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ABSTRACT

The dynamics of histone methylation have emerged
as an important issue since the identification of
histone demethylases. We studied the regulatory
function of Rph1/KDM4 (lysine demethylase), a
histone H3K36 demethylase, on transcription in
Saccharomyces cerevisiae. Overexpression of
Rph1 reduced the expression of PHR1 and
increased UV sensitivity. The catalytically deficient
mutant (H235A) of Rph1 diminished the repressive
transcriptional effect on PHR1 expression, which in-
dicates that histone demethylase activity contrib-
utes to transcriptional repression. Chromatin
immunoprecipitation analysis demonstrated that
Rph1 was associated at the upstream repression
sequence of PHR1 through zinc-finger domains
and was dissociated after UV irradiation. Notably,
overexpression of Rph1 and H3K36A mutant
reduced histone acetylation at the URS, which
implies a crosstalk between histone demethylation
and acetylation at the PHR1 promoter. In addition,
the crucial checkpoint protein Rad53 acted as an
upstream regulator of Rph1 and dominated the
phosphorylation of Rph1 that was required for effi-
cient PHR1 expression and the dissociation of Rph1.
The release of Rph1 from chromatin also required
the phosphorylation at S652. Our study demon-
strates that the histone demethylase Rph1 is
associated with a specific chromatin locus and
modulates histone modifications to repress a DNA
damage responsive gene under control of damage
checkpoint signaling.

INTRODUCTION

The eukaryotic genome is assembled with histones into
a highly ordered chromatin structure. The basic unit
of chromatin is the nucleosome, which consists of 146 bp
of DNA wrapped around the histone octamer (1).
Histones are subjected to various post-translational modi-
fications (PTM), including phosphorylation, acetylation,
ubiquitination and methylation (2,3). These covalent
modifications alter chromatin dynamics to regulate
DNA processes (4,5).
For a long time, histone lysine methylation was con-

sidered to be irreversible until the identification of the
first histone demethylase, lysine-specific demethylase 1
(LSD1) (6). However, the LSD1/KDM1 (lysine
demethylase) type of histone demethylase can only
demethylate mono- and di-methylated lysine because of
its catalytic characteristics. A distinct family of histone
demethylases containing Jumonji C (JmjC) domains
(JHDMs) is highly conserved from budding yeast to
humans. The catalytic JmjC domain is required for oxida-
tive demethylation; it requires Fe (II) and a-ketoglutarate
as cofactors and can demethylate mono-, di- and
tri-methylated substrates (7,8).
Dozens of JHDMs have been discovered to have

various functions in regulation of gene expression, cell
growth and development (9,10). The role of JHDMs in
transcriptional regulation has been reported in
mammals. Mammalian JHDM1 and JHDM2 subfamilies
reverse mono- and di-methylated H3K36 and H3K9, re-
spectively, and the JHDM3 subfamily preferentially an-
tagonizes di- and tri-methylation of H3K36 and H3K9
(8,11,12). JHDM2A acts on mono-/di-methyl H3K9 and
plays important roles in nuclear hormone receptor-
mediated gene activation, male germ-cell development,
obesity control and metabolic gene expression (12–14).
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JHDM3A, the tri-methyl-specific demethylase for H3K36
and H3K9, negatively regulates ASCL2 transcription (11).
Previously, we characterized four JmjC-containing

proteins (Rph1, Jhd1, Gis1 and Jhd2) in the budding
yeast Saccharomyces cerevisiae and demonstrated that
Rph1, Jhd1 and Gis1 are specific to H3K36, whereas
Jhd2 is H3K4 specific (15). Notably, Rph1 is the only
demethylase targeting H3K36 tri-methylation; Jhd1 and
Gis1 specifically demethylate mono-/di-methylated
H3K36. In general, histone methylation on H3K36 is
thought to be involved in transcriptional elongation (16).
In S. cerevisiae, H3K36 is methylated by the histone
methyltransferase Set2 (17). Set2 interacts with the
phosphorylated C-terminal domain of RNA polymerase
II to methylate H3K36 during transcriptional elongation
within the body of actively transcribed genes (18). This
methylation is recognized by Eaf3, a subunit of the
small Rpd3 (Rpd3S) histone deacetylase complex
(HDAC). The recruitment of HDAC further removes
the acetyl group from hyper-acetylated histones of
transcribed genes to re-build a compact chromatin struc-
ture. During transcriptional elongation, H3K36 methyla-
tion prevents aberrant intragenic transcription (19).
Recently, two JmjC-domain-containing proteins, Rph1
and Jhd1, were shown to bypass the lethality of deletion
of BUR1, a cyclin-dependent kinase of RNA polymerase
II. Therefore, the demethylase activity toward H3K36
methylation could be related to transcriptional elongation
(20). In addition, H3K36 methylation was reported to be
involved in regulating the transcriptional initiation at the
MET16 promoter region (21). Even though H3K36
methylation is known to be involved in the regulation of
transcription, the detailed functions of reversible H3K36
demethylation remain unclear.
The H3K36 demethylase Rph1, also known as KDM4

(22), was originally defined as a repressor of the PHR1
gene (23). PHR1 encodes the apoenzyme for the DNA
repair enzyme photolyase, which catalyzes the repair of
pyrimidine dimers in the presence of visible light
(24–27). Previous in vitro footprinting studies showed
that Rph1 represses the expression of PHR1 by
associating with the upstream repression sequence
(URS) of the PHR1 promoter (23). Although Rph1 is
now known to be a histone demethylase, whether its
H3K36 demethylase activity plays a role in the transcrip-
tional regulation of PHR1 remains to be elucidated.
Here, we investigated the role of Rph1 in repressing the

transcription of PHR1 in a histone demethylase-
dependent manner. We revealed Rph1 associated with
the URS region of the PHR1 promoter via its zinc-finger
(ZF) domains and was dissociated after UV irradiation.
Rph1-mediated histone demethylation influenced the
dynamic crosstalk between histone methylation and
acetylation with Rpd3 at the URS region of PHR1
promoter. Furthermore, we revealed that Rad53 functions
as an upstream activator of PHR1 by phosphorylation
of Rph1 in a Rad53 kinase-dependent manner.
Phosphorylation at S652 of Rph1 potentially contributes
to its dissociation from chromatin and modulates the tran-
scriptional de-repression of PHR1 in response to DNA
damage. Our study demonstrates that the H3K36

demethylase Rph1 regulates PHR1 expression by associ-
ation with the promoter and by altering chromatin modi-
fications under the control of DNA damage checkpoint
signaling.

MATERIALS AND METHODS

Plasmids and yeast strains

All recombinant plasmids were constructed by use of the
Gateway system [(28), Invitrogen]. The coding region of
RPH1 was synthesized by PCR and recombined to the
pDONR2.1 to generate BP-RPH1. The mutants of
Rph1, including the catalytic-deficient mutant H235A
(15), phosphorylation sites and ZF deletion mutants
were generated by site-directed mutagenesis and verified
by DNA sequencing. For inducible expression of Rph1,
BP-RPH1 was cloned into the BG1805 vector (Open
Biosystems) by the Gateway system (29). For constitutive
expression of Rph1 in yeast, we first generated a set of
yeast destination vectors by modification of pRS vectors
(pRS415 and pRS425) with a GPD1 promoter or a RPH1
promoter (800 bp upstream of ATG), a CYC1 termin-
ator and the chloramphenicol/ccdB cassette for
recombinational cloning. The pET21 vector (Merck) was
used for expression of recombinant proteins in the bacter-
ial system. All recombinant plasmids identified from
individual Escherichia coli colonies were verified by
sequencing. The yeast strains used in this study are
described in Supplementary Table S1. Saccharomyces
cerevisiae BY4742 and BY4743 were used as the
wild-type (WT) yeast strain. Homozygous knockout
strains of RPH1 in the BY4742 or BY4743 background
were obtained from the Saccharomyces Genome Deletion
Project (30).

UV irradiation treatment

Yeast cultures were grown in synthetic-complete selection
medium until the A600 reached 0.6–0.8, then transferred to
YP medium containing 2% galactose at 30�C to induce
gene expression. After 4 h induction, cell pellets were col-
lected and spread on YP galactose (YPGal) plates. The
plates were UV irradiated (Stratalinker, Stratagene) with
the indicated doses (0–30 mJ/cm2). After 30min of
recovery, the cells were harvested for further analysis.
The procedure for UV-sensitivity testing was as described
(15). The induced cells were spotted on the indicated plates
by serial dilutions. After UV irradiation, plates were
grown for 2–3 days at 30�C before data collection.

Reverse transcription

Total RNA was extracted from yeast cells by use of a total
RNA mini kit (Geneaid). RNA (1 mg) was treated with
DNAse I (Promega) followed by reverse transcription
with use of Moloney Murine Leukemia Virus High
Performance Reverse Transcriptase (MMLV HP RT)
(Epicentre) and oligo-dT primer (Protech) according to
the manufacturer’s instructions. Reverse transcription of
RNA samples from each biological experiment was
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performed and the resulting cDNA was used for PCR
analysis.

