitting can become a

problem even for models when the number of

variables is much less than the number of cases or

events.

We can compare the combined survival risk

model to the model based only on standard covari-

ates using as a test statistic the difference between the

cross-validated log-rank statistic for the combined

model minus the log-rank statistic for cross-validated

Kaplan–Meier curves for the standard covariate

model. The difference in areas under the cross-

validated time-dependent ROC curves can be used

as an alternative test statistic. The null distribution

of the test statistic is generated based on permuting

the gene expression vectors among cases. In these

permutations, the correspondence between survival

times, censoring indicators and standard covariates

are not disrupted. The null hypothesis tested is that

the gene expression data are independent of survival

and standard covariates. It is not possible in this way

to test the hypothesis that gene expression is condi-

tionally independent of survival given the vector of

standard covariates. This permutation approach has

also been used by Boulesteix and Hothorn [25].

Figures 6 and 7 show the cross-validated Kaplan–

Meier curves and cross-validated time dependent

ROC curves, respectively, for the standard covariates

in the Shedden data sets. Figure 6A shows the

Kaplan–Meier curve for the standard covariate only

model and Figure 6B shows Kaplan–Meier curves for

the model containing both standard covariates and

gene expression variables. It is clear from the curves

that the gene expression variables do not provide

additional survival risk discrimination to that already

provided by the standard covariates (P¼ 0.62 for

log-rank statistic, P¼ 0.72 for AUC of ROC curve

based on 500 permutations).

DISCUSSION
Developments in whole genome biotechnology

have stimulated statistical focus on development of

Figure 6: Cross-validated Kaplan^Meier curves to compare the prognostic model containing only standard cov-
ariates with the model containing both standard covariates and gene expression variables in the data set from
Shedden et al. [18]. (A) Only standard covariates and (B) standard covariates and gene expression variables.
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methodology for predictive medicine in settings

where the number of candidate variables is large rela-

tive to the number of cases. For applications in on-

cology, there is often interest in classifying patients

into survival risk groups. Measures of discrimination

for survival risk models include separation of survival

curves, time-dependent ROC curves and Harrell’s

concordance index [26]. For high-dimensional data

applications, however, computing these measures as

re-substitution statistics on the same data used for

model development results in highly biased esti-

mates. Most developments in methodology for sur-

vival risk modeling with high-dimensional data have

utilized separate test data sets for model evaluation.

For example, Li and Gui [10] utilized the time-

dependent ROC curve for survival modeling in

the context of a separate test set. Cross-validation

has sometimes been used for optimization of

tuning parameters but rarely for the evaluation of

survival risk models. An exception is the study by

van Houwelingen et al. [9] that used cross-validation

to evaluate L2 penalized proportional hazards sur-

vival risk models. In many applications, however,

the data available is too limited for effective division

into training and test sets and consequently authors

have often either reported re-substitution statistics

or analyzed their data using binary classification

methods in order to utilize familiar cross-validation.

In this article we have tried to indicate how to utilize

cross-validation for the evaluation of survival risk

models; specifically how to compute cross-validated

estimates of survival distributions for predicted risk

groups and how to compute cross-validated time-

dependent ROC curves. We have also discussed

evaluation of the statistical significance of a survival

risk model and evaluation of whether high-

dimensional genomic data adds to the predictiveness

of a model based on standard covariates.

In this article we have emphasized proper evalu-

ation of models for classifying patients based on

survival risk. Using cross-validated time dependent

ROC curves, these methods can be evaluated with-

out grouping patients into fixed risk groups.

Schumacher et al. [27] have developed methods for

the evaluation of models for prediction of survival

functions of individual patients. For each time t, the

Brier score for patient i is [Yi(t)� r(t, xi)]
2, where YiðtÞ

is an indicator function whether patient i survives

beyond time t and rðt,xiÞ denotes the predicted prob-

ability of surviving beyond time t for a patient with

covariate vector xi. Schumacher et al. show how to

adapt the Brier score to censored data and utilize an

out-of-box 0.632 bootstrap cross-validation estimate

of the Brier score as a function of t for a given

data set. Binder and Schumacher [24] have used

the Brier score to evaluate high-dimensional survival

risk models built with mandatory covariates and the

permutation tests described here could be applied to

the Brier score either at a fixed landmark time t or

averaged over times.

There are some advantages to partitioning a

data set into separate training and test sets when

the numbers of patients and events are large. Such

partitioning enables model development to be non-

algorithmic, taking into account biological consider-

ations in selecting genes for inclusion. It also enables

multiple analysts to develop models on a common

training set in a manner completely blinded to the

test set. Some commentators recommend the use of

a separate test set because cross-validation is so often

used improperly without re-selecting genes to be

included in the model within each loop of the pro-

cedure [1, 28]. In many cases, however, proper

cross-validation provides a more efficient use of the

data than does sample splitting. If the training set is

too small, then the model developed on the training

set may be substantially poorer than the one

developed on the full data set and hence the accuracy

measured on the test set will provide a biased esti-

mate of the prediction accuracy for the model based

on the full data set [3].

