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ABSTRACT

Motivation: Discriminant analysis is an effective tool for the
classification of experimental units into groups. Here, we consider
the typical problem of classifying subjects according to phenotypes
via gene expression data and propose a method that incorporates
variable selection into the inferential procedure, for the identification
of the important biomarkers. To achieve this goal, we build upon
a conjugate normal discriminant model, both linear and quadratic,
and include a stochastic search variable selection procedure via an
MCMC algorithm. Furthermore, we incorporate into the model prior
information on the relationships among the genes as described by
a gene–gene network. We use a Markov random field (MRF) prior
to map the network connections among genes. Our prior model
assumes that neighboring genes in the network are more likely to
have a joint effect on the relevant biological processes.
Results: We use simulated data to assess performances of our
method. In particular, we compare the MRF prior to a situation
where independent Bernoulli priors are chosen for the individual
predictors. We also illustrate the method on benchmark datasets for
gene expression. Our simulation studies show that employing the
MRF prior improves on selection accuracy. In real data applications,
in addition to identifying markers and improving prediction accuracy,
we show how the integration of existing biological knowledge into
the prior model results in an increased ability to identify genes with
strong discriminatory power and also aids the interpretation of the
results.
Contact: marina@rice.edu
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1 INTRODUCTION
Discriminant analysis, sometimes called supervised pattern
recognition, is a statistical technique used to classify observations
into groups. For each case in a given training set a p×1 vector
of observations, xi, and a known assignment to one of G groups
are available. On the basis of these data, we wish to derive a
classification rule that assigns future cases to their correct groups.
If the distribution of the n×p matrix X of the data, conditional on
the group membership, is assumed to be a multivariate normal, then
this statistical methodology is known as discriminant analysis.

We consider the typical problem of classifying subjects according
to phenotypes via gene expressions and propose a method to
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include a variable selection procedure into the inferential process,
for the identification of the important biomarkers. We build upon
a conjugate normal discriminant model, linear or quadratic, and
include a stochastic search variable selection procedure via an
MCMC algorithm. Furthermore, we use dependent priors that
reflect known relationships among the genes. Recently, there has
been a rapid accumulation of biological knowledge in the form
of various gene–gene networks. The importance of incorporating
such biological knowledge into the analysis of genomic data
has been increasingly recognized. Here, we view a gene–gene
network as an undirected graph with nodes representing genes
and edges representing interactions between genes. We capture
this information via a Markov random field (MRF) prior that
maps the connections among genes. Our prior model assumes that
neighboring genes in the network are more likely to have a joint
effect on the relevant biological processes. Similar priors have been
used in linear regression models by Li and Zhang (2010), Wei and
Pan (2010) and Stingo et al. (2010) and in gamma-gamma models
by Wei and Li (2007, 2008). We extend their use to the discriminant
analysis setting. We illustrate our method for the case of quadratic
discriminant analysis, where different groups are allowed to have
different covariance matrices.

We show good performances on simulation studies and illustrate
the method on benchmark datasets for gene expression. In particular,
we compare the MRF prior to a situation where independent
Bernoulli priors are chosen for the individual predictors and show
that employing the MRF prior leads to more accurate selection.
Other authors have reported similar results. Li and Zhang (2010),
in particular, comment on the effect of the MRF prior on the
selection power in their linear regression setting. They also notice
that adding the MRF prior implies a relatively small increase in
computational cost. Wei and Li (2007, 2008) and Stingo et al. (2010)
report that their methods are quite effective in identifying genes and
modified subnetworks, with higher sensitivity than commonly used
procedures that do not use the network structure, and similar or, in
some cases, lower false discovery rates. In real data applications,
in addition to improving prediction accuracy, we show how the
integration of biological knowledge into the prior model results in an
increased ability to identify genes with strong discriminatory power
and also aids the interpretation of the results.

The rest of the article is organized as follows: in Section 2,
we introduce discriminant analysis under the Bayesian paradigm
and describe how to perform variable selection. We also propose
a way to incorporate information about gene–gene networks into
the prior model. In Section 3, we present the MCMC algorithm for
posterior inference. In Section 4, we investigate performances of the
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proposed method on simulated data and conclude, in Section 5, with
applications to benchmark datasets for gene expression where we
incorporate the gene–gene network prior.