Real-time quantitative PCR

Real-time quantitative PCR (qPCR) with SYBR green de-
tection was performed as described (31) by use of an ABI
Prism 7000 thermocycler with fluorescence detection
(Applied Biosystems). All primers used are indicated in
Supplementary Table S2. Appropriate non-template
controls were included in each PCR reaction, and dissoci-
ation analysis was performed at the end of each run to
confirm the specificity of the reaction.

Chromatin immunoprecipitation assay

Chromatin immunoprecipitation (ChIP) was performed as
described (32,33). To maintain proper size of fragmented
chromatin, we optimized the sonication and sheared DNA
with an average size of 100–200 bp (Supplementary
Figure S1) corresponding to 1 or 2 nucleosomes. For
Rpd3 ChIP, samples were fixed with dimethyl adipimidate
(Sigma) and formaldehyde (34). of chromatin solution
(0.75–1mg) was immunoprecipitated (IP) with indicated
antibodies [HA-tag/Myc-tag (Roche), H3K36me3
(Abcam), acetylated histone H3(K9/14)/H4(K5/8/12/16)
(Upstate) and Rpb3 (Neoclone)] and purified with
protein A or G sepharose (Upstate). The precipitated
DNA was analyzed by semi-quantitative PCR or
real-time qPCR. For semi-quantification, PCR products
were separated by electrophoresis and followed by quan-
tification (Image Quant software, GE). Real-time qPCR
analysis was performed as described above. For each
ChIP, the signal for each gene primer pair in the
immunoprecipitation was normalized to that of the
input and then divided by the control vector to deter-
mine the fold change. Quantification of data was
based on the number of independent biological and
experimental replicates indicated in each figure.

In vitro kinase assay

Rad53 kinase assay was performed as described (35,36).
Briefly, yeast carrying WT or kinase-dead Rad53 fused
with V5 and 6 copies of His tags was treated with
0.05% MMS for 1 h, and total proteins were extracted
for immunoprecipitation with anti-V5 antibody. Protein
G-bound Rad53 was incubated with 1 mg recombinant
Rph1 or BSA (New England Biolabs) and 5 mCi of
g32P-ATP (3000Ci/mmol, PerkinElmer) in 20 ml kinase
buffer (40mM Hepes-NaOH pH 8.0, 1mM DTT,
20mM MgCl2, 20mM MnCl2, 100mM sodium
orthovanadate and 0.02mM ATP) at 30�C for 30min.
The reaction was stopped by addition of SDS-loading
buffer and followed by SDS–PAGE electrophoresis. The
autoradiography signal was captured and quantitated by
phospho-imager (Typhoon 9200 Scanner, GE
Healthcare).

Statistical analysis

Comparison of 2 groups involved Student’s t-test. A
P< 0.05 was considered statistically significant. A

regression procedure was used to explore the correlation
between the experimental condition and PHR1 expression
and to identify potentially important predictors. Statistical
analyses involved use of Microsoft Excel and SPSS (SPSS
Inc., Chicago, IL, USA) (37).

RESULTS

The H3K36 demethylase Rph1 regulates PHR1
transcription

To characterize the biological function of histone
demethylases, including Rph1, Jhd1 and Jhd2, we first
performed phenotypic analyses and observed that
deletion of any histone demethylase caused no overt
growth phenotype (15), which may be due to overlapping
activities of the multiple histone lysine demethylases
in yeast. In an independent approach, we used
overexpression to probe the function of individual
histone demethylases. Of these, only Rph1 overexpression
showed elevated sensitivity to UV-induced damage (15).
However, the constitutive overexpression of Rph1 with its
own promoter in a multi-copy (2m) plasmid caused a
severe defect in cell growth (Figure 1A, left panel and
2 lower rows in right panel). Thus, we used an inducible
expression strategy to study the biological phenotype re-
sulting from temporally increased Rph1 levels. Cells with
galactose-inducible overexpression of RPH1 grew well
without UV treatment yet displayed hypersensitivity to
UV irradiation at 25 mj/cm2 (Figure 1A, 2 upper rows
in right panel). Because previous experiments suggested
that Rph1 is a histone demethylase specific to
tri-methylated-H3K36 (15,38), we surmised that the
demethylation at H3K36 may be linked to UV sensitivity.
To test the possibility, we used alanine-substituted
mutants blocking methylation at histone H3 K4, K36
and K79 in UV-sensitivity assays. Interestingly, only
histone H3K36A and H3K79A mutants showed increased
UV sensitivity (Figure 1B, upper panel). Dot1-mediated
H3K79 methylation is linked with H2B ubiquitination and
is involved in the DNA damage response (39). However,
H3K36 methylation in the UV damage response has not
been well-established. Furthermore, we found that the
deletion of the H3K36 methyl-transferase Set2 (set2D)
also enhanced the UV sensitivity (Figure 1B, middle
panel). Moreover, overexpression of Rph1 in the WT
conferred high sensitivity to UV irradiation, whereas
overexpression of Rph1 combined with set2D caused an
additive effect (Figure 1B, lower panel), which was more
significant at a higher dosage. These observations suggest
that Set2 and Rph1 likely work in parallel pathways to
control UV sensitivity.
Because Rph1 was originally identified as a repressor of

the DNA repair gene PHR1, we sought to elucidate
whether the demethylase activity is linked to the transcrip-
tional regulation of PHR1. RT-qPCR was used to
measure the levels of PHR1 expression in the WT and
rph1-deletion (rph1D) and set2-deletion (set2D) strains
treated with UV irradiation. Deletion of rph1 led to ap-
proximately 2-fold enhancement of PHR1 (Figure 1C)
under normal conditions (�UV). These results agree
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with a previous report that Rph1 is a repressor of PHR1
expression (23). Surprisingly, lack of Set2 did not interfere
with the expression of PHR1 (Figure 1C), which suggests
that Set2 methyl-transferase plays a minor role in PHR1
expression. Although set2D increased the UV sensitivity
(Figure 1B, middle panel), our results suggest that Set2
may regulate factors other than PHR1 that are involved
in UV response such as the DNA repair gene RNR3
(40,41).
To investigate the role of Rph1 in PHR1 expression, we

used three different promoters, representing an inducible
(GAL1), a constitutive (CEN-GPD1), or a native promoter
(CEN-RPH1), to express RPH1 in the rph1D background.
In addition to WT RPH1, a catalytic-deficient rph1
(rph1-H235A) was expressed by the aforementioned

promoters to determine the involvement of demethylase
activity (Figure 1D). In the absence of UV treatment
(�UV), the expression of RPH1 by any of the three pro-
moters was sufficient to suppress PHR1 expression, which
is higher in rph1D (vector) than in the WT (Figure 1D).
In contrast, PHR1 expression in the rph1-H235A mutant
did not significantly differ from that in rph1D (Figure 1D),
which indicates that the histone H3K36 demethylase
activity of Rph1 is required to suppress PHR1 expression.

In response to UV irradiation, PHR1 expression was
induced ranging from 2.5- to 3.4-fold in rph1D
(Figure 1D, ‘Vector+UV’) as compared to that in WT
(Figure 1D, ‘WT�UV’, defined as 1), which indicates
that Rph1 represses PHR1 expression in the absence of
DNA damage. However, the levels of PHR1 expression

A

CB

D

Figure 1. Histone H3K36 demethylase Rph1 regulates the transcription of PHR1. (A) Left: The rph1D strains carrying constitutively overexpressed
RPH1 or control 2-m vector were streaked on selective plate. Right: The UV-sensitivity test was performed with indicated strains. Cells were spotted
on plates containing galactose or glucose with 5-fold serial dilution and subjected to UV irradiation. Asterisks denotes the constitutive expression of
RPH1 with its own promoter in 2-m vector. (B) UV sensitivity was tested with indicated strains. Yeast strains (WT, histone mutants, rph1D and
set2D) grown in glucose in log-phase or induced with galactose for 4 h were spotted on selective plates. (C) PHR1 expression in WT, rph1D and set2D
strains. The cells were cultured to early log phase and subjected to 20 mj/cm2 UV irradiation. RT–qPCR was performed and transcription of PHR1
of each strain was normalized to ACT1. Error bars indicate the SD from three biological repeats. (D) PHR1 level in WT or rph1D yeast containing
control vector (Vector), WT RPH1 or H235A-mutated RPH1 under different promoters before or after 20 mJ/cm2 UV irradiation (right). Error bars
are the SD of five biological replicates. *P< 0.05.
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with UV irradiation were induced in both RPH1 and
rph1-H235A under control of the three promoters
(Figure 1D), which suggests that histone H3K36
demethylation-independent pathways are involved in the
transcriptional activation of PHR1 responding to UV
damage signal. Taken together, these data suggest that
the demethylase activity of Rph1 plays an important
role in the repression of PHR1 expression, rather than
the UV-inducible transcriptional activation.

