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In time-to-event analyses, artificial censoring with correction for induced selection bias using inverse probability-
of-censoring weights can be used to 1) examine the natural history of a disease after effective interventions are
widely available, 2) correct bias due to noncompliance with fixed or dynamic treatment regimens, and 3) estimate
survival in the presence of competing risks. Artificial censoring entails censoring participants when they meet
a predefined study criterion, such as exposure to an intervention, failure to comply, or the occurrence of a com-
peting outcome. Inverse probability-of-censoring weights use measured common predictors of the artificial cen-
soring mechanism and the outcome of interest to determine what the survival experience of the artificially censored
participants would be had they never been exposed to the intervention, complied with their treatment regimen, or
not developed the competing outcome. Even if all common predictors are appropriately measured and taken into
account, in the context of small sample size and strong selection bias, inverse probability-of-censoring weights
could fail because of violations in assumptions necessary to correct selection bias. The authors used an example
from the Multicenter AIDS Cohort Study, 1984–2008, regarding estimation of long-term acquired immunodefi-
ciency syndrome-free survival to demonstrate the impact of violations in necessary assumptions. Approaches to
improve correction methods are discussed.

epidemiologic methods; selection bias; survival analysis

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; GG, generalized gamma; HAART, highly
active antiretroviral therapy; HIV, human immunodeficiency virus; IPCW, inverse probability-of-censoring weights; IQR, interquar-
tile range; KM, Kaplan-Meier; MACS, Multicenter AIDS Cohort Study; SE, standard error.

For time-to-event analyses, artificial censoring (1) with
correction for induced selection bias done by using inverse
probability-of-censoring weights (IPCW) can be used to
examine the natural history of a disease after effective in-
terventions (such as therapies) are widely available. This
approach has also been used to address bias due to noncom-
pliance with fixed (2, 3) or dynamic (4) treatment plans, as
well as to estimate survival in the presence of competing
risks (5, 6). Artificial censoring entails censoring partici-
pants when they meet a predefined study criterion, such as
exposure to an intervention, noncompliance with their treat-
ment regimen, or the occurrence of a competing outcome.
IPCW (2, 3) can then be used to determine what the survival

experiences of the artificially censored participants would
have been had they never been exposed to the intervention,
complied, or not developed the competing outcome. The
ability of IPCW to recapture unobserved survival data and
yield an unbiased estimate had the artificial censoring mech-
anism never occurred is dependent on whether the assump-
tions of exchangeability and correct model specification are
met (7).

The present article is organized as follows. First, we de-
fine our notation, provide a taxonomy for follow-up in
cohort studies, define artificial censoring, and explain why
artificial censoring usually requires the use of correction
methods for informative censoring. We also defined the
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assumptions of exchangeability and correct model speci-
fication. Second, we detail the method by which IPCW
corrects for selection bias when the estimand of interest
is the survival function. We also describe how violations of
key assumptions could cause IPCW to fail. Third, we pre-
sent an example of a motivating research question that
could not be answered without bias when using data that
violated the exchangeability assumption. We also show the
extent to which the IPCW estimate is biased and compare
these results with projections from parametric models. We
conclude the article by discussing ways to improve
inferences.

NOTATION

In a cohort of n participants, let T1,. . .,Tn and C1,. . .,Cn

denote the times in visits from origin to the development of
the outcome of interest and censoring, respectively. Let Yi ¼
min(Ti, Ci) and Ci ¼ min(Ci,1, Ci,2), where Yi is the follow-
up time for participant i, Ci,1 is the time from origin to
censoring due to nonartificial reasons (e.g., loss to follow-
up, administrative, death due to an unrelated cause), and Ci,2

is the time from origin to artificial censoring. The observed
data for this cohort are y1,. . .,yn, where y(1) < y(2) < . . .y(n)
are the ordered values of the yi’s.

For participant i and visit y(k), let Ai(y(k)) be an indicator of
artificial censoring by time y(k) (1: censored, 0: otherwise),
Bi(y(k)) be an indicator of censoring due to nonartificial rea-
sons by time y(k) (1: censored, 0: otherwise), Mi(y(k)) be an
indicator of developing the event of interest by time y(k) (1:
event, 0: event-free), �Li(y(k)) be the levels of all measured

time-varying common predictors of the endpoint of interest
and artificial censoring from origin to y(k), and Vi be the
levels of all measured time-fixed common predictors at
origin.