2 BAYESIAN DISCRIMINANT ANALYSIS
Let X indicate the observed data and let y be the n×1 vector of group
indicators. We assume that each observation comes from one of G
possible groups, each with distribution N(µg,�g). We represent the
data from each group by the ng ×p matrix

Xg −1ngµ
T
g ∼N (I,�g), (1)

with g=1,...,G and where the vector µg and the matrix �g are the
mean and the covariance matrix of the g-th group, respectively. Here
the notation V−M∼N (A,B) indicates a matrix normal variate V
with matrix mean M and with variance matrices biiA for its generic
i-th column and ajjB for its generic j-th row, see Dawid (1981).
Taking a conjugate Bayesian approach, we impose a multivariate
normal distribution on µg and an inverse-Wishart prior on the
covariance matrix �g, that is,

µg ∼N(mg,hg�g)

�g ∼ IW (δg,�g).

This parametrization, besides being the standard setting in Bayesian
inference, allows us to create a computationally efficient variable
selection algorithm by integrating out means and covariances and
designing Metropolis steps that depend only on the selected and
proposed variables, see Section 3.

In discriminant analysis, the predictive distribution of a new
observation xf is used to classify the new sample into one of
the possible G groups. This distribution, see Brown (1993) among
others, is a multivariate T -student of the type

xf −µ̃g ∼T (δ∗g,ag,�∗
g), (2)

where µ̃g =πgmg +(1−πg)x̄g, δ∗g =δg +ng, ag =1+(1/hg +ng)−1

and �∗
g =�g +Sg +(hg +1/ng)−1(x̄g −mg)T (x̄g −mg) with πg =

(1+hgng)−1 and Sg = (Xg −1ng x̄T
g )T (Xg −1ng x̄T

g ).
The probability that the future observation, given the observed

data, belongs to group g is then given by

πg(yf |X)=p(yf =g|Xf
γ ,X), (3)

where yf is the group indicator of the new observation. By estimating
the prior probability that one observation comes from group g with
π̂g =ng/n, the previous distribution can be written in closed form as

πg(yf |X)= pg(Xf )π̂g∑G
i=1,pi(Xf )π̂i

,

where pg(Xf ) indicates the predictive distribution defined in (2).
The new observations is then assigned to the group with the highest
posterior probability.

2.1 Likelihood and prior setting for variable selection
Our aim is to construct a classifier while simultaneously selecting
the discriminating variables (i.e. biomarkers). Here, we extend an
approach to variable selection proposed by Tadesse et al. (2005) for
model-based clustering to the discriminant analysis framework. As

done by these authors, we introduce a (p×1) latent binary vector
γ , whose elements equal to 1 indicate the selected variables, i.e.
γj =1 if variable j contributes to the classification of the n units
into the corresponding groups. We use the latent vector γ to index
the contribution of the different variables to the likelihood. Unlike
Tadesse et al. (2005), we avoid any independent assumption among
the variables by defining a likelihood that allows to separate the
discriminating variables from the noisy ones as

L(X,y;·)=
n∏

i=1

p(Xi(γ c)|Xi(γ ))
G∏

g=1

ng∏
i=1

w
ng
g pg(Xi(γ )), (4)

where wg is the prior probability that unit i belongs to group g,
Xi(γ c) is the |γ c|×1 vector of the non-selected variables and Xi(γ )
is the |γ |×1 vector of the selected ones, for the i-th subject. Under
the normality assumption on the data, the likelihood becomes

n∏
i=1

N|γc|(Xi(γ c) −BXi(γ );µ0(γ c),�0(γ c))

G∏
g=1

ng∏
i=1

w
ng
g N|γ |(Xi(γ);µg(γ ),�g(γ)).

where B is a matrix of regression coefficients resulting from the
implied linearity of the expected value of the conditional distribution
p(Xi(γ c)|Xi(γ )), and where µ0(γ c) and �0(γ c) are the mean and
covariance matrix, respectively, of Xi(γ c). Murphy et al. (2010)
use the same likelihood factorization (4) in a frequentist approach
to variable selection in discriminant analysis. We again impose
conjugate priors on the parameters corresponding to the non-selected
variables:

µ0(γ c)|�0(γ c) ∼ N(m0(γ c),h0�(γ c))
B−B0|�0(γ c) ∼ N (Hγ ,�(γ c))

�0(γ c) ∼ IW (δc,�0(γ c)).