Rph1 binds to the URS of PHR1 through ZF domains
and modulates chromatin modifications in specific
regions of the PHR1 promoter

We have previously demonstrated that Rph1 plays a
major role in transcriptional repression of PHR1
(Figure 1). We next used ChIP assays to evaluate
whether the Rph1-mediated repression of PHR1 affects
the chromatin structure. The primary protein-coding
gene structure of PHR1 is illustrated in Figure 2A
(upper panel). We first determined whether deletion of
RPH1 changed the H3K36 tri-methylation at the PHR1
gene region (Figure 2A, lower panel). To confirm the spe-
cificity of the H3K36me3 signal, we used set2D and
H3K36A mutants for H3K36me3-ChIP and found ex-
tremely low levels of H3K36me3 in set2D and H3K36A
mutants as compared with that in WT and rph1D.
Interestingly, rph1D showed an increased level at the
promoter of PHR1 but not the 30 coding region of
PHR1, suggesting that Rph1-mediated demethylation par-
ticipates in the regulation of PHR1 promoter activity. We
next investigated whether Rph1 is physically associated
with chromatin in vivo. To determine the temporal regu-
lation of PHR1 expression by Rph1, we used the inducible
GAL1 promoter to analyze the immediate effect of
overexpressed Rph1 on the transcriptional regulation of
PHR1. ChIP assays were performed to detect the relative
abundance of HA-tagged Rph1 and H3K36me3 at the
PHR1 promoter region containing a 300 bp 50-upstream
sequence (Figure 2B). In agreement with in vitro electro-
phoretic mobility shift assay (EMSA) and footprinting
analyses, which demonstrated that Rph1 binds to a
specific PHR1 promoter sequence (23), our ChIP
analysis also revealed that Rph1 binding was enriched at
the PHR1 promoter by at least 4-folds in both the WT
(RPH1) and mutant rph1-H235A as when compared with
that ine rph1D mutant (vector alone) (Figure 2B, HA-IP).
However, only the WT Rph1 but not the rph1-H235A
reduced H3K36 tri-methylation (Figure 2B,
H3K36me3-IP), which indicates that the enzymatic
activity of Rph1 is required for H3K36 demethylation at
the promoter of PHR1. This result was not merely due to
the induced overexpression of Rph1 by the GAL1
promoter because we also found similar results by using
the GPD1 promoter to drive a constitute expression of
Rph1 in a low-copy (CEN) plasmid (Supplementary
Figure S2). Therefore, Rph1 is associated with the
promoter of PHR1 resulting in a decreased H3K36 methy-
lation to influence transcriptional repression.

Because histone H3K36 demethylation is involved in
transcriptional repression at the PHR1 promoter, we

next identified the specific region of the PHR1 promoter
associated with Rph1 and the specific domain of Rph1
required for chromatin association. Three putative cis-
elements of PHR1 promoter were characterized previously
by b-galactosidase assays: an upstream activation
sequence (UASPHR1), a novel essential sequence
(UESPHR1) and an upstream repression sequence
(URSPHR1) (25). To define the Rph1-controlled transcrip-
tional events, we used a series of ChIP experiments with
primers to amplify specific regions of the PHR1 promoter
(URSPHR1, 78��40; and UAS+UESPHR1, 152��96).
Results from ChIP assays with anti-HA (Rph1) uncovered
that Rph1 was specifically associated with the URS
(URSPHR1) but not the UAS (UES+UASPHR1) region
(Figure 2C).
A C-terminal domain of Rph1 is required for DNA

binding in vitro (23). We attempted to dissect the essential
motif of Rph1 required for the DNA binding affinity
in vivo. Domain analysis by SMART (http://smart.embl-
heidelberg.de/) predicted that Rph1 contains two ZFs at
the C-terminus that may contribute to DNA binding. We
introduced a ZF-domain deleted Rph1 construct (ZF�)
into the rph1D strain and found a higher expression level
of PHR1 than that in WT (RPH1) (Figure 2C, left panel).
ChIP assays with anti-HA (Rph1) further demonstrated
that ZF deletion reduced the binding of Rph1 with the
URSPHR1 region, which was negatively correlated to the
expression level of PHR1 (Figure 2C, right panel).
Therefore, the ZF domains of Rph1 directed its DNA
binding and transcriptional repression in vivo.

Crosstalk between H3K36 tri-methylation and H3
acetylation occurs at the PHR1 promoter

The synergistic crosstalk of histone modifications has been
suggested as an important regulatory mechanism in gene
expression (33,42,43). We hypothesized that gene-specific
synergistic histone modifications also take place on the
PHR1 promoter by interacting with DNA-bound tran-
scription factors. Because Rph1 bound to the URSPHR1

but not UES+UASPHR1 region (Figure 2C) and conse-
quently decreased H3K36 methylation in the absence of
UV irradiation, we examined whether histone H3K36
demethylation affected histone acetylations. Results
from ChIP assays with anti-acetylated histone H3K9/14
(acH3) and H4K5/8/12/16 (acH4) revealed that Rph1
altered histone acetylation in different regions
(Figure 3A). The levels of histone H3/H4 acetylations
were reduced by about 50% only at the URSPHR1 but
not the UASPHR1 or coding region (Figure 3A). Thus,
the association of WT Rph1 at URSPHR1 reduced the
histone acetylations in this region. Furthermore, the
catalytic-deficient rph1-H235A mutant displayed patterns
similar to those of the rph1D (vector) in histone acetyl-
ations, which indicates that Rph1 demethylase activity is
critical for the crosstalk of histone modifications at the
PHR1 promoter. The reduced histone acetylation implies
an involvement of histone deacetylase(s). To examine this
possibility, we performed acH3-ChIP using various
histone deacetylase (HDAC)-deleted strains, including
HDA1, HDA2 (Type II) and RPD3 (Type I), in the
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presence of overexpressed RPH1. Lack of RPD3 restored
the H3 acetylation level at the URSPHR1 in the presence of
Rph1 (Figure 3B). Moreover, results from ChIP experi-
ments revealed the significant association of Rpd3 at the
URSPHR1 but not the UASPHR1 region in the presence of
Rph1 (Figure 3C), which indicates that Rpd3 specifically
deacetylated histones at the URSPHR1 region responsible
for the transcriptional repression of PHR1.
To confirm the crosstalk between histone methylation

and acetylation, we performed acH3-ChIP experiments in

WT yeast and the H3K36A mutant. Reduced acetylation
was revealed exclusively at the URSPHR1 region in the
H3K36A mutant (Figure 3D, left panel); therefore,
Rph1 suppresses PHR1 expression by modulating the
chromatin structure in a demethylase-dependent manner.
Our current findings support that the Rph1-mediated
H3K36 demethylation and crosstalk with histone acetyl-
ation also take place at the PHR1 promoter to regulate
gene transcription. To determine whether the promoter
association of Rph1 and the crosstalk of histone

C

A

B

Figure 2. Rph1 binds to the upstream repression sequence (URS) of PHR1 through ZF domains. (A) Top panel: The schematic representation
of primers specific to different regions on PHR1 for PCR. +1 indicates the transcription start site of PHR1. The primer sequences are
in Supplementary Table S2. Lower panel: The specificity of H3K36me3 at the PHR1 promoter and coding region were detected by ChIP in
WT, rph1D, set2D and H3K36A mutants. Bar graph represents the quantified results from three biological repeats. (B) ChIP with anti-HA
and anti-H3K36me3 antibodies were performed with the indicated strains. The right panels show the fold change relative to the control
(vector), which was normalized by input. (C) The ZF domains are required for transcriptional repression on PHR1 and for specific
association with URSPHR1. Left panel: PHR1 expression in rph1D (vector), induced WT RPH1 or ZF-deleted RPH1 (ZFD).
***P< 0.001 compared with vector. Right panel: ChIP with anti-HA antibody at the UAS or URS regions. Data are from three different biological
samples.
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B