TAXONOMY FOR FOLLOW-UP IN COHORTS WITH
ARTIFICIAL CENSORING

As shown in Figure 1, in cohort studies, typically only
a portion of the participants are observed to develop the
outcome of interest. Among participants with observed out-
comes, yi ¼ ti and fAiðyiÞ;BiðyiÞ;MiðyiÞg ¼ f0; 0; 1g. The
remaining participants are censored at some time during the
study period. Reasons for censoring include loss to follow-
up, death from an unrelated cause, administrative decisions,
or artificial reasons.

Administrative censoring occurs when a participant
reaches the end of study follow-up or another uniform
criterion (e.g., prespecified date) before developing the out-
come of interest, and this criterion is fixed across partici-
pants. Artificial censoring occurs when a participant meets
a defined criterion (e.g., treatment initiation) that may vary
(i.e., occur at different times) across participants. Partici-
pants who are observed to develop the event during fol-
low-up after meeting this criterion are considered to be
censored in the analysis. Therefore, the events and person-
time that occur after the criterion is met are discarded (1, 4).
For observations that are censored for nonartificial reasons,
yi ¼ ci,1 and fAiðyiÞ;BiðyiÞ;MiðyiÞg ¼ f0; 1; 0g. For obser-
vations that are artificially censored, yi ¼ ci,2
andfAiðyiÞ;BiðyiÞ; MiðyiÞg ¼ f1; 0; 0g.

Taxonomy for follow-up in a 
cohort with artificial censoring Methods 1 and 2

Total 435 467

Event Event-free 205 230 218 249
{0,0,1}

Lost to follow-
up, died due to 
an unrelated 

cause, or reached 

Artificially
censored when met 
defined criterion

230 NA 82 167

uniform criterion
{0,1,0}

{1,0,0}

Event Event-free 29 138

A) B) C)

Methods 3, 4, and 5

Figure 1. A) Taxonomy for follow-up in a cohort with artificial censoring. B) Taxonomy used to categorize data from the Multicenter AIDS Cohort
Study, 1984–2008, when follow-up was administratively censored at 1996, as done in methods 1 and 2. C) Taxonomy used to categorize data from
the Multicenter AIDS Cohort Study, 1984–2008, when follow-up was artificially censored at initiation of highly active antiretroviral therapy, as done
in methods 3, 4, and 5. The numbers of artificially censored participants who were and were not observed to develop the event after meeting the
defined criterion appear below the artificially censored category. NA, not applicable.

570 Howe et al.

Am J Epidemiol 2011;173:569–577



The usual assumption of noninformative censoring in co-
hort studies could be plausible for participants censored for
nonartificial reasons. However, the noninformative censor-
ing assumption is rarely likely to hold for artificially cen-
sored participants, given that the criterion for artificial
censoring usually is related to the probability of the outcome
of interest. Therefore, artificial censoring likely induces in-
formative censoring.

To obtain unbiased estimates (e.g., survival), methods
that handle informative censoring such as IPCW must be
used in conjunction with artificial censoring to correct for
the induced selection bias. IPCW assumes exchangeability
and correct model specification. If these assumptions are not
met, the observed estimate could fail to correct for selection
bias.

EXCHANGEABILITY AND CORRECT MODEL
SPECIFICATION

In the setting of selection bias induced by artificial cen-
soring, the exchangeability assumption implies that given
the measured common predictors of the outcome of interest
and artificial censoring, artificially censored participants
have the same prognosis with respect to the outcome of
interest as do participants who are not artificially censored.
Therefore, the exchangeability assumption requires that
P½T ¼ tj V; �LðtÞ� ¼ P½T ¼ tj V; �LðtÞ;C ¼ minðc1; c2Þ�. This
assumption only holds under the following 3 conditions.
The first condition is that all common predictors are appro-
priately measured and accounted for in the analysis. The
second condition is that there are a sufficient number of par-
ticipants under follow-up at all relevant times. Among those
at risk and under follow-up there must be a nonzero (i.e.,
positive) probability of not being artificially censored for
every combination of values observed for the common
predictor histories at all u’s where u ¼ 1, . . ., y(n) (i.e.,
P½AðuÞ ¼ 0j Aðu� 1Þ ¼ 0;Bðu� 1Þ¼ 0;Mðu� 1Þ ¼ 0;V;
�Lðu� 1Þ� > 0). This nonzero probability is often referred to
as positivity (7). Third, the common predictors cannot be
deterministic or nearly deterministic in relation to both the
outcome of interest and the artificial censoring mechanism
among participants over time.