We complete the prior model by defining an improper non-
informative prior on the vector w= (w1,...,wG) as a Dirichlet
distribution, w∼Dirichlet(0,...,0). We discuss priors for the latent
indicator γ in the next Section. Note that, with the inclusion of the
variable selection mechanism, the predictive distribution (3) does
not change as it depends only on the selected variables.

Without loss of generality, at least for the inferential procedure
described in Section 3, we can assume that the set of non-
selected variables is formed by only one variable so that the
prior parametrization can be simplified using the scalar σ2 instead
of �0(γ c) and the (|γ |×1) vector β instead of the |γ c|×|γ |
matrix B, with σ2 ∼ Inv−Gamma(δ/2,k0/2) and β ∼N(β0,σ2Hγ ).
To obtain this parametrization, the commonly used assumption
�0(γ c) =k0I|γ c| is needed, see for example Tadesse et al. (2005)
for a model-based clustering context, and Dobra et al. (2004) for a
graphical model context.

2.2 Prior distribution for the integration of gene
network information

Although the model allows for dependencies among the variables,
it is not straightforward to specify dependence structures known
a priori on the covariance matrix prior. When prior information
is available, a better strategy is to incorporate it into the prior
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distribution on γ . The prior model for this parameter is indeed quite
flexible and allows the incorporation of biological information in a
very natural way. Here, we use in particular biological information
that derive from existing databases on gene–gene networks. We
encode such gene–gene network information in our model via a MRF
prior on γ . A MRF is a graphical model in which the distribution
of a set of random variables follows Markov properties that can be
described by an undirected graph.

In our context, the MRF structure represents the gene–gene
network, i.e. genes are represented by nodes and relations between
them by edges (direct links). With the parametrization we adopt the
global MRF distribution for γ is given by

p(γ |d,F)∝exp(dT γ +γ T Fγ ), (5)

with d=d1p and 1p the unit vector of dimension p, and F a matrix
with elements {fij} usually set to some constants f for the connected
nodes and to 0 for the non-connected ones. Here d controls the
sparsity of the model, while f affects the probability of selection of
a variable according to its neighbor values. This is more evident by
noting that the conditional probability

P(γj|d,f ,γk,k ∈Nj)=
exp(γj(d+f

∑
k∈Nj

γk))

1+exp(d+f
∑

k∈Nj
γk)

, (6)

with Nj the set of direct neighbors of variable j in the MRF, increases
as a function of the number of selected neighbor genes. With this
parametrization, some care is needed in deciding whether to put a
prior distribution on f . Allowing f to vary can in fact lead to a phase
transition problem, that is, the expected number of variables equal
to 1 can increase massively for small increments of f . This problem
can happen because Equation (6) can only increase as a function of
the number of xj’s equal to 1.

If a variable does not have any neighbor, its prior distribution
reduces to an independent Bernoulli with parameter p=exp(d)/[1+
exp(d)], which is a logistic transformation of d.

3 MCMC FOR POSTERIOR INFERENCE
With the main purpose being variable selection, we perform
posterior inference by concentrating on the posterior distribution
on γ . This distribution cannot be obtained in closed form and an
MCMC is required. The inferential procedure can be simplified by
integrating out the parameters wg,β,σ2,µ0,µg and �g, obtaining
the following marginal likelihood:

p(X|y,γ ) ∝ (k0 +(x(γ c) −1pγ
m0(γ c) −X(γ )β)T

(In +h01n1T
n +X(γ )Hγ XT

(γ ))
−1

(x(γ c) −1pγ
m0(γ c) −X(γ )β))− n+δ

2∏G
g=1Kg(γ )|�g(γ )|(δ+pγ −1)/2

|�g(γ ) +Sg(γ )|−(ng+δ+pγ −1)/2,

where

Kg(γ ) = (h1ng+1)−pγ /2
∏pγ

j=1�( 1
2 (ng+δ+pγ −j))

�( 1
2 (δ+pγ −j))

,

Sg(γ ) = ∑
i|γ i=1(xi(γ ) − x̄g(γ ))(xi(γ ) − x̄g(γ ))

T

+ ng

h0ng+1 (m0(γ ) − x̄g(γ ))(m0(γ ) − x̄g(γ ))
T .

We implement a Stochastic Search Variable Selection (SSVS)
algorithm that has been successfully and extensively used in the

variable selection literature, see Madigan and York (1995) for
graphical models, Brown et al. (2002) for linear regression models,
Sha et al. (2004) for classification settings with probit models
and Tadesse et al. (2005) for clustering, among others. This is
a Metropolis type of algorithm that uses two types of move, the
addition/deletion of one selected variable or the swapping of one
selected variable with a non selected one, as follows:

• with probability φ, add or delete one variable by choosing at
random one component in the current γ and changing its value;

• with probability 1−φ, swap two elements by choosing
independently at random one 0 and one 1 in the current γ and
changing their values.