D

C

E

A

Figure 3. Demethylation at H3K36 coexists with a reduction of histone acetylations specifically at the URS of PHR1. (A) Histone H3/H4 acetyl-
ation was altered at the URS and coding region of PHR1. ChIP-qPCR from the indicated strains was performed with anti-AcH3 and anti-AcH4.
*P< 0.05. Data are from three biological repeats. (B) RPD3 deletion restored the reduction of H3 acetylation at the URS. Indicated HDAC deletion
strains with overexpressed Rph1 were harvested for acH3-ChIP. (C) Rpd3-Myc is associated at URS region in the presence of Rph1. The rph1D cells
containing control vector or overexpressed Rph1 with Myc-tagged Rpd3 were harvested for Myc-ChIP and qPCR. Error bars represents the SD
from two biological repeats. (D) Left: H3K36A showed the reduction of H3 acetylation at the URS of PHR1. Cells carrying WT or H3K36 mutated
(H3K36A) histones were subject to acH3-ChIP followed by qPCR. Right: PHR1 expression in WT or H3K36A mutant. (E) ChIP with anti-Rpb3 at
URS region of PHR1 in WT, rph1D, set2D and H3K36A mutants. Error bars shows the SD from two biological samples.
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modifications are specific to the PHR1 gene, we performed
ChIP assay with anti-acetylated histone H3 (acH3) and
Rph1-HA at the ADH1 promoter. However, we did not
find a significant difference in H3 acetylation or Rph1 as-
sociation on the ADH1 promoter and coding region
(Supplementary Figure S3).
The recruitment of RNA polymerase II (Pol II) to pro-

moters to initiate transcription has been the central dogma
in regulation of active gene expression. However, recent
studies from genome-wide analysis revealed that Pol II is
associated with the promoters of many non-actively
transcribed genes in murine embryonic stem cells and
Drosophila (44,45). To determine the preoccupancy of
Pol II at the repressed PHR1 promoter, we performed
ChIP experiments with Rpb3 (a subunit of RNA Pol II
core complex). Binding of Pol II at the URSPHR1 region
was reduced in the H3K36A mutant but remained un-
changed in the set2D mutant as compared with the WT
(Figure 3E). The binding was only slightly increased in the
rph1D mutant. Thus, Rph1 and modification of H3K36
but not Set2 regulate the pre-occupancy of Pol II at the
PHR1 promoter. Rph1 likely specifically binds and modu-
lates histone methylation and acetylation and consequent-
ly influences Pol II recruitment at the URSPHR1 region.

Rph1 is dissociated from the PHR1 promoter in response
to DNA damage

In response to DNA damage, transcriptional induction of
PHR1 should require a priori de-repression. Previously,
Rph1 was named photolyase regulatory protein (PRP),
which bound to the PHR1 URS and regulated the induc-
tion of PHR1 transcription after DNA damage (24). We
performed ChIP assays to study the dynamics of Rph1 in

response to DNA damage in vivo. After UV irradiation,
the association of both Rph1 and the rph1-H235A mutant
was significantly decreased, which suggests that Rph1 was
released from the promoter of PHR1 after DNA damage
(Figure 4A). To determine whether the protein level of
Rph1 was affected by DNA damage, Rph1-HA expression
was analyzed by immunoblotting (IB; Figure 4A). Rph1
levels were only slightly decreased after UV irradiation,
which suggests that the dissociation from the promoter
cannot simply be attributed to protein expression levels
of Rph1 and rph1-H235A. The quantitative-ChIP results
also confirmed the association and dissociation of Rph1 at
the PHR1 promoter in vivo (Figure 4B).

We further examined the synergistic crosstalk of chro-
matin modifications in the repressed PHR1 promoter in
response to UV irradiation. We monitored histone acetyl-
ation and methylation levels at the URSPHR1 before and
after UV irradiation by ChIP with antibodies against
H3K36me3 and acH3. The level of H3K36me3 was
elevated slightly in the presence of RPH1 but not in
rph1D (vector) or in the rph1-H235A mutant by UV treat-
ment (Figure 4C, left panel). However, in the presence of
UV irradiation (+UV), the levels of histone H3 acetylation
were comparable among RPH1, rph1-H235A and rph1D
(vector) at the URSPHR1 region (Figure 4C, right panel).
These results suggest that dissociation of Rph1 responding
to UV irradiation results in an elevated level of histone
acetylation. Furthermore, our observation demonstrated
that dynamic interaction of Rph1 on the promoter of
PHR1 plays a role in H3K36 demethylation and histone
acetylation to regulate PHR1 expression in response to
DNA damage.

Methylation at H3K36 mediated by Set2 plays a major
role in transcriptional elongation (18,46,47), which was

C

BA

Figure 4. Rph1 is dissociated from PHR1 promoter in response to UV irradiation. (A) The indicated strains were irradiated (UV: 20 mJ/cm2) and
harvested for ChIP with anti-HA antibody. IB with anti-HA antibody showed the expression of Rph1. Anti-Pgk1 was the loading control and the
ratio of Rph1/Pgk1 is indicated. (B) The quantitative result is shown from comparable samples in (A). (C) ChIP assay from samples in (A) with
anti-H3K36me3 and anti-acH3 antibodies was followed by qPCR to monitor the URS region signals. Data are from three biological repeats.
*P< 0.05.
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suggested to involve the H3K36 demethylase Rph1
(15,20). To investigate the role of H3K36 demethylation
in transcriptional elongation, we used ChIP of the
transcribed region with primers specific to 50 (11–349)
and 30 (907–1434) coding regions of PHR1. Surprisingly,
in the coding regions, the relative HA-IP signals were
similar to those for rph1D (vector), which indicates no
enhancement of Rph1 binding, yet H3K36 methylation
was still decreased (Supplementary Figure S4). It is
possible that the histone H3K36 methylation is transient
or too weak to be detected by ChIP in the coding region.
Our observations are similar to results of study of ADH1,
PMA1 and YEF3 genes (20). However, the detailed mech-
anism for the demethylation in the coding regions remains
to be established.

Rad53 regulates the expression of PHR1 and dissociation
of Rph1 in response to DNA damage

It has been suggested that Rph1 phosphorylation is under
the control of the Mec1-Rad53 damage checkpoint
pathway but distinct from the Dun1-Crt1 pathway (48).
In budding yeast, Rad53, the ortholog of mammalian
Chk2, is a crucial checkpoint protein, and Dun1 is con-
sidered the main downstream kinase of Rad53 responding
to DNA damage (49,50). However, the connection
between the expression of PHR1, a DNA repair gene
and Rad53 is still unknown. To examine whether Rad53
plays a regulatory role in PHR1 expression in DNA
damage signaling, we analyzed the PHR1 transcription

level in a rad53D strain. Deletion of RAD53 is lethal.
Therefore, we evaluated the role of RAD53 by using a
rad53D sml1D strain, which loss of SML1 suppresses the
lethality of RAD53 deletion (51). By using RT–qPCR
analysis, we found the expression level of PHR1 in the
absence of UV irradiation decreased by 30% in the
rad53D mutant but not in the dun1D mutant
(Figure 5A). With UV irradiation (30 mj/cm2), the induc-
tion of PHR1 was reduced by 35% in the rad53D mutant
but only slightly in the dun1D strain. The Rad53-
Dun1-regulated gene HUG1 was not induced in either
the rad53D or dun1D mutant (Figure 5A, right panel).
Therefore, our data demonstrate that an efficient PHR1
expression requires RAD53 but is less dependent on
DUN1.
To further address the interplay between Rad53 and

Rph1 for PHR1 expression, we performed genetic epista-
sis analysis. We generated the triple deletion strain
(rad53D rph1D sml1D) as the genetic background for
overexpression of Rad53, Rph1 or both in yeast. UV sen-
sitivity assays and RT–qPCR analysis were used to
evaluate the functional relationship between Rad53 and
Rph1. In the absence of Rph1, overexpression of the
WT Rad53, but neither kinase-dead (rad53-KD) nor
control vector (rad53D), restored the growth of rad53D
in response to UV irradiation (Figure 5B). Furthermore,
overexpression of WT Rph1 enhanced the UV sensitivity,
whereas expression of WT Rad53, but not kinase-dead
(rad53-KD) or control vector (rad53D), compensated the
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Figure 5. Rph1 regulates transcription of PHR1 mediated by Rad53 in response to DNA damage. (A) The expression of PHR1 and HUG1 in sml1D
(WT), sml1D rad53D (rad53D) and sml1D dun1D (dun1D) mutants responding to different doses of UV irradiation. HUG1 was used as an indicator of
intact DNA damage signaling. *P< 0.05. (B) UV-sensitivity test of indicated strains in the rph1D rad53D background with different combinations of
control vector, overexpressed RAD53 or kinase-dead (KD) and WT RPH1. (C) PHR1 expression of strains as in (B). Cells harvested from early-log
phase underwent 30 mJ/cm2 irradiation. *, #, §P< 0.05. (D) ChIP with anti-Rph1 (HA) at URS from comparable samples as in Figure 4C. Bar graphs
show qPCR results in URS of PHR1 promoter. IB indicated the protein expression of Rph1, and Pgk1 is a loading control. All RT-qPCR data are
at least from three different biological samples. Results of ChIP are from 2 biological samples. *P< 0.05.
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defective growth phenotype (Figure 5B). Therefore,
Rad53 may be involved in the regulation of PHR1 expres-
sion in response to UV irradiation, possibly through
modulating Rph1 function. To understand the effect of
Rad53 on Rph1 in regulating gene transcription, we
analyzed the expression of PHR1 in the absence or
presence of Rad53 and Rph1 (Figure 5C). The basal tran-
scription of PHR1 remained high in rph1D, regardless of
the presence of Rad53 (asterisks and hash symbols in
Figure 5C). Overexpression of WT Rph1 reduced the
basal transcription of PHR1 to 68% (asterisks in
Figure 5C). In the presence of overexpressed Rph1,
Rad53 could enhance the basal expression of PHR1
(section symbol in Figure 5C), whereas UV-induced
damage slightly increased the transcription of PHR1. To
further elucidate the relation among Rph1, Rad53 and
UV irradiation in regulating PHR1 expression, the data
were subjected to regression analysis (Table 1). Rph1 is the
most effective factor suppressing the transcription of
PHR1 (standardized coefficient of Rph1: �0.738),
whereas Rad53 and UV irradiation play a moderate but
positive role in regulating PHR1 (standardized coefficient
of Rad53 and UV: 0.453 and 0.375, respectively). These
observations (Figure 5 and Table 1) indicate that Rph1 is
the major regulator of PHR1 under experimental condi-
tions and emphasize the role of the checkpoint protein
Rad53 in the modulation of Rph1 during the regulation
of PHR1.
To determine the role of Rad53 in regulating PHR1