Small sample size or deterministic common predictors
violate the exchangeability assumption because the out-
comes that are observed among the participants who are
not artificially censored in this context will likely not be
representative of the unobserved outcomes among the arti-
ficially censored participants even if one appropriately mea-
sured and accounted for all common predictors (7). Small
sample sizes, highly stratified data due to numerous com-
mon predictors, and continuous common predictors can also
result in random nonpositivity. Smoothing via parametric
models minimizes random nonpositivity due to continuous
common predictors (7). Deterministic or nearly determinis-
tic common predictors can result in strong induced selection
bias with artificial censoring and, in turn, systematic
nonpositivity.

Correct model specification implies that appropriate func-
tional forms of the common predictors are used in the cor-

rection such that P½T ¼ tj V ; �LðtÞ� ¼ P½T ¼ tj g0ðVÞ;
g1ð�LðtÞÞ�, where g0(V) and g1ð�LðtÞÞare coarsening functions
of V and �LðtÞ. Appropriate functional forms maximize ex-
changeability by thoroughly controlling for selection bias
while maintaining positivity (7).

CORRECTING SELECTION BIAS USING INVERSE
PROBABILITY-OF-CENSORING WEIGHTS

To correct for selection bias induced by artificial censor-
ing, the IPCW method can be used to create the pseudo-
population that would have been observed had the artificial
censoring mechanism not occurred. This pseudopopulation
is created by weighting each not artificially censored par-
ticipant’s contribution to a given risk set. Specifically, at
time y(i), each participant is assigned a weight of W(y(i))
that is inversely proportional to the estimated conditional
probability that the participant remained not artificially
censored through time y(i). The conditional probability
and weight W(y(i)) can be estimated by fitting a discrete-
time pooled logistic regression model for artificial censor-
ing, in which the common predictors of the endpoint of
interest and the artificial censoring mechanism are in-
cluded as covariates in the model (4, 8). The Web Appen-
dix (available at http://aje.oxfordjournals.org) lists details
regarding estimation of W(y(i)) and the corrected survival
function.

In the reweighted population,Wi(y(k)) represents the num-
ber of participants with a survival experience or prognosis
with respect to the event similar to that of participant i that
we would expect to be in the risk set at time y(k) in the
absence of artificial censoring. The ability of the IPCW
method to create the pseudopopulation that would exist in
the absence of artificial censoring depends on whether the
assumptions of exchangeability and correct model specifi-
cation are met (7). Estimated weights that are extreme in
value or that in aggregate do not have a mean close to 1
indicate model misspecification or nonpositivity. In turn, an
estimate of the survival function based on such weights may
fail to correct for selection bias. Whether the weights are
extreme because of model misspecification or nonpositivity
cannot be known with certainty. Although the data can be
explored to assess whether there are individuals who were
not artificially censored within certain levels of common
predictors, in the context of high-dimensional data, this type
of exploration becomes unrealistic. In most cases, the cor-
rectness of the specified functional forms cannot be known.
Bias in the survival function resulting from not accounting
for unmeasured common predictors cannot be tested with
observed data (7). However, the presence of deterministic or
nearly deterministic measured covariates can be assessed by
examining the association between the common predictors
and the endpoint of interest, as well as the censoring
mechanism.

In the Web Appendix, simulated data are used to demon-
strate the bias in the IPCW survival function estimate that
can occur in the context of each of the following: small
sample size, strong selection bias, unmeasured common
predictors, and model misspecification.
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EXAMPLE: LONG-TERM ACQUIRED
IMMUNODEFICIENCY SYNDROME-FREE SURVIVAL IN
THE ABSENCE OF HIGHLY ACTIVE ANTIRETROVIRAL
THERAPY

Motivating research question

It has been well established that in the absence of
effective therapies, such as highly active antiretroviral
therapy (HAART), the median time from human immuno-
deficiency virus (HIV) infection to clinical diagnosis of
acquired immunodeficiency syndrome (AIDS) is approxi-
mately 9 years (9–12). Less-established is the proportion
of infected participants who will remain AIDS-free 20–25
years after seroconversion without effective therapies. Es-
timating the proportion of long-term survivors among
HAART-naive individuals remains important for charac-
terizing HIV pathogenesis in terms of identifying corre-
lates of immunity and resistance to disease progression.