The proposed γ new is accepted with probability given by the ratio
of the relative posterior probabilities of new versus current model

min

[
p(X|y,γ new)π(γ new)

p(X|y,γ old )π(γ old )
,1

]
. (7)

Because these moves are symmetric, the proposal distribution does
not appear in the ratio above. In addition, the calculation of (7) can
be simplified using a factorization of the marginal likelihood that
allows to treat the part that involves the non-significant variables as
one-dimensional, see Murphy et al. (2010) for the full details.

The MCMC procedure results in a list of visited models,
γ (0),...,γ (T ) and their corresponding posterior probabilities.
Variable selection can then be achieved either by looking at the
γ vectors with largest joint posterior probabilities among the visited
models or, marginally, by calculating frequencies of inclusion for
each γj and then choosing those γj’s with frequencies exceeding
a given cut-off value. Finally, using the selected variables new
observations are assigned to one of the G groups according to (3).

4 SIMULATED DATA
We first validate our approach through simulations. We consider
simulated scenarios that mimic the characteristics of gene expression
data, in particular the relatively small sample size with respect to the
number of variables and the fact that variables exhibit correlation
structure. We focus on situations where most of the variables are
noisy ones, to test the ability of our method to discover relevant
covariates in the presence of a good amount of noise.

More in details, we generated a sample of 50 observations from
a mixture of three multivariate normal densities, induced by six
variables,

xi = ∼ I[1≤i≤20]N (µ1,�1)+I[21≤i≤35]N (µ2,�2)

+ I[36≤i≤50]N (µ3,�3),

with xi = (xi,1,...,xi,6), for i=1,...,50, and where I[.] is the
indicator function. The first 20 samples arose from the first
distribution, the next 15 came from the second group and the last 15
from the third group. We then divided the observations into two sets,
obtaining a training set of size 33 and a validation set of size 17. The
training set was formed by 13 units from group 1, 10 from group 2
and 10 from group 3 while the validation set by 7 units from group 1,
5 from group 2 and 5 from group 3. We set the means of the normal
distributions equal to µ1 =−2×1p,µ2 =3.5×1p and µ3 =1×1p,
where 1p is a unit vector of dimension p=6. We constructed the
covariance matrices of the six variables in the following way: the
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elements on the diagonals were set to σ2
1 =3,σ2

2 =2 and σ2
3 =2.5.

The correlation structures of the six variables were then represented
by 3×2 grids with elements equal to 0.2 if two variables were
connected and 0 otherwise. We arbitrarily connected each variable
in the 3×2 lattice systems to either 2 or 3 other variables. This
generating mechanism creates correlation also between variables
not directly connected in the lattice systems.

We report here results obtained by considering four different
settings: in settings (i) and (ii) an additional set of s=100
noisy variables was generated. Settings (iii) and (iv) used 1024
noisy variables. The noisy variables were generated using a
linear regression model where each of the six discriminatory
variables affected three noisy variables and where the covariance
structure of the error terms corresponded to a 10×10 (or 33×
32) lattice system with correlations equal to 0.1 and variances
set to 1 for settings (i) and (iii) and 2 for settings (ii) and
(iv). This generating mechanism produced the following empirical
correlation: in setting (i) the correlations between the noisy
variables were in the range (−0.42, 0.54), those between the
discriminatory variables were in the range (0.55,0.80) and those
between the noisy variables and the discriminatory ones in
(−0.39,0.59). In setting (ii), the correlations between the noisy
variables were in the range (−0.42,0.54), those between the
discriminatory variables in (0.55,0.80) and those between the
noisy variables and the discriminatory ones in (−0.39,0.50). In
setting (iii), the correlations between the noisy variables were
in the range (−0.60,0.59), those between the discriminatory
variables in (0.55,0.80) and between the noisy variables and
the discriminatory ones in (−0.52,0.70). Finally, in setting
(iv) the correlations between the noisy variables were in the
range −0.60,0.59, those between the discriminatory variables
in (0.55,0.80) and those between the noisy variables and
the discriminatory ones in (−0.52,0.64). In every setting, we
permuted the columns of the data matrix X, to disperse the
predictors.