expression, we used ChIP analysis to examine the effect
of Rad53 on the recruitment of Rph1 and the levels of
H3K36me3 at the URSPHR1. In the absence of UV irradi-
ation, Rph1 was associated with URSPHR1, as shown
above, regardless of the presence of Rad53 (Figure 5D,
black bars). Distinct from our previous observation that
Rph1 dissociated from the URSPHR1 after UV irradiation
(Figure 3A), Rph1 remained bound to URSPHR1 in the
absence of Rad53 (asterisksin Figure 5D), which
strongly indicates that Rad53 functions as a crucial regu-
lator for Rph1 to dissociate from PHR1 promoter upon
UV irradiation (Figure 5D). Furthermore, the levels
of H3K36me3 and H3 acetylation are correlated to
the presence of Rph1 at the URSPHR1 region
(Supplementary Figure S5). Chromatin-bound Rph1
retained low levels of histone H3K36 tri-methylation in
the rad53D strain after DNA damage. ChIP analysis
indicated that Rad53 was required for the dissociation

of Rph1 from URSPHR1. Our results suggest a potentially
novel damage checkpoint pathway that is directed by a
Rad53-Rph1 cascade of regulatory events.

Activated Rad53 complex phosphorylates Rph1 and
S652A-mutated Rph1 impairs the dissociation in
response to DNA damage

To test whether Rph1 is a substrate of Rad53, we per-
formed an in vitro kinase assay by incubating
IP-activated Rad53 (WT or KD) with recombinant
Rph1. By autoradiography, we detected a specific signal
of Rph1 phosphorylation in the presence of WT Rad53
but not rad53-KD, which established that Rad53 kinase
dominated the phosphorylation of Rph1 (Figure 6A).
Previous proteomic studies had revealed that Rph1 was
phosphorylated at multiple serine residues induced by
DNA damage or cell cycle arrest (52–55). To determine
the functional role of phosphorylation, we generated a
series of alanine-substituted mutations on putative
phosphorylated serine residues (S412, S459, S557, S561,
S652 and S689) to analyze the UV sensitivity of these
mutants. Because the Rph1 phosphorylation triggered
by, UV irradiation may reflect a transient response, we
attempted to examine the immediate response by use of
the GAL inducible expression system. However, we found
severe growth defects in the WT and phospho-mutants of
Rph1 (Figure 1A and Supplementary Figure S6) cultured
on synthetic complete selective medium in the presence of
galactose (SCM-URA+galactose) but not glucose
(SCM-URA+glucose), presumably because of constitu-
tively overexpressed Rph1. To avoid this potential issue
to obscure the growth phenotype, we modified our experi-
mental protocol to use the GAL1 promoter to induce the
overexpression of the WT and phospho-mutants of Rph1
4 h before UV irradiation, then scored the phenotype 2
days later (see ‘Methods and Materials’ section). When
the UV dose was increased to 30 mJ/cm2, we found that
the rph1-S652A mutant began to show a hypersensitivity
to UV irradiation, even greater than that of Rph1
overexpression (Figure 6B, Supplementary Figure S7).
From bioinformatics studies (Scansite, http://scansite.
mit.edu/and GPS2.1, http://gps.biocuckoo.org/), we
selected S459 (embedded within the putative bipartite
nuclear localization region) and S652 (a consensus
phosphorylated site detected in genome-wide LC/MS
analysis) (52–55) to further characterize the functional
role of Rph1 phosphorylation in PHR1 expression. The
rph1-S459A mutant displayed a similar UV-sensitivity
phenotype to WT Rph1, whereas rph1-S652A and
rph1-S459AS652A mutants were hypersensitive to UV ir-
radiation (Figure 6B), which indicates that phosphoryl-
ation at S652 may play a critical role in Rph1 function
responding to DNA damage. We subsequently measured
the expression of PHR1 and association of Rph1
phospho-mutants with URSPHR1. The expression levels
of PHR1 were comparable in rph1-S459A and WT Rph1
but were reduced to 30% (P< 0.05) in rph1-S652A and
rph1-S459AS652A mutants, regardless of UV treatment
(Figure 6C). Remarkably, results from HA (Rph1)-ChIP
assays showed that S652A mutation did not affect the

Table 1. Regression analysis to evaluate the effective strength to

PHR1 expression

Model Unstandardized
coefficients

Standard.
error

Standardized
coefficients

t Significance

B b

(Constant) 0.969 0.041 23.83 3.71e-01
RPH1 �0.405 0.041 �0.738 �9.946 3.47e-00
RAD53 0.248 0.041 0.453 6.108 5.72e-00
UV 0.206 0.041 0.375 5.054 6.07e-00

Dependent variable: PHR1 expression.
R2=0.943.
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Rph1 association with URSPHR1 but greatly impaired the
dissociation from URSPHR1 on UV treatment
(Figure 6D), which indicates that phosphorylation at
S652 is important for Rph1 to dissociate from URSPHR1

in the presence of UV irradiation. These data support that
chromatin association and dissociation of Rph1 on the
PHR1 promoter mediated by protein phosphorylation
is the major regulatory mechanism for PHR1 expression
responding to DNA damage.

DISCUSSION

Collectively, we hypothesize a model to describe the regu-
latory event modulated by the H3K36 demethylase Rph1
at the PHR1 promoter in response to DNA damage
signals in Figure 7. Roeder proposed a model of a
‘two-step process’ of transcriptional activation in eukary-
otes: (i) The overall level of induction in response to
activating signal involving first a ‘de-repression step’ that
restores activity to the basal level, and followed by (ii) A
‘net-activation’ step that leads to the higher induction ex-
pression level (56). Here, we show that Rph1-mediated
H3K36 demethylase activity is required to repress PHR1
expression and is involved in regulating the early step of
transcriptional activation. Rph1 is specifically associated
with URSPHR1 to generate a repressed or ground state of
chromatin structure in the absence of UV irradiation. The
physiological repressed chromatin structure at the
URSPHR1 subsequently leads to decreased histone acetyl-
ation by cooperatively associating with the Rpd3
co-repressor complex. The checkpoint kinase Rad53 is
required for the basal and inducible expression of

PHR1. Upon UV-induced DNA damage, the fully
activated Rad53 modulates the phosphorylation of
Rph1, which subsequently dissociates from URSPHR1 to
relieve the suppressed expression of PHR1. In addition,
Rad53 may mediate the recruitment of other co-activators
to increase the histone acetylations at the promoter in

C
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Figure 6. The phospho-mutant at S652 of Rph1 increases UV sensitivity and impairs the dissociation after UV irradiation. (A) In vitro kinase assay
was performed by recombinant Rph1 or BSA incubated with or without V5-IP WT or KD Rad53 supplied by g32P-ATP. The signal was detected by
autoradiography. pRad53 indicated the autophosphorylation of Rad53. pRph1 indicated the phosphorylation of Rph1. Coomassie Blue and
immnoblotting (anti-V5) showed the loading controls. (B) UV sensitivity of rph1D cells containing control vector, WT Rph1 (RPH1) or
phospho-defective Rph1 mutants. (C and D) The indicated strains as in (B) were harvested for RT-qPCR to detect PHR1 expression in response
to UV or not (C) and for HA-ChIP to measure the association of Rph1 at URS of PHR1 (D). Error bars show the SD of three biological repeats.
*P< 0.05.

Figure 7. A model for Rph1-regulated PHR1 expression in response to
DNA damage. Under normal conditions, Rph1 associates with
URSPHR1, and PHR1 transcription is repressed (upper panel). Under
DNA damage signaling, Rph1 dissociates from the PHR1 promoter to
induce the expression of PHR1. Ac, histone acetylation; Me, H3K36
tri-methylation; Pi, phosphorylation; See ‘Discussion’ section for
details.
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response to UV irradiation, which induces PHR1 expres-
sion for efficient DNA repair. This study highlights a
distinct mechanism of the histone demethylase in tran-
scriptional regulation at the promoter region instead of
coding sequence. Thus, we reveal that the key regulatory
step of Rph1 is to maintain a low level of H3K36 methy-
lation at the PHR1 promoter in the basal state. Dismissal
of Rph1 from the URSPHR1 region is mediated by a DNA
damage signal to allow immediate histone acetylations as
well as transcriptional initiation by recruiting RNA pol II.