Methodological challenges

Estimating long-term HAART-free survival has proven
difficult for several reasons. First, survival analyses con-
ducted before 1996, when HAART first became widely
available, typically did not have follow-up data beyond
10–12 years after incident HIV infection because the HIV
epidemic in the United States began in the late 1970s or
early 1980s. In addition, many of the participants in these
analyses from whom researchers could have collected lon-
ger follow-up data were infected early in the epidemic, well
before study enrollment or HIV antibody testing was avail-
able. Therefore, the date of seroconversion for many of
these study participants was unknown and had to be imputed
(9, 10, 13, 14).

To address the issue of limited long-term follow-up in the
pre-HAARTera, some researchers have attempted to predict
survival for times beyond the observed follow-up on the
basis of parametric models fitted using data collected before
1996 (9). An alternative option to circumvent the issue of
limited participants at risk in the pre-HAART era is to in-
corporate HAART era follow-up time in the analysis, artifi-
cially censor participants at the time of HAART initiation,
and then correct for the induced selection bias (15) by using
IPCW.

Multicenter AIDS Cohort Study population

The Multicenter AIDS Cohort Study (MACS) is an on-
going longitudinal cohort study started in 1984 to examine
the natural history of HIV-1 infection in homosexual and
bisexual men during the time in which recognized cases of
AIDS were confined to the gay population. The MACS pop-
ulation consisted of 6,972 homosexual and bisexual men
recruited from 4 metropolitan areas of the United States
(Baltimore, Maryland/Washington DC; Chicago, Illinois;
Pittsburgh, Pennsylvania; and Los Angeles, California) in
1984–1985, 1987–1991, and 2001–2003. Only men �18
years of age were eligible for enrollment and semiannual
follow-up (16).

The present analysis used data on the 467 MACS par-
ticipants who serconverted between enrollment and their
October 2008 follow-up visit and had �2 years between
their last seronegative and first seropositive visit. The me-
dian age at seroconversion, as well as CD4 cell count and
HIV RNA level at the first HIV seropositive visit were 34
(interquartile range (IQR, 29–40) years, 718 (IQR, 528–
912) cells/mm3, and 29,750 (IQR, 6,694–91,280) copies/
mL, respectively. Before October 2008, there were 209
HAART initiations and 247 AIDS events among these
seroconverters. Of the 209 HAART initiators, 42 initiated
HAARTafter an AIDS diagnosis (refer to Web Appendix).
Clinical AIDS was defined using the Centers for Disease
Control and Prevention 1993 expanded case definition
(17). However, participants who qualified as having AIDS
solely because they reached a CD4 cell count <200 cells/
mm3 or a CD4 percentage of total lymphocytes of <14%
were not considered to have AIDS in this analysis. The
median follow-up time after serconversion was 7.95 (IQR,
5.19–14.75) years.

Multicenter AIDS Cohort Study data structure

Table 1 shows the distribution of seroconversions, AIDS
events, and times from seroconversion to AIDS or exit from
follow-up by type of censoring among the 467 MACS sero-
converters. Given the follow-up times from seroconversion
to AIDS or exit, all information on long-term survival (de-
fined as �12 years after infection) among MACS sero-
converters was provided by data collected after HAART
was available. Of the 247 total AIDS events occurring in
the original population, 42 occurred after HAART was
widely available. Of the 42 AIDS events in the HAART
era, 13 occurred before HAART initiation and 13 occurred
�12 years after infection. Artificially censoring participants
at the time of HAART initiation reduced the number of
observed AIDS outcomes in the HAART era from 42 to
13 and the number of observed AIDS outcomes in the
HAART era �12 years after infection from 13 to 2. The risk
set size in the HAART era �12 years after infection was
reduced by nearly one-third with artificial censoring, drop-
ping from 145 to 52.