We set δ=3, the minimum value such that the expectation of
� exists, and, as suggested by Tadesse et al. (2005), specified
Hγ =100 ·I|γ|, h1 = ...=hG =10, h0 =100 to obtain priors fairly
flat over the region where the data are defined. Some care is needed
in the choice of �g and k0. As suggested by Kim et al. (2006),
these hyperparameters should be specified in the range of variability
of the data. We found that a value around the mean of the first
l eigenvalues of the covariance matrix of the data, with l the
expected number of significant variables, led to good results. We
set �g =0.05−1 ·I|γ| and k0 =10−4, a value close to the mean of
the remaining p− l eigenvalues, and assumed unequal covariances
across the groups.

In an effort to show the advantages of using the MRF prior
described in Section 2.2, we repeated the analysis of the four
scenarios twice, the first time using the MRF prior with f =1 and
the second time using a simple Bernoulli prior on γ . We set the
expected number of included variables to 10. For each setting, we
ran one MCMC chain for 100 000 iterations, with 10 000 sweeps as
burn-in. Each chain started from a model with 10 randomly selected
variables. In our Matlab implementation, the MCMC algorithm runs
in only 9–11 minutes, depending on the scenario, on an Intel Core
2 Quad station (2.4 GHz) with 4 GB of RAM.

Our results suggest that the MRF prior helps in the selection of
the correct variables: in all four scenarios, the posterior probabilities

Fig. 1. Marginal posterior probabilities of inclusion for single variables for
two of the four simulated scenarios, with and without MRF prior.

of the discriminatory variables are higher when the MRF prior
is used. In addition, some of the discriminatory variables are not
selected when the MRF prior is not used. Figure 1, in particular,
shows plots of the marginal posterior probabilities of inclusion of
single variables, p(γj =1|X,y), for two of the simulated scenarios.
In setting (i) with the MRF prior, a threshold of 0.5 on the
posterior probability results in the selection of five of the six
significant variables, while a perfect selection is achieved with a
threshold of 0.4. Without the MRF prior, a threshold of 0.5 on the
posterior probability results in the selection of only four significant
variables, while five discriminatory variables are selected with a
threshold of 0.4. When calculating the posterior probabilities of
class memberships for the 17 observations of the validation set,
based on the selected variables, our method perfectly assigns units
to the correct groups when the MRF prior is used, while unit 6
is missclassified if this prior is not used. A similar behavior was
observed in scenario (ii).

The method performed well also when increasing the number of
noisy variables to 1024, with the only difference that the posterior
probabilities were generally lower. In setting (iii), using the MRF
prior we obtained a perfect selection of all six significant variables
with a threshold of 0.19 on the marginal of p(γj =1|X,y), without
any false positives. Without MRF prior, the best selection was
obtained with a threshold of 0.14 and led to the selection of five of
the six significant variables. A threshold of 0.5 led to the selection
of four of the six discriminatory variables, both with and without
the MRF prior, while a threshold of 0.4 led to the selection of five of
the six discriminatory variables when the MRF prior is used and to
the selection of four of the six discriminatory variables without the
MRF prior. In the most difficult simulation scenario, setting (iv), with
a threshold of 0.5 the algorithm with the MRF prior selected three
significant variables without any false positive, while when the MRF
is not used a threshold of 0.5 led to correctly select two significant
variables, without any false positives.Athird discriminatory variable
was included with a threshold of 0.28.
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5 BENCHMARK DATASETS
In this section, we use benchmark examples for gene expression
analysis to highlight the characteristics of our proposed method. We
focus in particular on performances of the MRF prior (5).

We first analyze the widely used leukemia data of Golub
et al. (1999) that comprises a training set of 38 patients and a
validation set of 34 patients. The training set consists of bone
marrow samples obtained from acute leukemia patients while
the validation set consists of 24 bone marrow samples and 10
peripheral blood samples. The aim of the analysis is to identify
genes whose expression discriminate acute lymphoblastic leukemia
(ALL) patients form acute myeloid leukemia (AML) patients.
Following Dudoit et al. (2002), we truncated expression measures
beyond the threshold of reliable detection at 100 and 16 000, and
removed probe sets with intensities such that max–min ≤5 and
max–min ≤500. This left us with 3571 genes for the analysis.
Expression readings were log-transformed and each variable was
rescaled by its range. Because of the distributional assumptions
behind discriminant analysis, in real data applications it is a good
practice to check for normality of the data and apply appropriate
transformations, see for example Jafari and Azuaje (2006), among
others.

