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Functional genomics of the Gram-positive model organism Bacillus subtilis reveals valuable 
insights into basic concepts of cell physiology. In this study, we monitor temporal changes in 
the proteome, transcriptome and extracellular metabolome of B. subtilis caused by glucose 
starvation. For proteomic profiling, a combination of in vivo metabolic labelling and shotgun 
mass spectrometric analysis was carried out for five different proteomic subfractions (cytosolic, 
integral membrane, membrane, surface and extracellular proteome fraction), leading to the 
identification of ~52% of the predicted proteome of B. subtilis. Quantitative proteomic and 
corresponding transcriptomic data were analysed with Voronoi treemaps linking functional 
classification and relative expression changes of gene products according to their fate in the 
stationary phase. The obtained data comprise the first comprehensive profiling of changes 
in the membrane subfraction and allow in-depth analysis of major physiological processes, 
including monitoring of protein degradation. 
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For a complete understanding of physiological processes in a 
cell, the integration of tailored approaches addressing differ-
ent levels of regulation is needed. Therefore Bacillus subtilis, a 

Gram-positive prokaryote serving as a model organism1, was subject 
to a wide range of transcriptomic2,3, proteomic4,5 and metabolomic 
studies6,7. Unlike transcriptome analysis, proteomic studies do not 
necessarily cover all possible gene products of the cell. For a long time, 
the entirety of all proteins represented a far too complex mixture to be 
analysed at once, due to the large ranges of protein abundance, pI (iso-
elctric point), molecular weight, solubility or localization8. A recent 
example demonstrates that these limitations in analytics of large-scale 
proteomics can be overcome by application of different digest enzymes 
and gas-phase fractionation during mass spectrometry analysis9.

Soluble proteins are the most intensively studied species of pro-
teins due to their favourable accessibility. In two dimensional gel-
based studies, the majority of the proteins localized in the cytosol, 
the extracellular space or the cell wall have been differentially 
accessed10. More effort has to be spent on proteins with multiple 
membrane-spanning domains, extreme pIs or molecular weights or 
with low abundance. In contrast to highly abundant soluble pro-
teins11,12 they need to be enriched and specifically analysed.

Elaborate methodologies are known for subfractionation of cell 
extracts other than cytosolic proteins. Extracellular proteins secreted 
into the growth medium can be acid precipitated and subsequently 
analysed13. Cell wall bound and surface localized proteins are 
addressed by LiCl extraction and subsequent proteomic analysis via 
two dimensional gel electrophoresis14. Proteins from the cell surface 
of intact cells can be biotinylated and subsequently affinity purified15.

Owing to the hydropathy and low abundance of the proteins16, the 
membrane proteome still represents one of the least accessible subpro-
teomes. Proteomic analyses of membrane proteins of B. subtilis have 
been developed over a longer period of time5,17,18. Wolff et al.19 and 
Hahne et al.18 have proven that a combination of highly complemen-
tary enrichment and analytical techniques allows a very comprehensive 
analysis of the membrane proteome in Gram-positive bacteria.

The aim of this study was the systems-wide profiling of compart-
ment-specific changes on the proteome level in B. subtilis caused 
by glucose starvation. State-of-the-art complete metabolic labelling 
with stable nitrogen isotopes as described by MacCoss et al.20 and 
high mass accuracy mass spectrometry were applied to retrieve a 
maximum level of proteomic data. We investigated cytosolic proteins, 
two different membrane fractions consisting of transmembrane and 
membrane-attached proteins (membrane-shaving fraction (MSF) 
and enriched membrane fraction (EMF)), proteins attached to the 
cell surface (biotinylation-enrichment fraction (BEF)) and secreted 
extracellular proteins (extracellular fraction) of B. subtilis. To sub-
stantiate and complement the proteomic profiling, transcriptome 
data were acquired together with the quantification of extracellular 
metabolites. The proteomic and transcriptomic data were visualized 
by using Voronoi treemaps to enable the intuitional accessibility and 
immediate comparison of the systems-wide data.

In this study, we demonstrate temporal dynamic processes at the 
protein level that are so far unrivalled. Particularly, the temporal 
survey of membrane proteins in combination with the other more 
easily accessible subproteomes allows a broad monitoring of protein 
dynamics. The data reveal a comprehensive and unbiased overview 
on the physiological processes in B. subtilis as a model enabling 
in-depth analyses, including post-translational regulation of bio-
synthetic pathways, and an overview on time-dependent processes 
in the bacterial membrane as protein synthesis and degradation.