Histone H3K36 demethylase activity cooperates with
DNA-binding affinity of Rph1 in the repression of
PHR1 transcription

Given the genome-wide distribution of histone modifica-
tions, H3K36me3 is enriched in the transcribed region of
generally active genes (57). A major question concerns the
mechanism of transition from methylation–demethylation
involving in the transcriptional repression to activation.
The transitions could be a simple matter of equilibrium
enzyme reactions, the histone methyltransferases (HMTs)
and histone demethylases (JHDMs). Kim and Buratowski
(20) reported that JHDMs (Jhd1 and Rph1) antagonize
Set2-mediated H3K36 methylation and promote tran-
scription elongation in constitutively highly expressed
genes, and such equilibrated events take place in the
coding region of genes. Here, we studied a DNA
damage-inducible gene, PHR1, which is repressed under
normal growth conditions. Different from previous
findings, our results reveal that H3K36 demethylase
Rph1 functions as a repressor and associates at the
promoter of PHR1 in the absence of DNA damage
signals. Defective H3K36 methylation, lack of Set2 and
overexpression of Rph1 (39,40) increased the sensitivity
to UV irradiation. However, deletion of SET2 did not
affect the expression of PHR1 under our experimental
conditions, whereas overexpression of Rph1 and
H3K36A mutant strains decreased the expression level
of PHR1.
Three possibilities may serve to explain our observa-

tions. The first is that Set2-mediated H3K36 methylation
is not required to initiate basal transcription of PHR1
under the normal condition (�UV). The genome-wide dis-
tribution profile of H3K36 methylation at promoters is
relatively lower than that in coding regions. Therefore,
an increase in level of H3K36 methylation at specific pro-
moters is likely due to a decreased activity of histone
demethylase, such as Rph1 (Figure 2A), rather than the
recruitment of HMT activity (Set2) to add methyl groups
to H3K36. The second explanation is based on the re-
cruitment of RNA Pol II at the promoter region. Pol II
was found to occupy inactive promoter regions of
signal-inducible genes, named PRGs (primary response
genes). These genes are regulated at the transition
between de-repression and transcriptional initiation in
the basal state by an interplay with a co-repressor
complex. Most PRG promoters have a high basal level
of H3K4me and H3K9Ac (58). Indeed, we demonstrated
that Pol II binding at the PHR1 promoter is decreased in
the H3K36A mutant but not the set2D strain (Figure 3E),

which implies a distinct role of Set2 in Pol II recruitment
at the promoter and coding regions. H3K36A mutant may
change the level of histone H3K9/14 acetylation by an
unknown mechanism (Figure 3D) and consequently
affect Pol II recruitment at the PHR1 promoter. The
third possibility is a temporal dependency of other modi-
fications on H3K36 such as lysine acetylation. Recent
studies demonstrated that H3K36 can be modified by
Set2-mediated methylation and Gcn5-dependent acetyl-
ation (59). Acetylation at H3K36 is localized predomin-
antly at the promoters of RNA polymerase II-transcribed
genes and functions as a prelude to transcriptional initi-
ation (59,60). The set2D eliminated only H3K36 methyla-
tion, and H3K36A wiped out both methylation and
acetylation at the PHR1 promoter. These observations
suggest that the transition between H3K36ac and
H3K36me represents a novel ‘dual-modification chroma-
tin switch’ that controls the regulation of gene transcrip-
tion at the PHR1 promoter. The functional complexity of
both acetylation and methylation, but not simultaneously,
on H3K9 is an example of the ‘dual-modification chroma-
tin switch’. The recruitment of chromodomain protein
HP1 to initiate the formation of heterochromatin
depends on H3K9 methylation in mammals and fission
yeast (61,62). We hypothesize that the interplay among
acetylation, deacetylation, methylation and demethylation
at the same site can also occur on H3K36 at the PHR1
promoter in budding yeast. None of the three suggested
mechanisms above are mutually exclusive and all could act
cooperatively.

Set2-dependent H3K36 methylation is required for
Rpd3C(S) recruitment co-transcriptionally to the coding
region for transcriptional activation (63). Surprisingly, our
results indicate that Set2 plays a minor, if any, role in
transcriptional activation of PHR1. However, our
finding is not an isolated case. The expression of the
starvation-induced genes ARG1 and HIS4 does not
depend on Set2-mediated methylation at H3K36 (64,65).
Our results may add PHR1 to this list.

Multiple lines of evidence suggest that chromatin modi-
fications play a complex role in the regulation of transcrip-
tion. The crosstalk between histone modifications can
facilitate or repress chromatin-mediated processes (3).
Here, we show that the histone H3K36 demethylation
is linked to reduced histone acetylation involving
the histone deacetylase Rpd3 at the PHR1 promoter
(Figure 3B and C). Furthermore, Rph1 and Rpd3 can
associate with URSPHR1, which may form the
Ume6-Rpd3-Rph1 co-repressor complex and consequent-
ly block the UASPHR1 for basal trans-activation.
Moreover, Rph1-mediated H3K36 demethylation at
URSPHR1 may specify a histone mark to recruit a
co-repressor complex or prevent the recruitment of a
co-activator that consequently silences PHR1 expression
in the absence of UV damage.

Alternatively, the variation in histone acetylation may
be due to the recruitment of HATs. Many studies of gene
expression involving genome-wide approaches or focusing
on individual genes suggest that the histone acetylases
Gcn5 (SAGA complex) and Esa1 (NuA4 complex) are
generally recruited to the promoters of protein-coding

4162 Nucleic Acids Research, 2011, Vol. 39, No. 10



active genes (66). Here, we observed that Rph1 was
dissociated from the URSPHR1 region and cooperatively
increased acetylation of histone H3/H4 after UV irradi-
ation (Figure 4A). The dissociation of a putative Rph1/
co-repressor complex (Figure 4C), as well as deletion of
RPH1 (Figure 1C), may provide a more accessible region
for the HAT complex to target at the URSPHR to enrich
acetylations on chromatin for subsequent transcriptional
activation. These observations imply that dissociation of
demethylase at the promoter influences the chromatin
dynamics.

Rad53 kinase activity and S652 phosphorylation of
Rph1 are required for the dissociation of Rph1 in
response to DNA damage

We demonstrate that the activated Rad53 complex
mediates the Rph1 phosphorylation in response to
DNA damage. Rad53 regulates the chromatin binding
of Rph1 as well as enrichment of H3K36 methylation
at the URSPHR1 region (Figures 5 and 6). In addition,
we provide in vivo evidence of the functional role of phos-
phorylation in a histone demethylase, Rph1. Abolishment
of the phosphorylation at S652 (rph1-S652A) had import-
ant biological impacts, as indicated by the significant dif-
ferences in UV sensitivity, PHR1 repression and Rph1
binding to PHR1 promoter (Figure 6B and C).
Phosphorylation is linked to protein function, such as
conformational change, stability and activity.
Phosphorylation on transcription factors can regulate
the chromatin association and biological functions. A
recent study of the Methyl-CpG Binding Protein 2
(MECP2) in mouse cortical neurons demonstrated that
MeCP2-S80A mutation attenuated chromatin association
affinity at candidate gene promoters and caused subtle
gene expression changes (67). The mechanistic regulation
of histone demethylase function is not clear yet. Two
possible regulatory mechanisms are mediated by PTM
and association with auxiliary factors (68). A recent
study demonstrated that the H3K4 demethylase Jhd2 is
modified by polyubiquitination to control the protein level
of Jhd2 through proteasome-mediated degradation (69).
Rosenfeld’s group currently reported that phosphoryl-
ation on PHF8, a histone H4K20 demethylase, was
required for its chromatin dismissal in prophase and
was involved in regulating cell cycle progression (70).
The observations in PHF8 and Rph1 strongly support
that phosphorylation may be evolutionally linked to the
function of histone demethylases responding to diverse
cellular signals. Because Rph1 contains multiple putative
phosphorylation sites, further studies are required to pre-
cisely define the roles of PTMs and putative regulatory
factors that are critical for the regulation of histone
demethylases.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We thank Dr Lorraine Pillus for critically reading the
manuscript and Drs Z.F. Chang, L.J. Juan and H.M.
Shih for helpful discussion.

FUNDING

Academia Sinica and a grant from the National
Science Council (NSC 97-2311-B-001-018-MY3 to W.-
S.L.), Taiwan. Funding for open access charge:
Academia Sinica.

Conflict of interest statement. None declared.

REFERENCES

1. Luger,K., Mader,A.W., Richmond,R.K., Sargent,D.F. and
Richmond,T.J. (1997) Crystal structure of the nucleosome core
particle at 2.8 A resolution. Nature, 389, 251–260.

2. Millar,C.B. and Grunstein,M. (2006) Genome-wide patterns of
histone modifications in yeast. Nat. Rev. Mol. Cell Biol., 7,
657–666.