Table 2 shows unadjusted hazard ratios of AIDS and
HAART initiation after HIV infection as a function of
markers of disease progression (15) and established predic-
tors of AIDS incubation (10). For analysis of the unadjusted
relative hazard of AIDS, the population was administratively
censored at 1996. For analysis of the unadjusted relative haz-
ard of HAART initiation, the population was restricted to
participants undergoing follow-up as of January 1, 1996. Par-
ticipants who seroconverted before 1996 entered the risk set
in 1996 with x years since seroconversion, where x¼ 1996�
(date of seroconversion).

The fact that in Table 2, the participants most likely to
develop AIDS (i.e., those with older age at seroconversion,
lower CD4 cell count, and higher HIV RNA level) were also
generally more likely to start HAART treatment provided
evidence for induced selection bias with artificial censoring
at HAART initiation. The large size of the relative hazards
in Table 2, particularly for current CD4 cell count, and the
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fact that 68% (i.e., 27 of 40) of all incident AIDS cases that
occurred in the HAART era among participants at risk for
HAART initiation after 1996 were unobserved because of
artificial censoring indicates that the induced selection bias
in this population may be strong. The 85% (i.e., 11 of 13)
drop in the number of observed AIDS cases with artificial
censoring among those at risk �12 years after seroconver-
sion provides evidence of nearly deterministic common pre-
dictors �12 years after infection.

The small sample sizes �12 years after infection in the
artificially censored population (i.e., 52) and the strong in-
duced selection bias may prevent IPCW from correcting the
selection bias induced by artificially censoring. Therefore,
residual selection bias might still be present even if all
common predictors of AIDS and HAART initiation are
appropriately accounted for in the correction.

Estimation of AIDS-free survival

Five methods were used to estimate AIDS-free survival
among the 467 MACS seroconverters. As shown in Figure 1,
for the first 2 methods, the analysis population was restricted
to participants who seroconverted before 1996, with admin-
istrative censoring at 1996. AIDS-free survival was esti-
mated by using both the standard Kaplan-Meier (KM)
estimator (method 1) and the generalized gamma (GG)
model (method 2) (18). Estimates from the standard KM
estimator and the GG model before the maximum observed
follow-up time were compared to assess the fit of the GG
model. The fitted GG model was used to predict AIDS-free
survival for times beyond the maximum observed follow-up
time for comparison with survival estimates obtained from
methods 3, 4, and 5.

In methods 3, 4, and 5, the analysis population included
both participants who seroconverted before 1996 and those

who seroconverted after 1996. However, follow-up time was
censored when a participant initiated HAART. The third
method ignored the induced selection bias and estimated
survival by using a standard KM curve. The fourth method
used the IPCW estimator described in the Web Appendix to
correct the induced selection bias. The fifth method fitted
a GG model through the IPCW data.

Pooled logistic regression models, as shown in the Web
Appendix, were used to estimate time-varying weights in
methods 4 and 5 (8). The model for the probability of
HAART initiation used to estimate weights included the
following continuous predictors with 5-knot natural cubic
splines with knots placed at the fifth, 28th, 50th, 72nd, and
95th percentiles: visit since HIV infection, age at serocon-
version, CD4 and loge HIV RNA at the first positive visit,
and CD4 and loge HIV RNA at the most recent visit and 1
and 2 visits before the visit at risk for HAART initiation.
Interactions between visit and all other predictors were in-
cluded in the weight model.

The lower limit of detection for HIV RNA changed over
time, from 400 copies/mL to 50 copies/mL after 1996. HIV
RNA values below the detectable limit of 400 copies/mL
were assigned a value of 300 copies/mL. RNA values below
the detectable limit of 50 copies/mL were assigned a value of
40 copies/mL. Participants with missing CD4 or HIV RNA
data at a given visit were assigned the CD4 or HIV RNAvalue
from the closest prior visit. If no prior CD4 level was avail-
able, the value of the closest subsequent cell count was as-
signed. If no prior HIV RNA data were available, the
assigned HIV RNA level was 40 copies/mL. Among partic-
ipants with�1 measured CD4 cell count, the median number
of visits to a prior visit with a CD4 measurement was 3 (IQR,
1–8) visits. Among participants with �1 HIV RNA measure-
ment, the median number of visits to a prior visit with a mea-
sured HIV RNA level was 3 (IQR, 1–7).