Results
Qualitative and quantitative analysis of the proteome. Metabolically 
labelled B. subtilis proteins from growing and non-growing cells were 
fractionated to obtain five different subproteomes for a comprehensive 
view on regulatory and physiological changes (Fig. 1). Entry into 

stationary phase was provoked by glucose deprivation at an optical 
density (500 nm) of 1 (Supplementary Fig. S1). Based on our workflow, 
allowing highly accurate (average mass deviation of  < 2 p.p.m. in 
our analysis) and reliable data (0.11% false positives on average on 
protein level), we were able to considerably cover the proteome of 
B. subtilis. In total, 2,142 proteins were identified with at least two 
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Figure 1 | Distribution of proteins identified according to the 
subfractionation workflow. (a) Workflow of the proteomic experiment. 
The preparation of the five different subcellular fractions is exemplified 
with the most crucial steps. The starting point for all proteomic samples 
is the bacterial batch cell culture. The first crossroads is the separation 
between complete cells for the BEF (biotinylation-enriched fraction) 
aiming at the surface-exposed proteins, the cell culture medium for the 
extracellular proteins and cells for the cytosolic/membrane fractions. 
14n/15n mixing depicts the stage in sample preparation, where mixing of 
the labelled pool and the unlabelled samples occurred. The earliest time 
point in experimental setup is chosen to minimize introduced effects by the 
labelling procedure to the quantitative data. Proteomic analyses (GeLC-ms 
and LC-ms) were performed with high-resolution and high mass accuracy  
mass spectrometry (2,142 total identified proteins with an FPR (false-positive 
rate) of 0.11% and 1.86 p.p.m. mass accuracy). (b) Distribution of proteins 
identified with a predicted subcellular localization in the different subfractions 
analysed. The area of the circles is proportional to number of identified 
proteins. (c) VEnn plot of protein identifications in the different designated 
subcellular fractions. numbers for the membrane fraction are summarized 
from EmF and msF. Prediction of subcellular localization is according to 
Zhou et al.52 Loci of localization assigned were as follows: intracellular; 
integral membrane proteins (multitransmembrane, multitransmembrane 
(lipid-modified n termini)); membrane-associated proteins (lipid anchored, 
LPxTG cell wall anchored, n-terminally anchored (no cleavage site),  
n-terminally anchored (with cleavage site), C-terminally anchored  
(with cleavage site), intracellular/TmH start after 60); secreted (secreted 
via minor pathways (bacteriocin) (no cleavage site), secretory (released) 
(with cleavage site)).
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peptides, which represents 52.2% of the entire predicted proteome 
(Table 1; Supplementary Data 1). We were able to assign 552 proteins 
solely found in the cytosolic fraction (Fig. 1), while 344 proteins were 
exclusively found to be associated with or completely inserted into the 
bacterial membrane. Furthermore, 81 proteins were identified only in 
the extracellular space. A substantial number of proteins were found 
in multiple subcellular fractions: 509 proteins were found in two, 389 
in three and 266 proteins in all subproteomes.

Subfractionation of the bacterial cell extract led to an enrichment 
of proteins with varying physical properties and different localiza-
tions. The proteins predicted as intracellular were found mainly in 
the cytosolic fraction (Fig. 1). As expected, most integral membrane 
proteins were detected by using the membrane enrichment and 
the membrane-shaving approach. Membrane-associated proteins 
can be found primarily in the membrane-enrichment fraction and 
in the cytosolic fraction. The predicted secreted proteins could be 
identified to the highest extent in the extracellular fraction.

Based on the identification data, we carried out a relative quanti-
fication with the software Census21. This software compares the 14N 
mass traces of the respective samples with the 15N mass traces of 
pooled labelled protein extracts used as a standard. Altogether, we 
were able to obtain quantitative data for 2,048 proteins. The quan-
titative results for every subfraction are provided in Supplementary 
Data S2–S6.

Correlation of proteome and transcriptome data. According to 
Becher et al.22, three groups of proteins can be distinguished dur-
ing the time course in cells entering the stationary phase: proteins 
no longer synthesized in non-growing cells but still present and 
relatively stable, proteins no longer synthesized and diminishing in 
amount, probably as a result of degradation, and proteins enriched 
in non-growing cells due to increased synthesis. In non-growing 
cells, many proteins are still present and probably (at least partially) 
active but no longer synthesized. The most significant advantage of 
a global proteomic study is that it yields information on the rela-
tive protein abundance, whereas transcriptomic studies monitor 
mRNA abundances as an indicator of changes in transcriptional 
activity and hence are unsuitable for capturing the protein inven-
tory of cells. We combined both approaches and also performed 
an array-based transcriptome analysis under the same cultivation 
conditions to correlate our data on proteomic abundance with the 
corresponding transcriptional gene expression profiles.

Visualization via Voronoi treemaps. To support the analysis of our 
gene expression data from transcriptome and proteome levels, we 
used the functional gene categorization from KEGG orthology23,24 
and a structured representation of gene regulatory information 
derived from SubtiWiki25,26. Both schemes classify genes/proteins 
in an acyclic multihierarchical tree graph according to their func-
tion or regulation, respectively. For a well-arranged visualization, 
we adapted treemaps for an intuitive display of large omics data 
sets with their relative expression data and functional/regulatory 
classification (Figs 2,3).

Table 1 | Proteins identified according to their predicted subcellular location.