The results we report here were obtained by specifying an MRF
prior model of type (5) on γ that uses the gene network structure
downloaded from the public available data base KEGG. The network
structure was obtained using the R package KEGGgraph of Zhang
and Wiemann (2009). All the 3571 probes were included in the
analysis. Note that some of the genes do not have neighbors. In
our analysis, we assumed that the non-significant variables are
marginally independent of the significant ones. We also set the
hyperparameters to δ=3, Hγ =100·I|γ|, h1 = ...=hG =10, h0 =
100, �1 =0.6−1 ·I|γ| and k0 =10−1. This setting is similar to what

Fig. 2. Golub data: marginal posterior probabilities of inclusion for single
genes, with and without MRF prior.

used in Kim et al. (2006), who analyzed the same dataset using
a mixture model for cluster analysis. As for the hyperparameters
of the MRF prior, parameterized according to Equation (6), we set
d =−2.5 and f =0.5. The choice of d, in particular, reflects our prior
expectation about the number of significant variables, in this case set
equal to 7.5% of the total genes analyzed, while a moderate value
was chosen for f to avoid the phase transition problem. Two samplers
were started with randomly selected starting models that had 10 and
2 included variables, respectively. We ran 150 000 iterations with
the first 50 000 used as burn-in. We assessed concordance of the
two chains by looking at a scatter plot of the marginal posterior
probabilities p(γj =1|X,y) across the two MCMC chains (Figure not
shown) and at the correlation coefficients between these probabilities
(r =0.95).

Results we report here were obtained by pooling the outputs
from the two chains together. Figure 2 shows the marginal posterior
probabilities of inclusion of single genes according to the pooled
MCMC output. A threshold of 0.85 on the marginal probability of
inclusion resulted in 29 selected genes. A heatmap of the 29 selected
genes is given in Figure 3. This figure shows that the selected genes
are able to separate the ALL patients, indexed from 1 to 20, from
the AML patients, indexed from 21 to 34, with the only exception
of unit 31. Indeed, the unsupervised clustering analysis represented
by the dendrogram on top of Figure 3 creates a group formed by the
entire set of ALL patients, plus unit 31, and other two groups formed
by only AML patients, confirming that the 29 selected genes have
a very good discriminatory power. In addition, Figure 4 shows the
posterior probabilities of class memberships for the 34 units of the
validation set, calculated based on the 29 selected genes. According
to these probabilities, 33 of the 34 samples were corrected classified.

Fig. 3. Golub data: heatmap of the 29 selected genes with a dendrogram of
the clustering on the observations (on top) and a dendrogram of the clustering
on the selected genes (on the left-hand side).
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Fig. 4. Golub data: posterior probabilities of group memberships for the 34
observations in the validation set.

An innovative feature of our method relies in the employment of
the MRF field prior. When applying our model without the MRF
prior, we noticed a slight decrease in the classification power. In
particular, a threshold of 0.95 resulted in 63 selected genes, as shown
in Figure 2, and in the correct classification of 30 of the 34 patients
of the validation set. Of the 29 genes selected with the MRF field,
26 were included in the set of 63 selected without MRF prior. This
result indicates that using information on gene networks, as captured
by our MRF prior, leads to an increased ability to identify genes
with strong discriminatory power.Additional insights on the selected
genes can be found by looking at the prior network. For example,
Figure 5 shows the subnetwork of the KEGG network we used that
includes the selected genes C5AR1 and GYPA. We notice that the
two selected genes appear to be both connected to a same set of
genes, including ACTA1, SLC5A2 and LAD1. Such information
can be valuable for the biological interpretation of the selection
results.

Some of the genes selected by our method are known to be
implicated with the differentiation or progression of leukemia
cells. For example, Secchiero et al. (2005) have found that
cyclooxygenase-2 (with corresponding gene symbol PTGS2),
selected by our method with posterior probability of 0.93, increases
tumorigenic potential by promoting resistance to apoptosis. Also,
Chien et al. (2009) have highlighted the pathogenic role of
the vascular endothelial growth factor (VEGF)-C, a recognized
tumor lymphangiogenic factor, in leukemia via regulation of
angiogenesis through upregulation of cyclooxygenase-2. Peterson
et al. (2007) have found that CD44 gene, selected with posterior
probability of 0.98, is involved in the growth and maintenance
of the AML blast/stem cells. Jin et al. (2006), who studied the
mechanisms underlying the elimination of leukemic stem cells
(LSCs), also identified CD44 as a key regulator of AML LSCs.
Moreover, gene CyP3 (corresponding symbol PPIF) and gene
Adipsin (corresponding symbol CFD), selected with posterior
probability of 0.97 and 0.99, respectively, were also selected in the
original analysis of Golub et al. (1999).