Table 1. Distribution of Seroconversions, AIDS Events, Time From Seroconversion to AIDS or

Exit From Follow-Up, and HAART Initiation by Type of Censoring Among 467 Seroconverters in

the Multicenter AIDS Cohort Study, 1984–2008

Original Administrative
Censoring
at 1996

Artificial Censoring at
HAART Initiation

Total
Before
1996

1996
or After

Total
Before
1996

1996
or After

No. of seroconversions 467 435 32 435 467 435 32

No. of AIDS events 247 205 42 205 218 205 13

Risk set size �12 years
after seroconversion

145 0 145 0 52 0 52

No. of AIDS events �12 years
after seroconversion

13 0 13 0 2 0 2

Maximum time from
seroconversion to
AIDS or exit, years

23.39 11.43 23.27

Maximum time from
seroconversion
to AIDS, years

21.60 10.88 16.73

No. of participants initiating
HAART

209 14 195 14 167 7 160

Abbreviations: AIDS, acquired immunodeficiency syndrome; HAART, highly active antiretrovi-

ral therapy.
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HAARTwas assumed to be unavailable for initiation be-
fore 1996. Therefore, the weights for all times before 1996
were set to 1. The weights for all times after 1996 were
estimated by using participants who were in the risk set at
a specific time since infection after 1996. The weights esti-
mated for methods 4 and 5 did not show signs of nonposi-
tivity (refer to Web Appendix).

For methods 2, 4, and 5, 95% confidence intervals were
obtained by using bootstrap methods. For each of 500 boot-
strap samples, 435 observations were sampled with replace-
ment from the observed data in method 2, whereas 500
bootstrap samples of size 467 were sampled with replace-
ment from the observed data in methods 4 and 5. In methods
4 and 5, the weights were reestimated for each bootstrap
sample while preserving the functional forms of the weight
models. Confidence intervals were based on the 2.5th and
97.5th percentiles of the bootstrapped sampling distribution.
All analyses were performed in R, version 2.9.1 (R Foun-
dation for Statistical Computing, Vienna, Austria), STATA,
version 9.2 (StataCorp LP, College Station, Texas), or SAS,
version 9.2 (SAS Institute, Inc., Cary, North Carolina).

Results from 5 estimation methods

Table 3 shows comparisons of the AIDS-free survival
estimates obtained by using all 5 methods. For each method,
Figure 2 shows the corresponding log cumulative hazard
estimate derived from the survival estimates shown in
Table 3. In Figure 2, the log cumulative hazard estimates
derived from the standard KM estimator (method 1) and GG
model (method 2) when follow-up time was censored at
1996 are labeled ‘‘Administrative KM’’ and ‘‘GG,’’ respec-
tively. The log cumulative hazard estimates from the IPCW
GG (method 5), IPCW (method 4), and standard KM
(method 3) approaches when follow-up was censored at
HAART initiation are labeled ‘‘IPCW GG,’’ ‘‘IPCW,’’ and
‘‘Artificial KM,’’ respectively.

For all observed follow-up times where the standard KM
estimator applied to the pre-1996 data could provide unbi-
ased information, the GG model, with fitted parameter
values of b ¼ 2.24 (standard error (SE, 0.05), r ¼ 0.56
(SE, 0.06), and k ¼ 0.57 (SE, 0.21), appeared to fit the data
well in terms of AIDS-free survival and the corresponding
log cumulative hazard function. However, in the left and
right tails of the administrative KM log cumulative hazard

Table 2. Unadjusted Relative Hazards of AIDS and HAART Initiation by Markers of Disease

Progression and Predictors of AIDS Incubation Among 467 Seroconverters in the Multicenter

AIDS Cohort Study, 1984–2008

RH of AIDSa 95% CI
RH of HAART
Initiationb 95% CI

Age at seroconversion, years

<50 1.00 1.00

�50 3.17 1.71, 5.87 1.06 0.48, 1.86

CD4 level at first
seropositive visit,
cells/mm3

�750 1.00 1.00

<750 1.42 1.07, 1.88 1.73 1.28, 2.33

HIV RNA level at first
seropositive visit,
copies/mL

<10,000 1.00 1.00

�10,000 2.43 1.68, 3.49 1.33 0.95, 1.87

CD4 level at
current visit,
cells/mm3

�200 1.00 1.00

<200 10.19 7.64, 13.58 4.27 3.10, 5.89

HIV RNA level at
current
seropositive visit,
copies/mL

<10,000 1.00 1.00

�10,000 5.73 3.01, 10.90 1.50 1.09, 2.07

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; HAART,

highly active antiretroviral therapy; HIV, human immunodeficiency virus; RH, relative hazard.
a Restricted to participants who seroconverted before 1996 with administrative censoring at