Predicted localization Cytosol EMF MSF BEF Extracellular Combined Theoretical proteome Coverage 

Intracellular 1,446 411 52 584 767 1,511 2,797 54.0%
Integral membrane 94 251 287 2 18 361 832 43.4%
membrane associated 122 155 28 47 75 187 343 54.5%
secreted 26 32 3 7 71 83 133 62.4%

All proteins 1,688 849 370 640 931 2142 4,105 52.2%

number of proteins identified for every proteomic subfraction analysed and assigned to their theoretical (predicted) localization. The coverage depicts the percentage of identified proteins in all  
subfractions combined for a specific predicted localization compared with the theoretical proteome.
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Figure 2 | KEGG-orthology treemap of growing B. subtilis. (a) Gene 
expression of growing B. subtilis compared with average expression during 
the time course in cells entering the stationary phase. (b) Relative protein 
amount determined in cytosolic fraction of growing B. subtilis compared 
with the average protein amount during the investigated time course. 
Each cell in the graph displays a single gene locus that belongs to other 
functionally related elements in parent convex-shaped categories. These 
are again summarized in higher-level categories. Functionally related 
elements seem in close neighbourhood to each other. Gene functional data 
are based on KEGG-orthology (for example, main level (metabolism)/first 
sublevel (carbohydrate metabolism)/second sublevel/(glycolysis)).  
To visualize differences in expression level/protein amount compared with 
the average level colour coding was applied as following: blue—decreased 
level (dec.), grey—same level as average (avg.), orange—increased level 
(inc.). These figures are part of the time course analysis (supplementary 
movies s1 and s3), monitoring the changes from exponential growth to  
late stationary phase. 
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The treemap concept was established by Shneiderman27 and 
 originally served for the display of hierarchical structured data from 
software modules or file systems. His visualization is not based on a 
tree graph but on the planar combination of rectangular elements. 
Balzer and Deussen28 improved this concept and developed Voronoi 
 Treemaps, which use irregular, convex elements for treemap con-
struction. This concept is very powerful and allows a visual percep-
tion of hierarchies that may contain several thousand elements. We 
adapted this concept29 to link hierarchically structured regulatory 
(regulon/operon/gene) or gene functional data (for example, main 
level (metabolism)/first sublevel (carbohydrate metabolism/second 

sublevel/(glycolysis)) within Voronoi treemaps with data from gene 
expression measurements. Our treemaps combine areas represent-
ing functionally related elements in parent convex-shaped categories, 
which again become summarized in higher-level categories. After 
treemap construction and optimization, functionally related elements 
seem in close neighbourhood to each other.

Expression data were visualized in the treemaps using a colour 
gradient: For illustration of protein expression level, colours of the 
range blue (lower than average) grey (equal to average) and orange 
(higher than average) were applied to Voronoi cells (Figs 2,3).

Most prominent examples of negative changes in protein amount 
belong to the nucleotide metabolism, the translational machinery 
and the biosynthesis of amino acids, as can be deduced from the 
Supplementary Movie S1 illustrating the proteomic cytosolic frac-
tion. Proteins related to the degradation of amino acids and to the 
metabolism of carbohydrates increase in amount.

The Supplementary Movie S2 displays the alteration of protein 
amounts with a treemap based on the transcriptional regulatory 
units. Regulons with many genes marking the cessation of exponen-
tial growth and the transition towards the stationary phase caused 
by glucose starvation are: the stringent control (consisting mostly of 
ribosomal proteins), PurR, Fur, FadR, SigL and CcpA.

For a comparison and a comprehensive representation of proc-
esses taking place in the starving cell, the same visualization by Voro-
noi treemaps is provided for the transcriptome data in Supplementary 
Movies S3 and S4.

In-depth analysis of changes at proteome/transcriptome level. In 
addition to the general overview on processes in the cell as provided 
by Voronoi treemaps, it is possible to monitor biological processes at 
the proteome level through in-depth analysis of the data. To follow 
the relative change in abundance throughout the complete time 
course for a specific protein, data for each protein were normalized to 
the first time point. The quantitative data were subjected to a signifi-
cance analysis over the time course using analysis of variance. About 
a quarter of all identified proteins could be assigned to be significantly 
(P-value < 0.01) altered in amount (Supplementary Data S2–S6).

As expected7, most obvious changes occurred for proteins of the 
carbohydrate metabolism: the key enzymes for gluconeogenesis, 
GapB and PckA, strongly increase in amount, whereas glycolytic 
enzymes of glycolysis remain relatively unaffected. Enzymes of 
the tricarboxylic acid cycle (TCA) increase more than twofold in  
protein amount (Fig. 4).

The proteomic profiles of several biosynthetic enzymes suggest 
that they undergo targeted degradation: besides the already known 
protease substrates30, the data reveal PyrB, PurF, ArgG, ArgJ, LeuA, 
Sat and DhbC as new substrate candidates, according to the steeper 
slopes of decrease in protein amount compared with other members 
of functionally related biosynthetic pathways (Fig. 5). The decrease 
in protein amount is in agreement with the decrease at the tran-
script level.