Next we analyzed the data fromAlon et al. (1999) on colon cancer,
another benchmark for gene expression analysis. We split the 40
tumor and 22 normal colon tissues into a training set of 47 units
and a validation set of 15 units. All gene expression profiles were
log-10 transformed and standardized to zero mean and unit variance.
We again downloaded the gene network structure from the public
available data base KEGG using the R package KEGGgraph. We

Fig. 5. Golub data: subnetwork that includes two of the selected genes
(in red). Genes are labeled with their gene symbols.

ran two chains from different initial points and then pooled together
the visited models. We set δ=3, Hγ =100·I|γ|, h1 = ...=hG =100,

h0 =10, �g =0.5−1 ·I|γ| and k0 =10−3. For the MRF prior, we set
f =1 and the expected number of included variables equal to 10. We
assumed unequal covariances across the groups.

Using a threshold of 0.45, we selected 10 genes that were able
to correctly classify all the units of the validation set. Most of the
10 selected genes are known to be implicated with the development
of colorectal cancer. For example, Wincewicz et al. (2007) found
that BCL2-like 1 (BCL2L1), selected by our method with posterior
probability 0.79, is of prognostic significance in colorectal cancer.
Gulubova et al. (2010) reported that transforming growth factor
beta receptor II gene (TGFBR2), selected with posterior probability
0.46, is expressed in tumor cell membranes of colorectal cancers
and Ogino et al. (2007) found that this gene is mutated in most
microsatellite instability-high (MSI-H) colorectal cancers. When we
repeated the analysis without the MRF prior, the algorithm selected
a set of 10 genes that correctly classified 14 out 15 samples. The
two sets of 10 genes, selected with and without MRF, respectively,
shared only a single gene.

The two benchmark datasets we have analyzed have been
extensively studied in the literature and similar prediction results
have been obtained by other classification methods. For example, in
their paper Golub et al. (1999) used the 50 most correlated genes
to build a class predictor that incorrectly classified 5 out of the 34
samples of the test set. Dettling (2004) reports comparative results
on a number of datasets, including the two we have analyzed, using
several classification methods, including Boosting, random forest,
support vector machine, nearest neighbor clustering and diagonal
linear discriminant analysis. For his analyses, he reports the average
misclassification rate calculated over 50 random splits. For the colon
cancer dataset, for example, the misclassification rate achieved is
around 15%, with DLDA achieving a best rate of 12.9%. To make a
more direct comparison with the results obtained by Dettling (2004),
we ran our Bayesian algorithm, with the MRF prior, 50 times, using
different splits of the data. Following Dettling (2004), we assigned
two-thirds of the samples to the training set and one-third to the
validation set. Multiple holdout runs are not commonly adopted
in Bayesian modeling, due to the impossibility of specifying the
hyperparameters on a case-by-case and, in our case, to the difficulty
of setting a selection criterion. With the same specification setting
across all 50 splits, we obtained misclassification rates that were
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remarkably similar to the best techniques used in Dettling (2004).
For the Leukemia dataset, we achieved an average misclassification
rate of 3.9%. With the exception of only one case, where 3 units of
the validation set were misclassified, the method correctly classified
at least 22 out of 24 samples, with 17 of the 50 splits achieving
perfect classification. For the colon cancer dataset, the average
misclassification rate was 16.4%.

6 CONCLUSION
We have illustrated how to perform variable selection in discriminant
analysis following the Bayesian paradigm. In particular, we have
considered the typical problem of classifying subjects according
to phenotypes via gene expression data and have proposed prior
models that incorporate information on the network structure of
genes. Our method allows the classification of future samples
and the simultaneous identification of the important biomarkers.
Our simulation studies have shown that employing the MRF prior
improves on selection accuracy. In applications to benchmark gene
expression datasets, we have found that the integration of existing
biological knowledge into the prior model results in an increased
ability to identify genes with strong discriminatory power and aids
the interpretation of the results, in addition to improving prediction
accuracy.
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