1996.
b Restricted to participants under follow-up as of January 1, 1996. Person-time accrued before

1996 but after serconversion was treated as a late entry.
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function, there appeared to be some departure from the GG
log cumulative hazard. The artificial KM, IPCW, and IPCW
GG with fitted parameter values of b ¼ 2.22 (SE, 0.06),
r ¼ 0.73 (SE, 0.05), and k ¼ �0.10 (SE, 0.21) survival
curves systematically overestimated the administrative KM
AIDS-free survival.

For times beyond where the standard KM applied to the
pre-1996 data could provide information, the artificial
KM curve consistently had the highest survival, followed
closely by the IPCW curve. The IPCW GG model predicted
survival estimates that were substantially lower than those
predicted with methods 3 and 4, yet higher than that pre-
dicted with the GG model. Specifically, the artificial KM
estimator predicted that 35.3% (95% confidence interval

(CI): 28.9, 41.8) of all seroconverters in MACS would be
AIDS-free 20 years after infection. The corresponding num-
ber for the IPCWestimator was 29.0% (95% CI: 18.8, 38.2).
On the basis of the IPCW GG and GG models, only 15.6%
(95% CI: 8.5, 22.5) and 4.4% (95% CI: 1.3, 10.5), respec-
tively, of seroconverters in this male population were ex-
pected to be AIDS-free 20 years after infection.

DISCUSSION

MACS example

As expected, artificially censoring participants when they
initiated HAART without correcting for the induced

Table 3. AIDS-Free Survival Estimates by Methoda Among 467 Seroconverters in the Multicenter AIDS Cohort Study, 1984–2008

Survival,
Years

Method 1 (n 5 435) Method 2 (n 5 435) Method 3 (n 5 467) Method 4 (n 5 467) Method 5 (n 5 467)

KM 95% CI GGb 95% CI KM 95% CI IPCW 95% CI IPCW GGc 95% CI

2 97.9 96.0, 98.9 97.6 96.4, 98.7 98.0 96.2, 99.0 98.0 96.5, 99.2 98.6 97.7, 99.5

4 88.1 84.5, 90.9 87.1 84.5, 89.6 88.8 85.5, 91.5 89.4 86.2, 92.4 88.4 86.1, 90.7

6 70.6 65.6, 75.0 70.8 67.2, 74.6 72.5 67.9, 76.6 72.4 67.9, 76.9 73.4 69.7, 76.7

8 52.6 47.0, 57.8 53.6 49.4, 58.1 56.0 50.7, 60.9 55.1 49.7, 60.2 58.9 54.4, 62.9

10 40.0 34.3, 45.7 38.4 33.3, 44.1 44.1 38.7, 49.4 42.8 37.1, 47.7 46.8 40.9, 51.8

12 26.4 20.8, 32.8 38.1 32.5, 43.6 35.0 29.0, 41.3 37.2 30.0, 43.1

14 17.5 11.9, 24.9 37.2 31.5, 42.9 33.0 22.9, 39.9 29.6 22.0, 36.2

16 11.3 6.1, 18.4 37.2 31.5, 42.9 33.0 22.9, 39.9 23.8 16.0, 30.7

18 7.2 2.9, 13.7 35.3 28.9, 41.8 29.0 18.8, 38.2 19.2 11.6, 26.2

20 4.4 1.3, 10.5 35.3 28.9, 41.8 29.0 18.8, 38.2 15.6 8.5, 22.5

Abbreviations: AIDS, acquired immunodeficiency syndrome; CI, confidence interval; GG, generalized gamma; IPCW, inverse probability-of-

censoring weights; KM, Kaplan-Meier.
a Methods 1 and 2 used data through 1996 and did not include artificial censoring at HAART; methods 3–5 encompassed the whole study period

and did include artificial censoring at HAART.
b Estimated parameter values of b ¼ 2.24 (SE, 0.05), r ¼ 0.56 (SE, 0.06), and k ¼ 0.57 (SE, 0.21).
c Estimated parameter values of b ¼ 2.22 (SE, 0.06), r ¼ 0.73 (SE, 0.05), and k ¼ �0.10 (SE, 0.21).