The analysis of soluble proteins of the major metabolic pathways 
is well established and a wealth of information is known on B. subtilis 
coping with nutrient stresses. On the contrary, the membrane pro-
teome covering the interface of the cell to the environment has been 
underrepresented in proteomic studies for a long time. For a broad 
understanding of processes in the model organism B. subtilis, this 
subgroup was included in the present study.

Proteins involved in glycerol, ribose, lactate, nucleoside, succinate 
and fumarate uptake and zinc uptake exhibit an increased amount 
in the stationary phase. Conversely, a decrease was found for trans-
porters of malate, Fe3 +  citrate, Fe3 +  hydroxamate, hydroxymethyl-
thiamin (HMP)/thiamine transport and unknown substrates. ABC 
transporter systems found to be increasing in protein amount are 
specific for glutamate (GlnH/GlnQ), arginine (RocC, RocE) and for 
oligopeptides (YhjB, dpp and app operons).

T
ra

ns
cr

ip
to

m
e

Inc.

P
ro

te
om

e

Avg.

Dec.

Figure 3 | Regulon treemap of growing B. subtilis. (a) Gene expression 
of growing B. subtilis compared with average expression during the time 
course in cells entering the stationary phase. (b) Relative protein amount 
determined in cytosolic fraction of growing B. subtilis compared with the 
average protein amount during the investigated time course. Each cell in 
the graph displays a single gene locus that belongs to other hierarchically/
regulatory related elements in parent convex-shaped categories. These 
are again summarized in higher-level regulatory categories. Functionally 
related elements seem in close neighbourhood to each other. Treemap 
design is based on hierarchically structured regulatory data (black 
borders: regulon/thin black borders within the regulons: operon/smallest 
cells: gene).  + / −  depict regulons being induced ( + ) or repressed ( − ) 
depending on the regulator assigned to the area. To visualize differences in 
expression level/protein amount compared with the average level colour 
coding was applied as following: blue—decreased level (dec.), grey—same 
level as average (avg.), orange—increased level (inc.). These figures are 
part of the time course analysis (supplementary movies s2 and s4), 
monitoring the changes from exponential growth to late stationary phase.
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Discussion
The major focus of this work is directed towards a global view on the 
processes on the proteome level in B. subtilis cells faced with glucose 
starvation. The combination of metabolic labelling with the exist-
ing toolbox of methods to access different proteomic subfractions 
opens up the possibility for systems-wide studies, previously only 
possible at the transcriptome level.

Consequently, the analysis of 2,142 proteins regarding their 
dynamic change during a biological important process—the shift 
from growing to non-growing state—in a single study is a great 
step forward compared with previous studies of B. subtilis, such 
as Hahne et al.31, as reviewed by Wolff et al.12 or as comprehensive 
studies most recently published by Soufi et al.32 However, it has to 
be considered that gene products of lowly expressed genes are still 
underrepresented in our study (Fig. 6).

Despite our extensive fractionation scheme before mass spectro-
metric measurement, numerous proteins were additionally identi-
fied in other than the predicted subcellular fraction (Table 1). For 
cytosolic proteins this can be explained by cell lysis after transition 
to the stationary phase and the still existing potential for improve-
ment regarding the fractionation. In addition, overrepresentation of 
anticipated cytosolic proteins throughout the whole analysis may be 
explained by their increased analytical accessibility in our GeLC-
MS (1D SDS Page coupled with LC-MS/MS analysis) approach 
and the high proportion of cytosolic proteins in the most abun-
dantly transcribed groups. Furthermore, after imposition of star-
vation, cytosolic ‘unemployed’ proteins are prone to aggregation 
and degradation30,33. Proteins without substrates can form insoluble 

aggregates in the cell, which are spun down via ultracentrifugation 
after cell disruption in our preparation process, as was also observed 
by Hahne et al.31 (Supplementary Figs. S2–S4).

In general, enrichment of proteins of a specific localization 
worked out well. Proteins belonging to a predicted subcellular loca-
tion were found to the most extent in the corresponding subfraction 
of our workflow (Fig. 1b). A total of 1,511 cytosolic proteins were 
identified resulting in a considerable coverage of the 2,797 cytosolic 
proteins. The large set of quantitative data obtained for the cytosolic 
proteins enables a display with Voronoi treemaps, representing the 
main metabolic functional clusters in a single, intuitionally acces-
sible graph. This avoids inherent shortfalls of shotgun proteomics 
yielding only tables with numerical values or representations; for 
example, by heatmaps lacking functional relatedness in visualiza-
tion. Both orthology-based and regulon-based Voronoi treemaps 
consistently display changes on two complementary and physiologi-
cally meaningful levels of physiological regulation (Figs 2 and 3).