3. Suganuma,T. and Workman,J.L. (2008) Crosstalk among Histone
Modifications. Cell, 135, 604–607.

4. Berger,S.L. (2007) The complex language of chromatin regulation
during transcription. Nature, 447, 407–412.

5. Bhaumik,S.R., Smith,E. and Shilatifard,A. (2007) Covalent
modifications of histones during development and disease
pathogenesis. Nat. Struct. Mol. Biol., 14, 1008–1016.

6. Shi,Y., Lan,F., Matson,C., Mulligan,P., Whetstine,J.R., Cole,P.A.
and Casero,R.A. (2004) Histone demethylation mediated by the
nuclear amine oxidase homolog LSD1. Cell, 119, 941–953.

7. Chen,Z., Zang,J., Whetstine,J., Hong,X., Davrazou,F.,
Kutateladze,T.G., Simpson,M., Mao,Q., Pan,C.H., Dai,S. et al.
(2006) Structural insights into histone demethylation by JMJD2
family members. Cell, 125, 691–702.

8. Tsukada,Y., Fang,J., Erdjument-Bromage,H., Warren,M.E.,
Borchers,C.H., Tempst,P. and Zhang,Y. (2006) Histone
demethylation by a family of JmjC domain-containing proteins.
Nature, 439, 811–816.

9. Agger,K., Christensen,J., Cloos,P.A. and Helin,K. (2008) The
emerging functions of histone demethylases. Curr. Opin. Genet.
Dev., 18, 159–168.

10. Klose,R.J., Kallin,E.M. and Zhang,Y. (2006)
JmjC-domain-containing proteins and histone demethylation.
Nat. Rev. Genet., 7, 715–727.

11. Klose,R.J., Yamane,K., Bae,Y., Zhang,D., Erdjument-
Bromage,H., Tempst,P., Wong,J. and Zhang,Y. (2006) The
transcriptional repressor JHDM3A demethylates trimethyl histone
H3 lysine 9 and lysine 36. Nature, 442, 312–316.

12. Yamane,K., Toumazou,C., Tsukada,Y., Erdjument-Bromage,H.,
Tempst,P., Wong,J. and Zhang,Y. (2006) JHDM2A, a
JmjC-containing H3K9 demethylase, facilitates transcription
activation by androgen receptor. Cell, 125, 483–495.

13. Okada,Y., Scott,G., Ray,M.K., Mishina,Y. and Zhang,Y. (2007)
Histone demethylase JHDM2A is critical for Tnp1 and Prm1
transcription and spermatogenesis. Nature, 450, 119–123.

14. Tateishi,K., Okada,Y., Kallin,E.M. and Zhang,Y. (2009) Role of
Jhdm2a in regulating metabolic gene expression and obesity
resistance. Nature, 458, 757–761.

15. Tu,S., Bulloch,E.M., Yang,L., Ren,C., Huang,W.C., Hsu,P.H.,
Chen,C.H., Liao,C.L., Yu,H.M., Lo,W.S. et al. (2007)
Identification of histone demethylases in Saccharomyces cerevisiae.
J. Biol. Chem., 282, 14262–14271.

16. Workman,J.L. (2006) Nucleosome displacement in transcription.
Genes Dev., 20, 2009–2017.

17. Strahl,B.D., Grant,P.A., Briggs,S.D., Sun,Z.W., Bone,J.R.,
Caldwell,J.A., Mollah,S., Cook,R.G., Shabanowitz,J., Hunt,D.F.
et al. (2002) Set2 is a nucleosomal histone H3-selective

Nucleic Acids Research, 2011, Vol. 39, No. 10 4163



methyltransferase that mediates transcriptional repression.
Mol. Cell. Biol., 22, 1298–1306.

18. Xiao,T., Hall,H., Kizer,K.O., Shibata,Y., Hall,M.C.,
Borchers,C.H. and Strahl,B.D. (2003) Phosphorylation of RNA
polymerase II CTD regulates H3 methylation in yeast.
Genes Dev., 17, 654–663.

19. Li,B., Carey,M. and Workman,J.L. (2007) The role of chromatin
during transcription. Cell, 128, 707–719.

20. Kim,T. and Buratowski,S. (2007) Two Saccharomyces cerevisiae
JmjC domain proteins demethylate histone H3 Lys36 in
transcribed regions to promote elongation. J. Biol. Chem., 282,
20827–20835.

21. Morillon,A., Karabetsou,N., Nair,A. and Mellor,J. (2005)
Dynamic lysine methylation on histone H3 defines the regulatory
phase of gene transcription. Mol. Cell, 18, 723–734.

22. Allis,C.D., Berger,S.L., Cote,J., Dent,S., Jenuwien,T.,
Kouzarides,T., Pillus,L., Reinberg,D., Shi,Y., Shiekhattar,R. et al.
(2007) New nomenclature for chromatin-modifying enzymes. Cell,
131, 633–636.

23. Jang,Y.K., Wang,L. and Sancar,G.B. (1999) RPH1 and GIS1 are
damage-responsive repressors of PHR1. Mol. Cell. Biol., 19,
7630–7638.

24. Sebastian,J. and Sancar,G.B. (1991) A damage-responsive DNA
binding protein regulates transcription of the yeast DNA repair
gene PHR1. Proc. Natl Acad. Sci. USA, 88, 11251–11255.

25. Sancar,G.B., Ferris,R., Smith,F.W. and Vandeberg,B. (1995)
Promoter elements of the PHR1 gene of Saccharomyces cerevisiae
and their roles in the response to DNA damage. Nucleic Acids
Res., 23, 4320–4328.

26. Sweet,D.H., Jang,Y.K. and Sancar,G.B. (1997) Role of UME6 in
transcriptional regulation of a DNA repair gene in Saccharomyces
cerevisiae. Mol. Cell. Biol., 17, 6223–6235.

27. Sebastian,J., Kraus,B. and Sancar,G.B. (1990) Expression of the
yeast PHR1 gene is induced by DNA-damaging agents. Mol. Cell.
Biol., 10, 4630–4637.

28. Hartley,J.L., Temple,G.F. and Brasch,M.A. (2000) DNA cloning
using in vitro site-specific recombination. Genome Res., 10,
1788–1795.

29. Gelperin,D.M., White,M.A., Wilkinson,M.L., Kon,Y., Kung,L.A.,
Wise,K.J., Lopez-Hoyo,N., Jiang,L., Piccirillo,S., Yu,H. et al.
(2005) Biochemical and genetic analysis of the yeast proteome
with a movable ORF collection. Genes Dev., 19, 2816–2826.

30. Winzeler,E.A., Shoemaker,D.D., Astromoff,A., Liang,H.,
Anderson,K., Andre,B., Bangham,R., Benito,R., Boeke,J.D.,
Bussey,H. et al. (1999) Functional characterization of the S.
cerevisiae genome by gene deletion and parallel analysis. Science,
285, 901–906.

31. Yuen,T., Zhang,W., Ebersole,B.J. and Sealfon,S.C. (2002)
Monitoring G-protein-coupled receptor signaling with DNA
microarrays and real-time polymerase chain reaction.
Methods Enzymol., 345, 556–569.

32. Kuras,L., Kosa,P., Mencia,M. and Struhl,K. (2000)
TAF-Containing and TAF-independent forms of transcriptionally
active TBP in vivo. Science, 288, 1244–1248.

33. Lo,W.S., Gamache,E.R., Henry,K.W., Yang,D., Pillus,L. and
Berger,S.L. (2005) Histone H3 phosphorylation can promote TBP
recruitment through distinct promoter-specific mechanisms.
EMBO J., 24, 997–1008.

34. Kurdistani,S.K., Robyr,D., Tavazoie,S. and Grunstein,M. (2002)
Genome-wide binding map of the histone deacetylase Rpd3 in
yeast. Nat. Genet., 31, 248–254.

35. Gunjan,A. and Verreault,A. (2003) A Rad53 kinase-dependent
surveillance mechanism that regulates histone protein levels in
S. cerevisiae. Cell, 115, 537–549.

36. Usui,T., Ogawa,H. and Petrini,J.H. (2001) A DNA damage
response pathway controlled by Tel1 and the Mre11 complex.
Mol. Cell, 7, 1255–1266.

37. Yadav,A.K., Renfrow,J.J., Scholtens,D.M., Xie,H., Duran,G.E.,
Bredel,C., Vogel,H., Chandler,J.P., Chakravarti,A., Robe,P.A.
et al. (2009) Monosomy of chromosome 10 associated with
dysregulation of epidermal growth factor signaling in
glioblastomas. JAMA, 302, 276–289.

38. Klose,R.J., Gardner,K.E., Liang,G., Erdjument-Bromage,H.,
Tempst,P. and Zhang,Y. (2007) Demethylation of histone H3K36

and H3K9 by Rph1: a vestige of an H3K9 methylation system in
Saccharomyces cerevisiae? Mol. Cell. Biol., 27, 3951–3961.