Figure 2. A) Log cumulative hazard of acquired immunodeficiency syndrome (AIDS) among 467 seroconverters in the Multicenter AIDS Cohort
Study, 1984–2008, based on the standard Kaplan-Meier (administrative KM) estimator and the generalized gamma (GG) distribution when the date
of analysis was 1996. B) Log cumulative hazard for AIDS among 467 seroconverters the Multicenter AIDS Cohort Study, 1984–2008, based on the
standard KM estimator (artificial KM), inverse probability-of-censoring weights (IPCW), and IPCWGGwhen follow-up was censored at highly active
antiretroviral therapy initiation compared with the GG model when the date of analysis was 1996.
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selection bias resulted in overestimation of survival. Using
the estimator in which we ignored the selection bias led to
systematic overestimation of the pre-1996 KM curve. This
overestimation is likely most pronounced for times �12
years after infection where the selection bias is assumed
to be the greatest. Given that the uncorrected and IPCW-
corrected curves were close, that the IPCW GG curve over-
estimated the administrative KM survival estimate, and the
expectation of a small pool of long-term nonprogressors
(19), the IPCW method likely failed to correct the induced
selection bias. The apparent failure was largely due to small
sample sizes and strong induced selection bias, particularly
�12 years after infection.

Missing data for CD4 counts and HIV RNA levels, as well
as the presence of unmeasured common predictors, might have
also contributed to the observed residual selection bias. Al-
though there was no empirical evidence, nonpositivity might
still have been present, as well as model misspecification.

Although the GG model fit the data reasonably well up
until 10 years after infection, the observed slight departure
in the right tail of the KM estimator from the GG curve
could indicate that >10–12 years after infection, the GG
model presented here might not appropriately describe the
right tail of the AIDS incubation period.

Conclusion

Artificial censoring with correction using IPCW might
fail when data that violate the exchangeability assumption
are used. The MACS data failed to meet at least 2 of the 3
conditions required to achieve exchangeability. The first
condition is a sufficiently large sample size. The second
condition is the absence of common predictors that are
deterministic or nearly deterministic in relation to the out-
come and censoring mechanism. Both of these conditions
must be met for the not artificially censored outcomes to
represent artificially censored outcomes.

The first condition can be addressed by pooling the cur-
rent data with data from a similar population with an ample
number of participants under follow-up at all relevant times
after infection, such as the Concerted Action on Serocon-
version to AIDS and Death in Europe study (20). The sec-
ond condition can be addressed by further requiring that
known common predictors of the outcome and censoring
mechanism not be as strong in the population selected for
pooling. The association between the common predictors
and the outcome and censoring mechanism will therefore
be attenuated in the pooled data. In turn, artificial censoring
in the pooled sample will not result in as strong a selection
bias. If data pooling is not an option or does not sufficiently
improve exchangeability, expanding the inclusion criteria
for the analysis population could help increase the sample
size and attenuate selection bias.

For the question explored in this article, it is likely that
the true long-term AIDS-free survival falls between the GG
and IPCW GG estimates. The GG model predicted that
4.4% of the MACS men would survive AIDS-free 20 years
after infection, whereas the IPCW GG model predicted a
proportion of 15.6%. The result from the IPCW GG model
is consistent with the 13% reported in a previous analysis in

which researchers attempted to predict long-term AIDS-free
survival in the MACS cohort (9–10). Similar to the IPCW
GG model, the prior analysis indicated a lognormal AIDS
incubation period. Therefore, although the IPCW GG ap-
proach is still likely subject to residual selection bias, com-
pared with the IPCW method alone, IPCW in combination
with the GG approach appears to substantially improve es-
timation of long-term AIDS-free survival.

In conclusion, estimating survival based on artificial cen-
soring with IPCW correction in the presence of small sam-
ple sizes and strong selection bias induced by artificial
censoring might not yield a correct estimate of survival,
even if all common predictors of artificial censoring and
the outcome are appropriately measured and taken into ac-
count in the correction. Similar limitations apply to other
methods for handling informatively censored data (21–25).
Extending the data by pooling or expanding study inclusion
criteria might improve correction methods.
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