Necessary physiological regulation at the transition from expo-
nential growth to the late stationary phase implies marked changes 
at the transcript and proteome level. Concomitant sampling of large-
scale proteomics and transcriptomics data opens up the possibility 
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(b) members of the pyrimidine biosynthetic pathway (PyrK; Pyre; PyrC*; 
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Log2 ratios are corrected for the first time point. Asterisks indicate proteins 
that are significantly altered as determined by analysis of variance  
(P-value < 0.01). Error bars indicate s.d. of the biological replicates (n = 3). 
Grey shading: area of maximal s.d. orange: centroid of all proteins 
displayed. Blue: possible protease targets. 
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for comparing both on a global scale. As expected, a correlation 
analysis of the two levels of regulation according to Fournier et al.34 
shows faster changes at the transcript level and a delayed cellular 
reaction on the proteome level (Supplementary Fig. S5).

The temporal offset of early mRNA and later protein changes 
could be related to the immediate cellular response on the transcript 
level and the time needed to accumulate the translated proteins. 
Accumulated proteins will then remain longer at their cellular local-
ization contrary to their corresponding short-lived transcripts. The 
same situation holds true for mRNA/protein degradation: immedi-
ate responses towards decreased levels of mRNA are followed by 
slower degradation or even persistence of the protein species.

The data obtained in this study reflect how glucose-starved cells 
modulate the metabolism by synthesis of new metabolic activity, 
degradation of specific components under starvation conditions 
and search for alternative nutrients. As a direct consequence of 
glucose depletion, the cells switch from glycolytic to gluconeogenic 
metabolism. This is based on the existing glycolytic pathway and 
additionally requires new enzymatic activity of glycerine aldehyde-
3-phosphate-dehydrogenase (GapB) and phosphoenolpyruvate car-
boxykinase (PckA)35 (Fig. 4c). Due to the importance of the TCA in 
stationary phase metabolism for energy generation, proteins of the 
TCA are induced significantly7. Regulation of expression of genes 
for the TCA in B. subtilis is complex36,37. Based on the proteomic 
data, regulation of the enzymes is in agreement with the knowledge 
so far7. Altogether, information about changes on proteome and 
transcriptome level for the main carbohydrate metabolism agree 
with already published data, underpinning the reliability of the data 
generated in the present work.

Upon transition to the stationary phase, extensive reprogramming 
of gene expression takes place3, shutting down gene expression needed 
for exponential growth, including amino-acid biosynthesis, purine 
and pyrimidine synthesis and the translational machinery (Supple-
mentary Movie S3). Confirming the findings of Eymann et al.38 and as 
displayed in Supplementary Movie S4, genes of the stringent response 

are immediately downregulated by nutrient starvation. Ribosomal 
proteins as part of the negative stringent response regulon decrease 
markedly in protein amount (Fig. 7), leading to a reduction  < 70% 
of the original amount of the ribosomal machinery inside the cell 2 h 
after nutrient depletion. The ribosomes contain a substantial fraction 
of intracellular protein content39, and consequently the degradation 
and recycling of amino acids represent a source of nutrients in times 
of starvation.

As growth ceases, biosynthesis of amino acids is no longer 
needed. Besides the downregulation of biosynthetic genes, the 
protein amount of a large fraction of enzymes decreases. In con-
cordance with transcriptomic data, enhanced degradation is seen 
for key enzymes of biosynthetic pathways. Noticeably, degradation 
rates for enzymes catalysing the first committed steps of biosyn-
thetic pathways were higher than those of other constituents of 
the respective pathways (Fig. 5). While such elevated protease-
dependent degradation has been reported previously for PurF and 
PyrB30, our large-scale study adds new potential substrates for spe-
cific degradation (ArgG, ArgJ, LeuA, Sat and DhbC) that remain 
to be further investigated in future studies.

The general stress response mediated by the alternative RNA 
polymerase sigma factor SigB provides the B. subtilis cell with mul-
tiple stress resistance strategies in anticipation of future stresses. 
The entire SigB regulon is induced directly after the transition to the 
starvation phase (Supplementary Movie S4). Changes on transcript 
level for the sigB regulon are only reflected by six SigB-dependent 
general stress proteins on protein level. Besides the general stress 
marker proteins YvyD and GsiB, the proteases ClpC and ClpP 
increase in protein amount at the later time points 60 and 120 min 
after the transition. This is in good correlation with the increased 
protein aggregation and retrieval of aggregated cytosolic proteins in 
the EMF (Supplementary Figs. S2–S4).

Previous work revealed that a substantial number of membrane 
proteins is affected by amino-acid depletion or glucose downshift 
in the membrane of B. subtilis40. Indeed, we could detect major 
changes in the membrane proteome, so far only described in tran-
scriptomic studies.

Among the transporters that were diminished in protein amount, 
the major iron uptake systems revealed highly congruent changes 
(see Supplementary Fig. S6). The marked decrease imposed on the 
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Fur36 regulon suggests non-iron-limiting conditions. It remains to 
be elucidated if this is caused by the decreased biosynthetic activ-
ity of the cell compared with exponential growth. Remarkably, this 
notion is in accordance with data obtained for the closely related 
Staphylococcus aureus22.