39. Game,J.C., Williamson,M.S., Spicakova,T. and Brown,J.M. (2006)
The RAD6/BRE1 histone modification pathway in Saccharomyces
confers radiation resistance through a RAD51-dependent process
that is independent of RAD18. Genetics, 173, 1951–1968.

40. Lin,L.J., Minard,L.V., Johnston,G.C., Singer,R.A. and
Schultz,M.C. (2010) Asf1 can promote trimethylation of H3 K36
by Set2. Mol. Cell. Biol., 30, 1116–1129.

41. Psathas,J.N., Zheng,S., Tan,S. and Reese,J.C. (2009)
Set2-dependent K36 methylation is regulated by novel intratail
interactions within H3. Mol. Cell. Biol., 29, 6413–6426.

42. An,W., Kim,J. and Roeder,R.G. (2004) Ordered cooperative
functions of PRMT1, p300, and CARM1 in transcriptional
activation by p53. Cell, 117, 735–748.

43. Lo,W.S., Duggan,L., Emre,N.C., Belotserkovskya,R., Lane,W.S.,
Shiekhattar,R. and Berger,S.L. (2001) Snf1–a histone kinase that
works in concert with the histone acetyltransferase Gcn5 to
regulate transcription. Science, 293, 1142–1146.

44. Guenther,M.G., Levine,S.S., Boyer,L.A., Jaenisch,R. and
Young,R.A. (2007) A chromatin landmark and transcription
initiation at most promoters in human cells. Cell, 130, 77–88.

45. Muse,G.W., Gilchrist,D.A., Nechaev,S., Shah,R., Parker,J.S.,
Grissom,S.F., Zeitlinger,J. and Adelman,K. (2007) RNA
polymerase is poised for activation across the genome.
Nat. Genet., 39, 1507–1511.

46. Li,J., Moazed,D. and Gygi,S.P. (2002) Association of the histone
methyltransferase Set2 with RNA polymerase II plays a role in
transcription elongation. J. Biol. Chem., 277, 49383–49388.

47. Hampsey,M. and Reinberg,D. (2003) Tails of intrigue:
phosphorylation of RNA polymerase II mediates histone
methylation. Cell, 113, 429–432.

48. Kim,E.M., Jang,Y.K. and Park,S.D. (2002) Phosphorylation of
Rph1, a damage-responsive repressor of PHR1 in Saccharomyces
cerevisiae, is dependent upon Rad53 kinase. Nucleic Acids Res.,
30, 643–648.

49. Branzei,D. and Foiani,M. (2006) The Rad53 signal transduction
pathway: Replication fork stabilization, DNA repair, and
adaptation. Exp. Cell Res., 312, 2654–2659.

50. Harrison,J.C. and Haber,J.E. (2006) Surviving the breakup: the
DNA damage checkpoint. Annu. Rev. Genet., 40, 209–235.

51. Zhao,X., Muller,E.G. and Rothstein,R. (1998) A suppressor of
two essential checkpoint genes identifies a novel protein that
negatively affects dNTP pools. Mol. Cell, 2, 329–340.

52. Chi,A., Huttenhower,C., Geer,L.Y., Coon,J.J., Syka,J.E.,
Bai,D.L., Shabanowitz,J., Burke,D.J., Troyanskaya,O.G. and
Hunt,D.F. (2007) Analysis of phosphorylation sites on proteins
from Saccharomyces cerevisiae by electron transfer dissociation
(ETD) mass spectrometry. Proc. Natl Acad. Sci. USA, 104,
2193–2198.

53. Smolka,M.B., Albuquerque,C.P., Chen,S.H. and Zhou,H. (2007)
Proteome-wide identification of in vivo targets of DNA
damage checkpoint kinases. Proc. Natl Acad. Sci. USA, 104,
10364–10369.

54. Albuquerque,C.P., Smolka,M.B., Payne,S.H., Bafna,V., Eng,J.
and Zhou,H. (2008) A multidimensional chromatography
technology for in-depth phosphoproteome analysis. Mol. Cell.
Proteomics, 7, 1389–1396.

55. Li,X., Gerber,S.A., Rudner,A.D., Beausoleil,S.A., Haas,W.,
Villen,J., Elias,J.E. and Gygi,S.P. (2007) Large-scale
phosphorylation analysis of alpha-factor-arrested Saccharomyces
cerevisiae. J. Proteome Res., 6, 1190–1197.

56. Roeder,R.G. (2005) Transcriptional regulation and the role of
diverse coactivators in animal cells. FEBS Lett., 579, 909–915.

57. Pokholok,D.K., Harbison,C.T., Levine,S., Cole,M.,
Hannett,N.M., Lee,T.I., Bell,G.W., Walker,K., Rolfe,P.A.,
Herbolsheimer,E. et al. (2005) Genome-wide map of nucleosome
acetylation and methylation in yeast. Cell, 122, 517–527.

58. Hargreaves,D.C., Horng,T. and Medzhitov,R. (2009) Control of
inducible gene expression by signal-dependent transcriptional
elongation. Cell, 138, 129–145.

59. Morris,S.A., Rao,B., Garcia,B.A., Hake,S.B., Diaz,R.L.,
Shabanowitz,J., Hunt,D.F., Allis,C.D., Lieb,J.D. and Strahl,B.D.
(2007) Identification of histone H3 lysine 36 acetylation as a

4164 Nucleic Acids Research, 2011, Vol. 39, No. 10



highly conserved histone modification. J. Biol. Chem., 282,
7632–7640.

60. Wang,Z., Zang,C., Rosenfeld,J.A., Schones,D.E., Barski,A.,
Cuddapah,S., Cui,K., Roh,T.Y., Peng,W., Zhang,M.Q. et al.
(2008) Combinatorial patterns of histone acetylations and
methylations in the human genome. Nat. Genet., 40, 897–903.

61. Stewart,M.D., Li,J. and Wong,J. (2005) Relationship between
histone H3 lysine 9 methylation, transcription repression, and
heterochromatin protein 1 recruitment. Mol. Cell. Biol., 25,
2525–2538.

62. Yamada,T., Fischle,W., Sugiyama,T., Allis,C.D. and Grewal,S.I.
(2005) The nucleation and maintenance of heterochromatin by a
histone deacetylase in fission yeast. Mol. Cell, 20, 173–185.

63. Keogh,M.C., Kurdistani,S.K., Morris,S.A., Ahn,S.H., Podolny,V.,
Collins,S.R., Schuldiner,M., Chin,K., Punna,T., Thompson,N.J.
et al. (2005) Cotranscriptional set2 methylation of histone H3
lysine 36 recruits a repressive Rpd3 complex. Cell, 123, 593–605.

64. Merker,J.D., Dominska,M., Greenwell,P.W., Rinella,E.,
Bouck,D.C., Shibata,Y., Strahl,B.D., Mieczkowski,P. and
Petes,T.D. (2008) The histone methylase Set2p and the histone
deacetylase Rpd3p repress meiotic recombination at the HIS4
meiotic recombination hotspot in Saccharomyces cerevisiae.
DNA Repair, 7, 1298–1308.

65. Govind,C.K., Qiu,H., Ginsburg,D.S., Ruan,C., Hofmeyer,K.,
Hu,C., Swaminathan,V., Workman,J.L., Li,B. and

Hinnebusch,A.G. (2010) Phosphorylated Pol II CTD recruits
multiple HDACs, including Rpd3C(S), for methylation-dependent
deacetylation of ORF nucleosomes. Mol. Cell, 39, 234–246.

66. Robert,F., Pokholok,D.K., Hannett,N.M., Rinaldi,N.J.,
Chandy,M., Rolfe,A., Workman,J.L., Gifford,D.K. and
Young,R.A. (2004) Global position and recruitment of HATs and
HDACs in the yeast genome. Mol. Cell, 16, 199–209.

67. Tao,J., Hu,K., Chang,Q., Wu,H., Sherman,N.E., Martinowich,K.,
Klose,R.J., Schanen,C., Jaenisch,R., Wang,W. et al. (2009)
Phosphorylation of MeCP2 at Serine 80 regulates its chromatin
association and neurological function. Proc. Natl Acad. Sci. USA,
106, 4882–4887.

68. Mosammaparast,N. and Shi,Y. Reversal of histone methylation:
biochemical and molecular mechanisms of histone demethylases.
Annu. Rev. Biochem., 79, 155–179.

69. Mersman,D.P., Du,H.N., Fingerman,I.M., South,P.F. and
Briggs,S.D. (2009) Polyubiquitination of the demethylase Jhd2
controls histone methylation and gene expression. Genes Dev., 23,
951–962.

70. Liu,W., Tanasa,B., Tyurina,O.V., Zhou,T.Y., Gassmann,R.,
Liu,W.T., Ohgi,K.A., Benner,C., Garcia-Bassets,I.,
Aggarwal,A.K. et al. (2010) PHF8 mediates histone H4 lysine 20
demethylation events involved in cell cycle progression. Nature,
466, 508–512.

Nucleic Acids Research, 2011, Vol. 39, No. 10 4165