Figure 7: Cross-validated time dependent ROC
curves to compare the prognostic model containing
only standard covariates with the model containing
both standard covariates and gene expression variables
in the data set from Shedden et al. [18].
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Proper complete cross-validation avoids optimistic

bias in estimation of survival risk discrimination for

the survival risk model developed on the full data set.

Cross-validated estimates of survival risk discrimin-

ation can be pessimistically biased if the number of

folds K is too small for the number of events, and the

variance of the cross-validated risk group survival

curves or time-dependent ROC curves will be

large, particularly when K is large and the number

of events is small. For example, for the null simula-

tions of Figure 3, there are several cases in which the

cross-validated Kaplan–Meier curve for the low-risk

group is below that for the high-risk group. This is

due to the large variance of the estimates. This can

also be seen in Figure 6 where the separation in the

estimated survival curves for the combined model is

less than that for the model containing only clinical

covariates. This large variance is properly accounted

for, however, in the permutation tests for evaluating

whether the separation between cross-validated sur-

vival curves is statistically significant and whether the

separation for the combined model is better than

for the clinical covariate only model. Molinaro

et al. [3] have studied the bias-variance tradeoff for

estimating classification error for a variety of com-

plete re-sampling methods including leave-one-out

cross-validation, K-fold cross-validation, replicated

K-fold cross-validation, sample splitting and the

0.632 bootstrap. The relative merits of the different

methods depended on sample size, separation of the

classes and type of classifier used. For small sample

sizes of fewer than 50 cases, they recommended use

of leave-one-out cross-validation to minimize mean

squared error of the estimate of prediction error in

use of the classifier developed in the full sample for

future observations. Subramanian and Simon [29]

have extended this evaluation to survival risk

models using area under the time-dependent ROC

curve as the measure of prediction accuracy. With

survival modeling the relative merits of the various

re-sampling strategies depended on number of events

in the data set, the prediction strength of the variables

for the true model and the modeling strategy. They

recommended use of 5- or 10-fold cross-validation

for a wide range of conditions. They indicated that

although the leave-one-out cross-validation was

nearly unbiased, its large variance too often led to

misleadingly optimistic estimates of prediction accur-

acy. Replicated K-fold cross-validation was found by

Molinaro et al. [3] to provide small reductions in the

variance of prediction error estimates somewhat for

binary classification problems. It increases the com-

plexity of identifying risk groups in survival modeling,

however. Although it is offered in the BRB-

ArrayTools for the validation of class prediction, it is

not offered for validation of survival risk prediction.

In summary, we believe that cross-validation

methodology, if employed correctly, can be useful

for the evaluation of survival risk modeling and

should be utilized more widely. It can provide a

more efficient use of data for model development

and validation than does fixed sample splitting. In

data sets with few events, however, the survival

risk models developed may be much poorer than

could be developed with more data and the cross-

validated Kaplan–Meier curves of risk groups and

time dependent ROC curves will be imprecise [2].

Although the cross-validation approaches described

here are broadly useful, they are not a good substi-

tute for having a substantially larger sample size

when that is possible. Often, however, larger studies

come later when initial results are felt promising. The

‘promise’ of initial results should be evaluated unbia-

sedly, however and this is often not the case. It

should also be recognized that both cross-validation

and sample splitting represent internal validation and

do not reflect many of the sources of variability pre-

sent in applying a predictive classifier in broad clinical

practice outside of research conditions in which

assaying of samples are performed in a single labora-

tory. Nevertheless, the development of effective

diagnostics is a multi-stage process, starting with de-

velopmental studies in which efficient methods of

internal validation play an important role.

Key Points

� Survivalrisk groups shouldgenerallybe developeddirectlyusing the
survival datawithoutreducing survival times to binary categories.

� Cross-validation methods are available for computing cross-
validated survival curves and cross-validated ROC curves.
Thesemethods, if usedproperly, aremore efficient than splitting
a small data set into training and testing subsets.

� To use cross-validation properly, complete re-development of
the survival risk model from scratch is required for each loop of
the cross-validation process.This means that any variable selec-
tion or tuning parameter optimization should be repeated
within each loop of the cross-validation.

� The cross-validated estimate of survival discrimination is an
almost unbiased estimate of the survival risk group discrimin-
ation expected from classifying similar future patients using the
risk groups obtained from applying the survival risk group devel-
opment algorithm to the full data set.

� Apermutation based significance test of the null hypothesis that
survival risk discrimination is null can be computed based on
the cross-validated log-rank statistic or the area under the
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cross-validated ROC curve. Similarly, one may test whether
high-dimensional genomic variables add survival discrimination
to standard clinical and histopathologic variables.