The largest group of induced transporter systems belongs to the 
CcpA regulon that is derepressed on cessation of growth due to the 
glucose downshift. The Supplementary Movies S2 and S4 of the regu-
lon-based Voronoi treemap gives an impression of the complexity of 
derepression and/or substrate induction of CcpA-controlled operons 
and exemplifies changes of transporter proteins. Operons within the 
CcpA regulon are turned on in a sequential manner, resulting in a time-
dependent insertion of new transporter proteins into the membrane 
(for details see Supplementary Figs S7–S14). Accordingly, most operons  
for catabolism of alternative carbon sources are under the transcrip-
tional control of multiple layers of a regulating network that allows for 
fine-tuning by temporal dependence and strict order of preference.

The high slopes of increase in protein amount result from the 
absence of most of the transporter proteins in the exponential 
growth phase. Taking the normalized spectral abundance factors 
(NSAFs) for these proteins into account, the final concentration of 
the respective proteins seems to be low in comparison with other 
transporters identified in the MSF (illustrated in Supplementary 
Fig. S15). It becomes clear that B. subtilis deploys new transport 
capacities for alternative carbon and energy sources at the onset of 
stationary phase, following glucose depletion to allow sensing and 
utilization of new nutrients.

Interestingly, determination of extracellular metabolites reveals 
that most of the substrates of the newly installed transporter sys-
tems are absent or at least not detectable in our study (Supple-
mentary Fig. S1). A particular example is the induction of the  
citrate transporter CitM41. In contrast to the two other homologous 
uptake systems for different C4 TCA cycle intermediates, DctP42 
and MaeA43, no substrate is present in the medium during the 
entire cultivation and therefore substrate induction of CitM is not 
likely to take place. On the contrary, the malate transporter MaeA 
decreases in protein amount as a consequence of malate exhaus-
tion in the growth medium. Furthermore, DctP increases markedly 
in amount in the stationary phase as its substrates, succinate and 
fumarate, accumulate in the medium during cultivation and are 
used as nutrients and building blocks in the starved cell. It remains 
to be elucidated if the substrates found in the growth medium cause 
antitermination/induction (degradation products of lysed bacteria 
or exported metabolites) or if an increase in protein amount is a 
consequence solely of derepression of the CcpA-mediated carbon 
catabolite repression.

Similar to the temporal derepression of CcpA-dependent oper-
ons, parts of the Spo0A regulon were induced for a short time at 
the beginning of the stationary phase (Supplementary Movie S3). 
Low-threshold induction of Spo0A genes leads to expression of the 
cannibalism operons skf and sdp (Supplementary Fig. S16)44,45. The 
transient expression of genes and accumulation of these two sys-
tems—encoding among others, proteins being located at the cell 
membrane—to either protect the cell and to enhance/generate nutri-
ent availability adds another important aspect of glucose starvation.

Taken together, this work is the first global study that monitors 
time-dependent changes of integral membrane proteins of B. subtilis. 
Changes in the transport systems of the bacterial cell encountering 
limited nutrient availability are crucial switches for the adaptation 
of metabolic pathways and consequently for survival. Despite the 
short time of derepression/induction of the CcpA-regulated genes, 
it could be shown that new sets of nutrient uptake systems are 
inserted into the membrane. Preventive or substrate-induced provi-
sion of additional transporter specificity seems to be a major event 
after the onset of stationary phase following nutrient depletion in 
B. subtilis.

To summarize, this work represents the first comprehensive study 
on concomitant transcriptome and large-scale proteome dynamics 
to be followed over five time points for B. subtilis coping with physi-
ological perturbations. We monitored temporal and spatial changes 
at the proteome level covering all subcellular localizations in our 
global approach on glucose-starved B. subtilis to an unparalleled 
extent. So far, the analysis of soluble proteins of the major metabolic 
pathways has been well established and a wealth of information is 
known on B. subtilis coping with nutrient stresses.

We were able to add qualitative and quantitative information 
gathered on the proteome level for the membrane proteome cover-
ing the interface of the cell to the environment that was underrep-
resented in proteomic studies for a long time. In this regard, time 
dependent insertion of additional substrate transporters into the 
membrane after glucose starvation could be shown.

The combination of subfractionation techniques with state-of-
the-art metabolic labelling and highly accurate mass spectrometry 
allows a more comprehensive overview of highly dynamic temporal 
and spatial processes in the model organism B. subtilis than was pos-
sible before. Most importantly, by concurrent sampling of large-scale 
proteomic and transcriptomic data, it was possible to reveal rapid 
alterations at the transcript level reflected at a slower rate of the pro-
teome level, introducing new functionalities needed in stationary 
phase and degrading specific enzymes in biosynthetic pathways.

Classification of proteins according to changes or stability was 
carried out and the implications for different physiological situations 
were shown. Elucidation of protein stability of specific pathways and 
the underlying mechanism seem to be one of the most promising 
topics to follow-up. It could be shown that degradative processes 
involve different subcellular locations that should be involved in 
future studies on targeted degradation in B. subtilis and its relatives.

Systems-wide quantitative proteomic studies are valuable tools 
to display the actual situation of the “players of life”, the proteins, in 
a biological sample. We assume that due to the experimental setup 
and the strain used, that is widely spread among the Bacillus com-
munity, this work with its spectral and raw data available in open 
repositories will be the base for future targeted approaches in the 
Bacillus community and beyond.

Methods
Bacterial growth and metabolic labelling. B. subtilis wild-type strain 168 (trpC2)46 
was grown aerobically at 37 °C in a synthetic minimal medium47 supplemented with 
either 15N-ammonium sulphate/15N-l-tryptophan (0.078 mM, 98 atom % excess, 
Cambridge Isotope Laboratories) or 14N-ammonium sulphate and 14N-l-tryp-
tophan. Glucose and l-malate were added to a final concentration of 0.05% each to 
induce glucose starvation after growth to an OD500 of 1.0. Cells were collected by 
centrifugation at different time points along the growth curve (exponential growth, 
transition phase, transition phase  + 30,  + 60 and  + 120 min). Relative quantification 
based on metabolic labelling of cell extracts was carried out as published by MacCoss  
et al.20 14N-labelled cells were prepared in triplicate to obtain three biological 
replicates (n = 3).

Preparation of mixed metabolically labelled cell extracts. The washed cells were 
disrupted mechanically in a French press (Simaminco SLM) and the cell debris was 
removed via centrifugation (14 000 g at 4 °C for 20 min).

Subsequently, the protein concentration of the unlabelled 14N-samples and the 
pooled 15N-samples was determined. The same protein amount of the 14N-unlabelled 
and labelled 15N-pooled protein extracts were mixed to obtain a metabolically labelled 
cell extract for further fractionation procedures.

Fractionation of metabolically labelled cell extracts. Membrane proteins were 
enriched according to the protocol published in Eymann et al.5, leaving out the 
extraction of proteins by n-dodecyl-β-d-maltoside treatment. In brief, sedimented 
cell membranes are subjected to subsequent ultracentrifugation/washing steps, 
including washing of the pellets with high-salt and carbonate buffer resulting in 
the EMF that is depleted of cytosolic proteins. The cytosolic fraction represents the 
supernatant after the first ultracentrifugation step in the membrane-enrichment 
protocol.

The preparation of the integral membrane peptides is described by Wolff et al.19 
Briefly, the bacterial membrane is spun down via ultracentrifugation, subjected to  
a carbonate washing step and digested with Proteinase K in urea to deplete all 
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soluble loops from the membrane. Transmembrane domains resting in the cell 
membrane are subsequently digested with Chymotrypsin in a buffer containing 
a detergent (RapiGest, Waters Corporation) suitable in mass spectrometry-based 
workflows, resulting in the MSF.

Preparation of extracellular proteins. To analyse the extracellular proteome, 
proteins in the cell medium were acid precipitated according to Antelmann et al.48 
In brief, proteins in the supernatant were precipitated on ice over night by adding 
10% TCA to the supernatant that resulted from cell gathering. The precipitate was 
washed thoroughly with ethanol and the resulting protein pellet was dissolved 
in urea/thiurea. After determination of protein concentration and pooling of the 
15N-labelled extracellular proteins, equal protein amounts of the 14N-samples and 
15N-pooled samples were mixed to obtain the metabolically labelled extracellular 
fractions.

Preparation of biotinylation-enriched proteins samples. The biotinylation  
approach and enrichment of surface proteins were performed following the  
protocol published by Hempel et al.49 In brief, labelled (15N) and unlabelled (14N) 
cells were collected by centrifugation and subsequently biotinylated by Sulpho-NHS-
SS-Biotin on ice. After quenching of the reaction and washing, cells were mixed 
before cell lysis to obtain the metabolically labelled extract after the following cell 
disruption. Biotinylated proteins were affinity purified with NeutrAvidin agarose. 
Elution of the purified and washed biotinlyated proteins was carried out by adding 
reductive SDS sample buffer.

Sample preparation and proteomics measurement. Preparation of protein 
fractions and explanation of the workflow leading to mass spectrometric results 
is described in more detail in the Supplementary Methods. In brief, samples that 
were analysed by the GeLC-MS workflow (EMF, cytosolic fraction, extracellular 
fraction, BEF) were fractionated by 1D SDS Gel electrophoresis followed by tryptic 
digestion, as described in Dreisbach et al.40 The membrane-shaving (MSF) samples 
were prepared according to Wolff et al.19 The tryptic-digested proteins were sub-
jected to a reversed phase C18 column chromatography operated on a nanoAC-
QUITY-UPLC (Waters Corporation). Peptides were first concentrated and desalted 
on a trapping column. Mass spectrometry (MS) and MS/MS data were acquired 
with an online coupled LTQ-Orbitrap mass spectrometer (Thermo Fisher). The 
digests resulting from the membrane-shaving fraction were subjected to reversed 
phase C18 column chromatography operated on a nanoACQUITY-UPLC (Waters 
Corporation) with a one column setup online coupled with an LTQ-Orbitrap mass 
spectrometer (Thermo Fisher).