� Many of the tools for developing survival risk models and for
evaluating suchmodels using cross-validation are available in the
BRB-ArrayTools software package.
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APPENDIX 1

ANALYSIS OF THEDATA FROM
SHEDDEN ETAL.
The data used in our study to illustrate cross-

validated Kaplan–Meier and time dependent ROC

curves was obtained from the study of Shedden et al.
[18] for patients with non-small cell lung cancer.

Only samples from the University of Michigan

Cancer Center (UM) that were also included in

the Shedden et al. [18] analysis were used in our

study. All patients with survival times censored

prior to 60 months were also excluded. These re-

sulted in 127 samples of which there were 75 events.

The clinical covariates considered were age, patho-

logic nodal stage (N0, N1 or N2), pathologic tumor

stage (T1, T2, T3 or T4) and differentiation (poorly,

moderately or well differentiated). Data for these

covariates were available for all the 127 samples.

Evaluate predictive accuracy of survival risk classifiers 213



Gene normalization and filtering was carried out

using BRB-Array tools (developed by Dr Richard

Simon and the BRB-ArrayTools Development

Team, http://linus.nci.nih.gov/BRB-ArrayTools

.html). In short, the expression data was log-

transformed to the base-2 scale after assigning a

value of 1 to expression values <1. Each array was

then normalized using the median array and normal-

ized expression values greater than 10 000 were trun-

cated to 10 000. Following this, a filter based on

variance was applied and 75% of the genes having

the lowest variance were excluded. There were 5552

genes which passed the filtering criteria and these genes

were used for the development of prognostic models.

Prognostic models using gene expression alone

was developed using the first 3 principal components

of the 10 most significant genes resulting from

univariate Cox regression models. In the case of

prognostic models that used clinical covariates and

gene expression, 10 most significant genes were

first selected by fitting proportional hazards regres-

sion each containing a single gene and all of the

clinical covariates. The first three principal compo-

nents of those selected genes were computed and

proportional hazards model was fit using those

three principal components and the clinical covari-

ates. For prognostic models using clinical covariates

alone, no further variable selection was done and all

the clinical covariates were used as such in a propor-

tional hazards model. For making the cross-validated

predictions, gene selection and the computation of

principal components were done inside the cross-

validation loop. In the case of modeling with clinical

covariates alone too, cross-validated predictions were

obtained. A 10-fold cross-validation was employed

in all cases.

The package survivalROC (version 1.0.0) was used

for plotting the time dependent ROC curves and to

compute the area under the time dependent ROC

curve.

BRB-ARRAYTOOLS
BRB-ArrayTools is menu driven software that pro-

vides numerous state-of-the-art statistical analysis

tools for microarray gene expression and

copy-number data. It is designed to be used by

non-statisticians as well as statisticians. It attempts

to educate users to select the analysis tool appropriate

for their biological or clinical objective and to avoid

improper cross-validation and misleading analyses.

It imports data from all arraying platforms and is

not tied to any database system. BRB-ArrayTools

is highly computationally efficient; accommodating

individual projects of over 1000 arrays of more than

50 000 probes or probe sets. Analysis tools included

in BRB-ArrayTools are selected by R. Simon and

include methods developed by many statisticians.

In some cases the original author’s R package is

used, but more frequently the algorithms are re-

programmed in a compiled language such as C or

Fortran for computational speed. The compiled code

runs invisibly to the user; users interact with BRB-

ArrayTools through menus and dialog boxes pro-

grammed within Excel. Excel is used only for the

user interface; the data is stored in binary files in

order to avoid the restrictions of Excel and none of

the analysis facilities of Excel are employed.

BRB-ArrayTools includes an extensive suite of

analysis tools. For example, for class prediction the

following tools are included: diagonal linear discrim-

inant analysis, nearest neighbor and nearest centroid

classification, support vector machine with recursive

feature elimination, shrunken centroid classification,

random forest, compound covariate classification,

Bayesian compound covariate probabilistic predic-

tion, top scoring pairs classification and L1 penalized

logistic regression with clinical and genomic covari-

ates. Internal validation options include leave-

one-out cross-validation, K-fold cross-validation,

repeated K-fold cross-validation, 0.632 bootstrap

re-sampling and split sample validation.

BRB-ArrayTools incorporates extensive biologic-

al annotations and analysis tools such as gene set ana-

lysis that incorporates those annotations. It also

incorporates powerful tools for 2D and 3D graphical

exploratory analysis of high-dimensional data. It in-

cludes a plug-in facility that enables users to run their

R functions on data stored in BRB-ArrayTools.

There are over 13 000 registered users of

BRB-ArrayTools internationally and it has been

cited in over 1300 publications.
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