Subsequent to sample preparation, samples were subjected to LC-MS/MS 
analysis as described in Supplementary Methods.

All mass spectrometry raw data are deposited into the PRIDE database with 
accession numbers of 11382–11458 (http://www.ebi.ac.uk/pride/).

Data analysis. The *.dta files extracted from *.raw files using BioworksBrowser 
3.3.1 SP1 (Thermo Fisher Scientific) with no charge state deconvolution and deiso-
toping performed on the data were searched with SEQUEST version v28 (rev.12) 
(Thermo Fisher Scientific) against a B. subtilis target-decoy protein sequence 
database (complete proteome set of B. subtilis extracted from UniprotKB release 
12.7 (UniProt Consortium, Nucleic acids research 2007, 35, D193-197) with a set of 
common laboratory contaminants) compiled with BioworksBrowser. The searches 
were performed in two iterations: First, for the GeLC-MS analyses the following 
search parameters were used: enzyme type, trypsin (KR); peptide tolerance, 10  
p.p.m.; tolerance for fragment ions, 1 a.m.u.; b- and y-ion series; variable modifica-
tion, methionine (15.99 Da); a maximum of three modifications per peptide was 
allowed. For the membrane shaving approach, the following search parameters 
were applied: enzyme type, none; peptide tolerance, 10 p.p.m.; tolerance for frag-
ment ions, 1 a.m.u.; b- and y-ion series; an oxidation of methionine (15.99 Da) and 
a carboxyamidomethylation (57.02 Da) of cysteine were considered as variable 
modifications with a maximum of three modifications per peptide. In the second 
iteration, the mass shift of all amino acids completely labelled with 15N-nitrogen 
was taken into account in the search parameters.

Resulting *.dta and *.out files were assembled and filtered using DTASelect 
(version 2.0.25) (parameters GeLC-MS: -y 2 -c 2 -C 4 --here --decoy Reverse_ -p 2 
-t 2 -u --MC 2 -i 0.3 --fp 0.005; parameters membrane shaving: --nostats -1 1.9 -2 
2.2 -3 3.3 -4 3.75 -i 0.299 -a false -p 1 -y 0 -d 0.1 -t 2 -u –here). The protein false-
positive rate was calculated for each analysis according to Peng et al.50

Data analysis relative quantification. The workflow for relative quantification 
was carried out according to MacCoss et al.20 The cured search results served as the 
base for the further analysis using the software Census21 to obtain quantitative data 
of 14N-peaks (sample) and 15N-peaks (pooled reference20). The software extracts the 
respective mass traces of the two isotopologues within a defined scan range centred 
around the fragment scan, leading to successful identification of the respective 
peptide. The ratio of the peak intensities is subsequently calculated for all overview 
scans contained in the chosen peak boundaries. Peptide ratios and combined 
protein ratios are finally exported (R2-values  > 0.7 and only unique peptides; 
proteins failing to be relatively quantified were checked manually in the graphical 

user interface for on/off proteins). Proteins relatively quantified with at least two 
peptides were taken into account for the subsequent analysis.

All quantification results of a complete GeLC-MS run were median centred 
and ratios were log2-transformed and averaged over the biological replicates. Time 
course data for each protein were adjusted to the first time point as reference point; 
proteins without quantitative information for the first time point were not taken 
into account for a detailed discussion.

For a more detailed description on data analysis, including combination of 
quantification results, normalization and analysis of variance, see Supplementary 
Methods.

Normalized spectral abundance factors. To estimate the relative proportion of 
transporter proteins within the MSF, the NSAFs were calculated for these proteins 
according to Zybailov et al.51 In Brief, the NSAF for a protein is the number of 
spectral counts (SpC; the total number of MS/MS spectra accounting for this 
specific protein) divided by the length L of the protein and divided by the sum of 
SpC/L for all proteins in the proteomic experiment. The NSAF is a measure for the 
relative portion of a protein in a proteomic analysis and proportional to the protein 
amount in the sample.

Prediction of protein localization. Predictions of protein localization in the cell 
were assigned according to the LocateP algorithm52.

Voronoi treemaps. Algorithms for treemap calculations have been established in 
JAVA1.6 by using the corresponding Java Development Kit and have been formerly 
described in detail29.

Extracellular metabolite sampling and measurement by 1H-NMR. Detection 
and determination of concentrations for extracellular metabolites is described in 
detail in Supplementary Methods.

Transcriptome analysis. Generation of transcriptome data is described in detail 
in Supplementary methods. The complete data set is accessible through GEO Series 
accession no. GSE24058. 
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